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Abstract

We study the geometry of the contact pseudo-slant submanifolds of a Kenmotsu manifold. Neces-
sary and sufficient conditions are given for a submanifold to be a pseudo-slant submanifold, contact
pseudo-slant product, mixed geodesic and totally geodesic in Kenmotsu manifolds. c©2016 All rights
reserved.
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1. Introduction

Kenmotsu [8] introduced a class of almost contact Riemannian manifolds known as Kenmotsu
manifolds. In 1990, B. Y. Chen [5, 6] introduced the notion of slant submanifold, which is gener-
alization of both the invariant and anti-invariant submanifolds. After that many research articles
have been published by different authors on the existence of these submanifolds in different ambient
spaces. The slant submanifolds of an almost contact metric manifolds were defined and studied by A.
Lotta [10]. After, these submanifolds were studied by J. L. Cabrerizo et al. [4] of Sasakian manifolds.

The notion of semi-slant submanifolds of an almost Hermitian manifold was introduced by N.
Papagiuc [11]. Cabrerizo et al. studied and characterized slant submanifolds of K- contact and
Sasakian manifolds and gave several examples of such submanifolds. Cabrerizo et al. [4] defined and
studied bi-slant immersions in almost contact metric manifolds and simultaneously gave the notion
of pseudo-slant submanifolds. Pseudo-slant submanifolds also have been studied by Khan at al. in
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S. Dirik, M. Atçeken, Ü. Yıldırım, J. Math. Computer Sci. 16 (2016), 386–394 387

[9]. Later, U. C. De et al. [7] studied and characterized pseudo-slant submanifolds of trans Sasakian
manifolds. Recently, in [1–3], Atçeken et al. studied slant and pseudo-slant submanifold in various
manifolds.

In this paper, we study contact pseudo-slant submanifolds of a Kenmotsu manifold. In section 2,
we review basic formulas and definitions for a Kenmotsu manifold and their submanifolds. In section
3, we study the geometry of the contact pseudo-slant submanifolds of a Kenmotsu manifold. Neces-
sary and sufficient conditions are given for a submanifold to be a contact pseudo-slant submanifold,
contact pseudo-slant product, mixed geodesic and totally geodesic in Kenmotsu manifolds.

2. Preliminaries

In this section, we give some terminology and notations used throughout this paper. We recall
some necessary fact and formulas from the theory of Kenmotsu manifolds and their submanifolds.

Let M̃ be a (2m+1)-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g) where

ϕ is a tensor field of type (1, 1), ξ a vector field, η is a 1-form, g is the Rieamanian metric on M̃ ,
which satisfy

ϕ2X = −X + η(X)ξ, (2.1)

ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, η(X) = g(X, ξ), (2.2)

and
g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY ) (2.3)

for any vector fields X, Y on M̃. If in addition to above relations

(∇̃Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (2.4)

then, M̃ is called a Kenmotsu manifold, where ∇̃ is the Levi-Civita connection of g. We have also
on a Kenmotsu manifold M̃

∇̃Xξ = X − η(X)ξ (2.5)

for any X, Y ∈ Γ(TM̃).

Now, let M be a submanifold of a contact metric manifold M̃ with the induced metric g. Also,
let ∇ and ∇⊥ be the induced connections on the tangent bundle TM and the normal bundle T⊥M
of M , respectively. Then the Gauss and Weingarten formulas are, respectively, given by

∇̃XY = ∇XY + σ(X, Y ), (2.6)

and
∇̃XV = −AVX +∇⊥

XV, (2.7)

where σ and AV are, respectively, the second fundamental form and the shape operator (correspond-

ing to the normal vector field V ) for the submanifold of M into M̃ . The second fundamental form
σ and shape operator AV are related by

g(AVX, Y ) = g(σ(X, Y ), V ) (2.8)

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). If σ(X, Y ) = 0, for each X, Y ∈ Γ(TM) then M is said to
be totally geodesic submanifold.
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Now, let M be a submanifold of an almost contact metric manifold M̃ , then for any X ∈ Γ(TM),
we can write

