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Abstract

We discuss the method of undetermined coefficients for fractional differential equations, where
we use the (local) conformable fractional derivative presented in [R. Khalil, M. Al Horani, A. Yousef,
M. Sababheh, J. Comput. Appl. Math., 264 (2014), 65–70]. The concept of fractional polynomials,
fractional exponentials and fractional trigonometric functions is introduced. A method similar to the
case of ordinary differential equations is established to find a particular solution for nonhomogenous
linear fractional differential equations. Some other results are presented. c©2016 All rights reserved.
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1. Introduction

Fractional differential equations have been of great interest for the last thirty years because of
their applications in applied sciences, see [6], [8] and [12]. The main definitions which are of wide
use are the Riemann-Liouville definition and the Caputo definition, see [10, 11].
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(i) Riemann - Liouville Definition. For α ∈ [n− 1, n), the α derivative of f is

Dα
a (f)(t) =

1

Γ(n− α)

dn

dtn

t∫
a

f(x)

(t− x)α−n+1
dx.

(ii) Caputo Definition. For α ∈ [n− 1, n), the α derivative of f is

Dα
a (f)(t) =

1

Γ(n− α)

t∫
a

f (n)(x)

(t− x)α−n+1
dx.

However, the following are some of the setbacks of one definition or the other:

(i) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0 (Dα

a (1) = 0 for the Caputo
derivative), if α is not a natural number.

(ii) All fractional derivatives do not satisfy the known formula of the derivative of the product of
two functions:

Dα
a (fg) = fDα

a (g) + gDα
a (f).

(iii) All fractional derivatives do not satisfy the known formula of the derivative of the quotient of
two functions:

Dα
a (f/g) =

gDα
a (f)− fDα

a (g)

g2
.

(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a (f ◦ g)(t) = f (α)

(
g(t)

)
g(α)(t).

(v) All fractional derivatives do not satisfy: DαDβf = Dα+βf , in general.

(vi) All fractional derivatives, especially the Caputo definition, assume that the function f is
differentiable.

In [9], the authors gave a new definition of a (local) fractional derivative which is a natural
extension to the usual first derivative as follows:

Let f : [0,∞) −→ R be a given function. Then for all t > 0 and α ∈ (0, 1), define Tα(f) via

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

Tα is called the conformable fractional derivative of f of order α.

Let f (α)(t) stand for Tα(f)(t). It then follows that

f (α)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.
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If f is α−differentiable in some (0, b), b > 0, and lim
t→0+

f (α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

According to this definition, the following statements are true, see [9], see also [1, 2, 3, 4, 5, 7],

1. Tα(tp) = ptp−α for all p ∈ R.

2. Tα(sin 1
α
tα) = cos 1

α
tα.

3. Tα(cos 1
α
tα) = − sin 1

α
tα.

4. Tα(e
1
α
tα) = e

1
α
tα .

Further, all the classical properties of the derivative hold. This suggests that one may try to solve
(local) fractional differential equations using the same techniques for solving ordinary differential
equations. It is the purpose of this paper to study the method of undetermined coefficients to find
particular solutions for linear fractional differential equations. The concept of fractional polynomials,
fractional exponential, and fractional trigonometric functions are introduced, and then applied for
the undetermined coefficients method.

2. Fractional Polynomial Functions

Let X be a vector space, and T : X → X, be a linear operator on X. A subspace M ⊂ X, is
called invariant under T , if T (M) ⊆ M . Such a concept was used in the method of undetermined
coefficients for ordinary differential equations. For such a situation, T was the differential operator,
and M was taken to be the space generated by polynomials, exponential functions, and trigonometric
functions, added or multiplied.

Definition 2.1. Let n ∈ N, the set of natural numbers, and α ∈ (0, 1). We call α a factor of n if
there exists k ∈ N such that kα = n.

For example, 1
2

is a factor of 2 with k = 4, and 1
3

is a factor of 1 with k = 3. But 3
5

is not a factor
of 1.

