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Abstract 

We study existence of positive solution of the equation 

−∆pu = λ u p−2u + f x, u  

with zero Dirichlet boundary conditions in bounded domain Ω ⊂ ℝn  where ∆p  denotes the p-

laplacian operator defined by −∆pz = div  ∇z p−2∇z ; p, λ ∈ ℝ and p > 1.Our main result 

establishes the existence of weak solution. 

Keywords: p-laplacian, weak solution, homogenous. 

1. Introduction 

In this paper, we are concerned with the existence of positive weak solution for the following 

problem 

                                         
−∆pu = λ u p−2u + f x, u     ,   x ∈ Ω

u = 0                                     ,          x ∈ ∂Ω
                                                 (1.1) 

The Journal of 

Mathematics and Computer Science 

http://www.tjmcs.com/


Malihe bagheri, mahnaz bagheri/ TJMCS Vol. 4 No. 1 (2012) 53 - 59 

54 
 

Where −∆p z = div  ∇z p−2∇z ;  p > 1 and Ω is a bounded domain in ℝn  . 

This problem is studied in connection with the corresponding eigenvalue problem for the p-

laplacian 

                                                         −∆pu = λ u p−2u                                                                        (1.2) 

With the Dirichlet condition  

                                                                            u = 0                                                                            (1.3) 

We concentrate on the existence of positive solution to (1.1) when  λ < λ1 . 

The similar equation (1.1) in the whole of ℝ𝑛 is studied in [1,2].Essentially the similar result as 

here we proved in [2] using a bifurcatin argument combined with a critical point theory.we 

study the problem (1.1) using the fibrering method introduce in [3,4].In section 2 we present 

some notation and preliminary result. 

2. Notation and preliminary results 

DIFINITION 1. Let 𝛀 be a bounded domain in ℝ𝑛 , 1 < 𝑝 < ∞.we will work in the Sobolev space 

𝑊 = 𝑊0
1,𝑃(𝛺) equipped with the norm  

                                                        𝑢 𝑤 = (  𝛻𝑢 𝑝𝑑𝑥
𝛺

)1/𝑝                                                            (2.1) 

DIFINITION 2.  we say that 𝑢 ∈ 𝑊 is a weak solution of (1.1) if  

                               𝛻𝑢 𝑝−2𝛻𝑢𝛻𝑣𝑑𝑥
𝛺

= 𝜆   𝑢 𝑝−2𝑢𝑣𝑑𝑥 +  𝑣𝑓(𝑥, 𝑢)𝑑𝑥
𝛺𝛺

                        (2.2) 

For any  𝑣 ∈ 𝑊. 

We will denote by (. , . )𝑤  the duality pairing between 𝑊∗ (the dual space) and 𝑊 so that the 

principal part (2.2) can be written as  

  𝛻𝑢 𝑝−2𝛻𝑢𝛻𝑣𝑑𝑥
𝛺

= (−∆𝑝𝑢, 𝑣)𝑤  . 

DIFINITION 3. A real number 𝛌 is called an eigenvalue and ∈ 𝑊, 𝑢(𝑥) ≢ 0 is a corresponding 

eigenfunction to the problem (1.2), (1.3) if 

                                         𝛻𝑢 𝑝−2𝛻𝑢𝛻𝑣𝑑𝑥
𝛺

= 𝜆   𝑢 𝑝−2𝑢𝑣𝑑𝑥
𝛺

                                                 (2.3) 

Holds for every 𝑣 ∈ 𝑊. 
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LEMMA 1. (See [5, 6]) there exists the first positive eigenvalue 𝜆1of the problem (1.2),(1.3) which 

is characterize as the minimum of the Rayleigh quotient: 

                                              𝜆1 =
𝑚𝑖𝑛
𝑢∈𝑊

  𝑢 𝑝 𝑑𝑥 >0𝛺

  𝛻𝑢  𝑝 𝑑𝑥
𝛺

  𝑢 𝑝 𝑑𝑥
𝛺

> 0                                                                  (2.4) 

It follows from the continuity of the Nemytskii operator [6] and the Sobolev Embedding theorem 

implies that: 

 𝐴0 The functional 

𝑢 →   𝑢 𝑝𝑑𝑥
𝛺

 

Is weakly continous on W. 