ϕX = PX + FX, (2.9)

where PX and FX are the tangential and normal components of ϕX respectively.
Similarly for any V ∈ Γ(T⊥M), we can write

ϕV = BV + CV, (2.10)

where BV and CV are the tangential and normal components of ϕV , respectively.
Thus by using (2.1), (2.9) and (2.10), we obtain

P 2 = −I + η ⊗ ξ −BF, FP + CF = 0, (2.11)

and
PB +BC = 0, FB + C2 = −I. (2.12)

Furthermore, the covariant derivatives of the tensor field P , F , B and C are, respectively, defined
by

(∇XP )Y = ∇XPY − P∇XY, (2.13)

(∇XF )Y = ∇⊥XFY − F∇XY, (2.14)

(∇XB)V = ∇XBV −B∇⊥XV, (2.15)

and
(∇XC)V = ∇⊥XCV − C∇⊥XV (2.16)

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
Furthermore, for any X, Y ∈ Γ(TM), we have g(PX, Y ) = −g(X,PY ) and V, U ∈ Γ(T⊥M),

we get g(U,CV ) = −g(CU, V ). These show that P and C are also skew-symmetric tensor fields.
Moreover, for any X ∈ Γ(TM) and V ∈ Γ(T⊥M), we have

g(FX, V ) = −g(X,BV ), (2.17)

which gives the relation between F and B.
A submanifold M is said to be invariant if F is identically zero, that is, ϕX ∈ Γ(TM) for all

X ∈ Γ(TM). On the other hand, M is said to be anti-invariant if P is identically zero, that is,
ϕX ∈ Γ(T

⊥
M) for all X ∈ Γ(TM). By direct calculations, we obtain the following formulas;

(∇XP )Y = AFYX +Bσ(X, Y ) + g(PX, Y )ξ − η(Y )PX, (2.18)

and
(∇XF )Y = Cσ(X, Y )− σ(X,PY )− η(Y )FX. (2.19)

Similarly, for any V ∈ Γ(T⊥M) and X ∈ Γ(TM), we obtain

(∇XB)V = g(FX, V )ξ + ACVX − PAVX, (2.20)

and
(∇XC)V = −σ(BV,X)− FAVX. (2.21)
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Since M is tangent to ξ, making use of (2.5), (2.6) and (2.8) we obtain

AV ξ = σ(X, ξ) = 0 (2.22)

for all V ∈ Γ(T⊥M) and X ∈ Γ(TM).
In contact geometry, A. Lotta introduced slant submanifolds as follows:
A submanifold M of an almost contact metric manifold M̃ is said to be slant submanifold if for

any x ∈M and X ∈ TxM − ξ, the angle between TxM and ϕX is constant. The constant angle [0, π
2
]

is then called slant angle of M . If θ = 0, the submanifold is invariant submanifold, if θ = π
2

then, it
is anti-invariant submanifold, if θ ∈ (0, π

2
) then it is proper slant submanifold[10].

For slant submanifolds of contact manifolds J. L. Cabrerizo et al. proved the following Lemma.

Lemma 2.1 ([4]). Let M be a slant submanifold of an almost contact metric manifold M̃ such that
ξ ∈ Γ(TM). Then M is slant submanifold if and only if there exist a constant λ ∈ [0, 1] such that

P 2 = λ(−I + η ⊗ ξ), (2.23)

moreover, if θ is the slant angle of M , then λ = cos2 θ.

Corollary 2.2 ([4]). Let M be a slant submanifold of an almost contact metric manifold M̃ with
slant angle θ. Then for any X, Y ∈ Γ(TM), we have

g(PX,PY ) = cos2 θ {g(X, Y )− η(X)η(Y )} , (2.24)

and
g(FX,FY ) = sin2 θ {g(X, Y )− η(X)η(Y )} . (2.25)

3. Contact pseudo-slant submanifold of a Kenmotsu manifold

In this section, we study the geometry of the contact pseudo-slant submanifolds of a Kenmotsu
manifold. Necessary and sufficient conditions are given for a submanifold to be a contact pseudo-
slant submanifold, contact pseudo-slant product, mixed geodesic and totally geodesic in Kenmotsu
manifolds.