Definition 2.2. A fractional polynomial of degree n and factor α is a function of the form

P (x) = anx
n + an−1x

n−α + .....+ an−k−1x
α + an−k,

where aj ∈ R, the set of real numbers. We write P (x) is an (n, α)− fractional polynomial. If an = 0,
we take n to be the smallest n for which α is a factor.

For example, x+x
1
2−4 is a (1, 1

2
)−fractional polynomial, and 2x

3
2 +5x−x 1

2 +7 is a (2, 1
2
)−fractional

polynomial. In addition, x+ x
2
3 − 1 is a (1, 1

3
)−fractional polynomial. Here the coefficient of x

1
3 is 0.

Let J(α) be the set of all (n, α)−polynomials for all n ∈ N and fixed α; clearly, J(α) is a subspace
of the space of all continuous functions on [0,∞). Let G(α) be the space of all functions of the form

c1 sin
(
tα

α

)
+ c2 cos

(
tα

α

)
, where c1, c2 ∈ R; E(α) be the space of all functions of the form ce

tα

α , where

c ∈ R; and let M(α) be the space of all functions of the form e
tα

α

(
P1(t) sin

(
tα

α

)
+ P2(t) cos

(
tα

α

) )
,

where P1, P2 ∈ J(α).
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Theorem 2.3. The subspaces J(α), G(α), E(α), and M(α) are invariant under the linear map Tα.

Proof. Using Theorem 2.2 in [9], and the facts, see also [9],

Tα(e
1
α
tα) = e

1
α
tα ,

Tα(sin
1

α
tα) = cos(

1

α
tα),

Tα(cos
1

α
tα) = − sin(

1

α
tα),

Tα(tp) = ptp−α,

the result follows.

We should remark that the spaces J(1), G(1), E(1), and M(1) are invariant under T1, which is
the first derivative.

3. Method of Undetermined Coefficients

Let us start with the following definition.

Definition 3.1. A differential equation is called an (n, α)− fractional differential equation if it is of
the form

any
(n) + an−1y

(n−α) + ...+ an−k−1y
(α) + an−ky = f(t), (3.1)

where α is a factor of the natural number n. If an = 0, we take n to be the smallest n for which α
is a factor. The differential equation (3.1) is called a fractional differential equation of order n and
factor α.

Since Tα is linear, see [9], Theorem 2.2, then one can easily see that equation (3.1) is linear.
In this section we consider equations of the form

y(α) + ay = f(t), (3.2)

where f(t) is an element of one of the spaces J(α), G(α), E(α), and M(α).
Let us write yh for the solution of the homogenous equation y(α) + ay = 0, and yp for any

particular solution of y(α) + ay = f(t). Then as in the case of ordinary differential equations, the
general solution is yg = yh + yp.

The equation y(α) + ay = 0 can be written as (Tα + aI)y = 0, where I is the identity operator
on the space of continuous functions on [0,∞). Hence, yh is an element of the kernel of the operator
Tα + aI.

Now, since Tα(e
1
α
tα) = e

1
α
tα , it follows that Tα(e

−a
α
tα) = −ae−a

α
tα . It follows that the kernel of

Tα + aI consists of the functions be
−a
α
tα , for b ∈ R. Thus yh for y(α) + ay = 0 is yh = be

−a
α
tα .

Remark 3.2. It is interesting to observe that the general solution of the homogenous part of equation
(3.2) is yh = er

1
α
tα and to notice that one can form the auxiliary equation r + a = 0, where y(α) is

replaced by r. So r = −a, and yh = e−a
1
α
tα . For example, the equation y(

1
2
) − y = 0, has auxiliary

equation r − 1 = 0, so r = 1, and hence yh = e2
√
t.

Now, to find yp using the method of undetermined coefficients, the function f(t) must be in one
of the spaces J(α), G(α), E(α), and M(α). This is because such spaces are invariant under Tα, and
hence under Tα + aI.
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Consequently, if f(t) = cet
α
, then yp must be bet

α
, where b is to be determined by substituting

bet
α

in y(α) + ay = cet
α
.