Definition 3.1 ([9]). Let M be a submanifold of an almost contact metric manifold M̃ . M is said

to be contact pseudo-slant submanifold of M̃ if there exist two orthogonal distributions D⊥ and Dθ

on M such that:

(i) TM has the orthogonal direct decomposition TM = D⊥ ⊕Dθ, ξ ∈ Γ(Dθ).

(ii) The distribution D⊥ is an anti-invariant, i.e., ϕ(D⊥) ⊂ T⊥M .

(iii) The distribution Dθ is a slant, that is, the slant angle between of Dθ and ϕ(Dθ) is a constant.

If θ = 0 then, the submanifold becomes a semi-invariant submanifold.
Let d1 =dim(D⊥) and d2=dim(Dθ). We distinguish the following six cases:

(i) If d2 = 0, then M is an anti-invariant submanifold.

(ii) If d1 = 0 and θ = 0, then M is invariant submanifold.

(iii) If d1 = 0 and θ ∈ (0, π
2
), then M is a proper slant submanifold.
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(iv) If θ = π
2

then, M is an anti-invariant submanifold.

(v) If d2d1 6= 0 and θ = 0, then M is a semi-invariant submanifold.

(vi) If d2d1 6= 0 and θ ∈ (0, π
2
), then M is a contact pseudo-slant submanifold.

If we denote the projections on D⊥ and Dθ by ω1 and ω2, respectively, then for any vector field
X ∈ Γ(TM), we can write

X = ω1X + ω2X + η(X)ξ. (3.1)

On the other hand, applying ϕ on both sides of equation (3.1), we have

ϕX = ϕω1X + ϕω2X,

and
PX + FX = Fω1X + Pω2X + Fω2X, Pω1X = 0.

From which, we can easily to see

PX = Pω2X, FX = Fω1X + Fω2X,

and
ϕω1X = Fω1X, Pω1X = 0, ϕω2X = Pω2X + Fω2X, Pω2X ∈ Γ(Dθ).

If we denote the orthogonal complementary of ϕTM in T⊥M by µ, then the normal bundle T⊥M
can be decomposed as follows

T⊥M = F (D⊥)⊕ F (Dθ)⊕ µ. (3.2)

We can easily see that the bundle µ is an invariant subbundle with respect to ϕ. Since D⊥ and
Dθ are orthogonal distribution on M , g(ω1Z, ω2X) = 0 for each Z ∈ Γ(D

⊥
) and X ∈ Γ(Dθ). Thus,

by equation (2.3) and (2.9), we can write

g(Fω1Z, Fω2X) = g(ϕω1Z, ϕω2X) = g(ω1Z, ω2X) = 0,

that is, the distributions F (D⊥) and F (Dθ) are also mutually perpendicular. In fact, the decompo-
sition (3.2) is an orthogonal direct decomposition.

Let M be a (n+ 1)-dimensional contact pseudo-slant submanifold of (2m+ 1)-dimensional Ken-

motsu manifold M̃ with d2=dim(Dθ) = 2p+ 1 and d1 =dim(D⊥) = q and{
e1, e2, ..., ep, ep+1 = sec θPe1, ep+2 = sec θPe2, ...,
e2p = sec θPep, e2p+1 = ξ, e2p+2, e2p+3, ..., e2p+q+1

}
,

be an orthonormal basis of TM such that

{e1, e2, ..., ep, ep+1 = sec θPe1, ep+2 = sec θPe2, ..., e2p = sec θPep, e2p+1 = ξ}

are tangent to Γ(Dθ) and

{e2p+2, e2p+3, ..., e2p+q+1}

are tangent to Γ(D⊥).
Let M be a (n+ 1)-dimensional contact pseudo-slant submanifold of (2m+ 1)-dimensional Ken-

motsu manifold M̃ with dim(FDθ) = 2p, dim(FD⊥) = q and dim(µ) = 2k,
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
e
′
1 = cos ecθFe1, e

′
2 = cos ecθFe2, e

′
3 = cos ecθFe3, ..., e

′
p =

cos ecθFep, e
′
p+1 = sec θ cos ecθFPe1, e

′
p+2 = sec θ cos ecθFPe2,

..., e
′
2p = sec θ cos ecθFPep, e

′
2p+1 = 0, e

′
2p+2 = cos ecθFe2p+2,

e
′
2p+3 = cos ecθFe2p+3, ..., e

′
2p+q+1 = cos ecθFe2p+q+1, e

′
2p+q+2

, e
′
2p+q+3, ..., e

′

2p+q+k+1, ϕe
′

2p+q+k+2, ϕe
′

2p+q+k+3, ..., ϕe
′

2p+q+2k+1

 ,

be an orthonormal basis of T⊥M such that. Thus the orthonormal frames of the normal subbundles
F (Dθ), F (D⊥) and µ respectively are,{

e
′
1 = cos ecθFe1, e

′
2 = cos ecθFe2, e

′
3 = cos ecθFe3, ..., e

′
p = cos ecθFep,

e
′
p+1 = sec θ cos ecθFPe1, e

′
p+2 = sec θ cos ecθFPe2, ..., e

′
2p = sec θ cos ecθFPep

}
,{

e
′

2p+2 = cos ecθFe2p+2, ..., e
′

2p+q+1 = cos ecθFe2p+q+1

}
and {

e
′

2p+q+2, e
′

2p+q+3, ..., e
′

2p+q+k+1, ϕe
′

2p+q+k+2, ϕe
′

2p+q+k+3, ..., ϕe
′

2p+q+2k+1

}
.

Hence , we can easily see

g(ei, ej) = 0, for 1 ≤ i ≤ 2p+ 1, 2p+ 2 ≤ j ≤ 2p+ q + 1,

g(ei, e
′

j) = 0, for 1 ≤ i ≤ 2p+ q + 1, 1 ≤ j ≤ 2p+ q + k + 1,

g(e
′

i, e
′

j) = 0, for 1 ≤ i ≤ 2p, e
′

2p+1 = 0, for 2p+ 2 ≤ j ≤ 2p+ q + 1,

g(e
′

i, e
′

j) = 0, for 1 ≤ i ≤ 2p, 2p+ q + 2 ≤ j ≤ 2p+ q + k + 1,

g(e
′

i, e
′

j) = 0, for 2p+ 2 ≤ i ≤ 2p+ q + 1, 2p+ q + 2 ≤ j ≤ 2p+ q + k + 1,

g(ei, ϕe
′

j) = 0, for 1 ≤ i ≤ 2p+ 1, 2p+ q + k + 2 ≤ j ≤ 2p+ q + 2k + 1

and

g(e
′

i, ϕe
′

j) = 0, for 1 ≤ i ≤ 2p+ q + 1, 2p+ q + k + 2 ≤ j ≤ 2p+ q + 2k + 1.

Definition 3.2. A contact pseudo-slant submanifold M of Kenmotsu manifold M̃ is said to be
Dθ-geodesic (resp. D⊥-geodesic) if σ(X, Y ) = 0 for all X, Y ∈ Γ(Dθ) (resp. σ(Z,W ) = 0 for all
Z,W ∈ Γ(D⊥). If for all X ∈ Γ(Dθ) and Z ∈ Γ(D⊥), σ(X,Z) = 0, the M is called mixed geodesic
submanifold.

Theorem 3.3. Let M be a proper contact pseudo-slant submanifold of a Kenmotsu manifold M̃ . If
F is parallel, then either M is a mixed-geodesic or an anti-invariant submanifold.

Proof. From (2.19), we obtain
Cσ(X, Y ) = 0

for any X ∈ Γ(Dθ) and Y ∈ Γ(D⊥). Replacing X by Y in (2.19) and taking into account of F being
parallel, we have

Cσ(X, Y ) = σ(Y, PX)− η(X)FY = 0.

Thus we have
σ(Y, PX)− η(X)FY = 0,

which is equivalent to
σ(Y, P 2X) = − cos2 θσ(X, Y ) = 0.

This proves our assertion.
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Theorem 3.4. Let M be a proper contact pseudo-slant submanifold of a Kenmotsu manifold M̃ . If
B is parallel, then either M is a D⊥ -geodesic or an anti-invariant submanifold of M̃ .