If f(t) = c1 sin tα + c2 cos tα, then yp must be b1 sin tα + b2 cos tα, where b1 and b2 are to be
determined by substituting in the equation y(α) + ay = c1 sin tα + c2 cos tα.

Similarly if f(t) is an (n, α)−fractional polynomial.

Remark 3.3. The above discussion works for the form of yp as long as there is no similarity between
yh and f(t). In such a case, we have to modify the form of yp as we will show later in this paper.

Example 3.4. Let us consider the general solution of the following fractional differential equations:

(1) y(
1
2
) + 2y = sin

√
t.

Solution. The auxiliary equation of y(
1
2
)+2y = 0 is r+2 = 0, so r = −2. Hence yh = be−2(2)

√
t =

be−4
√
t.

Now, yp = A sin
√
t+B cos

√
t, noting there is no similarity between yh and any of the terms of

yp. Substituting yp in the equation y(
1
2
) + 2y = sin

√
t, we get A = 8

17
and B = − 2

17
. Hence

yg = be−4
√
t +

8

17
sin
√
t− 2

17
cos
√
t.

(2) y(
1
3
) − y = t.

Solution. The auxiliary equation of y(
1
3
) − y = 0 is r − 1 = 0, so r = 1. Hence

yh = be3
3√t.

Again, yp = at + bt
2
3 + ct

1
3 + d, since there is no similarity between any of the terms of yp and

yh. Substituting yp in the equation y(
1
3
) − y = t, we get

a = −1, b = 1, c =
2

3
, d =

2

9
.

(3) y(
1
2
) − 3y = te

√
t cos
√
t.

Solution. One can easily see that yh = be6
√
t. As for yp, the form is

yp = e
√
t(c1t+ c2

√
t+ c3)(A sin

√
t+B cos

√
t),

noting that there is no similarity between yh and any of the terms of yp.
So just substituting yp in our equation and determine the coefficients.

4. The case of similarity

What if there is a similarity between yh and any of the terms of yp? Here is such an example

y(
1
2
) − y = 5e2

√
t. (4.1)
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Here yh = e2
√
t, and the form of yp is yp = be2

√
t. But if we substitute yp in equation (4.1), we will

not be able to determine b. Hence we try yp = b
√
te2
√
t. Substitute such yp in equation (4.1) to get

b
√
te2
√
t +

1

2
be2
√
t − b
√
te2
√
t = 5e2

√
t.

Hence b = 10. So yg = c e2
√
t + 10

√
te2
√
t.

Thus in case of similarity between any of the terms of yp and yh we multiply the assumed form
of yp by tα, whenever the equation is y(α) + by = f(t).

Open Problem 1. Is there an auxiliary equation for equations

any
(n) + an−1y

(n−α) + ...+ an−k−1y
(α) + an−ky = f(t),

with at least one coefficient of some derivative(not fractional) not equal to zero? As an example

y′′ + y(
3
2
) − y = 0?

Open Problem 2. If f(t) does not belong to any of the spaces J(α), G(α), E(α), and M(α), is
there a method of undetermined coefficients to find yp?

For example, in the case of (3.2), we have the following affirmative result.

Lemma 4.1. Let f, a : [t0,∞) ⊂ [0,∞) be continuous, and let y0 ∈ R. Then the unique solution of
the initial value problem

y(α)(t) + a(t)y(t) = f(t), y(t0) = y0,

is given by

y(t) = y0e
−

∫ t
t0
a(τ)τα−1dτ

+

∫ t

t0

e−
∫ t
s a(τ)τ

α−1dτf(s)sα−1ds, t ∈ [t0,∞). (4.2)

Proof. Let y be given by (4.2). Using the conformable fractional derivative rules,

Dαy(t) = −y0a(t)e
−

∫ t
t0
a(τ)τα−1dτ

+ f(t)e−
∫ t
t a(τ)τ

α−1dτ −
∫ t

t0

a(t)e−
∫ t
s a(τ)τ

α−1dτf(s)sα−1ds

= −a(t)y(t) + f(t),

which completes the proof of the lemma.
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