Proof. If B is parallel, then making use of (2.20), we obtain

g(FZ, FY )ξ + ACFYZ − PAFYZ = 0

for any Y, Z ∈ Γ(D⊥), which implies that

PAFYZ = 0.

This tell us that M is either anti-invariant or AFYZ = 0. So we obtain

g(σ(Z,W ), FY ) = 0

for any W ∈ Γ(D⊥). Also by using (2.20), we conclude that

g(ACVZ, Y )− g(PAVZ, Y ) = g(σ(Y, Z), CV ) = 0

for any V ∈ Γ(T⊥M). This tells us thatM is eitherD⊥-geodesic or it is an anti-invariant submanifold.

Definition 3.5. Given a proper contact pseudo-slant submanifold M of a Kenmotsu manifold M̃ ,
if the distributions Dθ and D⊥ are totally geodesic in M , then M is said to be contact pseudo-slant
product.

Theorem 3.6. Let M be a contact pseudo-slant submanifold of a Kenmotsu manifold M̃ . Then M
is a contact pseudo-slant product if and only if the shape operator of M satisfies

AFD⊥PDθ = AFPDθ
D⊥. (3.3)

Proof. By using (2.18), we have

∇XPY − P∇XY = AFYX +Bh(X, Y ) + g(PX, Y )ξ − η(Y )PX

for any X, Y ∈ Γ(Dθ). This implies that

g(∇XPY, Z) = g(AFYX,Z) + g(Bh(X, Y ), Z) (3.4)

for any Z ∈ Γ(D⊥). Replacing Y by PY in (3.4) and taking into account of (2.24), we obtain

cos2 θg(∇XY, Z) = g(AFZPY − AFPYZ,X). (3.5)

Also, from (2.13), we have
−P∇ZU = AFUZ +Bh(Z,U)

for any U,Z ∈ Γ(D⊥), from which

−g(P∇ZU, PX) = g(AFUZ, PX) + g(Bh(Z,U), PX),

that is,
− cos2 θg(∇ZU,X) = g(AFUPX − AFPXU,Z) (3.6)

for any X ∈ Γ(Dθ). Equations (3.5) and (3.6) imply that (3.3).
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Example 3.7. Let M be a submanifold of R7 defined by equation

M = x(u, v, s, t, z) = (u, v, v sin θ, v cos θ, s cos t,−s cos t, z).

We can check that the tangent bundle of M is spanned by the tangent vectors

e1 =
∂

∂x1
, e5 = ξ =

∂

∂z
,

e2 =
∂

∂y1
+ sin θ

∂

∂x2
+ cos θ

∂

∂y2
,

e3 = cos t
∂

∂x3
− cos t

∂

∂y3
,

e4 = −s sin t
∂

∂x3
+ s sin t

∂

∂y3
.

For the almost contact metric structure ϕ of R7, whose coordinate systems

(x1, y1, x2, y2, x3, y3, z),

choosing

ϕ(
∂

∂xi
) =

∂

∂yi
, ϕ(

∂

∂yj
) = − ∂

∂xj
, 1 ≤ i, j ≤ 3

then we have

ϕe1 =
∂

∂y1
, ϕe5 = 0,

ϕe2 = − ∂

∂x1
+ sin θ

∂

∂y2
− cos θ

∂

∂x2
,

ϕe3 = cos t
∂

∂y3
+ cos t

∂

∂x3
,

ϕe4 = −s sin t
∂

∂y3
− s sin t

∂

∂x3
.

By direct calculations, we can infer Dθ = Sp{e1, e2} is a slant distribution with slant angle

cosα = g(e2,ϕe1)
‖e2‖‖ϕe1‖ =

√
2
2

, α = π
4
. Since g(ϕe3, ei) = 0, i = 1, 2, 4, 5 and g(ϕe4, ej) = 0, j = 1, 2, 3, 5

orthogonal to M , D⊥ = Sp{e3, e4} is an anti-invariant distribution. That is, M is a 5-dimensional
proper pseudo-slant submanifold of R7 with its usual almost contact metric structure.
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