Analogously, It follows from 𝐹 ∈ 𝐿∞ 𝛺 that : 

 𝐴1 The functional 

𝑢 →  𝐹(𝑥, 𝑢)𝑑𝑥
𝛺

 

Is weakly continous on W. 

Let us consider the Euler functional 

                                       𝐼𝜆 𝑢 =
1

𝑝
  𝛻𝑢 𝑝𝑑𝑥
𝛺

−
𝜆

𝑝
  𝑢 𝑝𝑑𝑥 +  𝐹(𝑥, 𝑢)𝑑𝑥

𝛺𝛺
                       (2.5) 

Associated with (1.1) where 𝐹(𝑥, 𝑢) is primery function 𝑓.  

It is clear a ciritical point of 𝐼𝜆  corresponds to a weak solution of boundary-value problem (1.1). 

We will assume that the function 𝐹(𝑥, 𝑢) is 𝛼-homogenous for every 𝑢 ∈ 𝑊.let us split the 

function 𝑢 ∈ 𝑊 as follows: 

                                                                     𝑢 𝑥 = 𝑟𝑣(𝑥)                                                                  (2.6) 

𝑟 ∈ ℝ, 𝑢 ∈ 𝑊 and subsititute (2.6) into (2.5). We get  

                                       𝐼𝜆 𝑟𝑣 =
 𝑟 𝑝

𝑝
  𝛻𝑣 𝑝𝑑𝑥
𝛺

−
𝜆 𝑟 𝑝

𝑝
  𝑣 𝑝𝑑𝑥 + 𝑟𝛼  𝐹(𝑥, 𝑣)𝑑𝑥

𝛺𝛺
          (2.7)   

Let 𝑢 ∈ 𝑊be the critical point of 𝐼𝜆 𝑢  .then 
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𝜕𝐼𝜆(𝑟𝑣)

𝜕𝑟
= 0, 

 𝑟 𝑝−2𝑟   𝛻𝑣 𝑝𝑑𝑥
𝛺

− 𝜆 𝑟 𝑝−2𝑟   𝑣 𝑝𝑑𝑥 + 𝛼𝑟𝛼  𝐹 𝑥, 𝑣 𝑑𝑥 = 0
𝛺𝛺

 

Looking for nontirivial solutions 𝑢 ≢ 0, we have to consider 𝑟 ≠ 0 under the assumption 

𝛼, 𝑟 > 0, 𝐹(𝑥, 𝑢) ≠ 0 and   𝛻𝑣 𝑝𝑑𝑥
𝛺

− 𝜆   𝑣 𝑝𝑑𝑥 ≠ 0,
𝛺

 .Hence 

  

  ∇v pdx
Ω

− λ  v pdx + αrα−p  F x, v dx = 0
ΩΩ

 

We get from here that  

                                                    rα−p =
  ∇v p dx
Ω

−λ  v p dx
Ω

α  F x,v dx
Ω

> 0                                                     (2.8) 

If we calculate r from (2.8) and substitute it into (2.7), we get  

I λ v = Iλ r v v  

                               =  
1

p
− 1 .

   ∇v p dx
Ω

−λ   v p dx
Ω

 

α
α−p

 α  F x,u dx
Ω

 

p
α−p

sgn(α F x, v dx
Ω

)                          (2.9) 

REMARK 1. we would like to point out that r = r(v) is well defined (and consequently the 

function r → Iλ rv  has a unique turning point) provided either  

(i)  F x, v dx
Ω

> 0    and     ∇v pdx
Ω

− λ  v pdx
Ω

> 0     

or 

(ii)  F x, v dx
Ω

< 0     and     ∇v pdx
Ω

− λ  v pdx
Ω

< 0 

LEMMA 2. Let us consider the constraint H (v) =c, where the function H: W → ℝ satisfies the 

following condition: 

                                                  (H′ v , v)w ≠ 0  if H v = c                                               (2.10) 

then every conditional critical point of the problem 

                                                           crit {I λ v  ; H v = c}                                                       (2.11) 
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LEMMA 3. Every critical point vc ≠ 0 of I λsatisfying (i) or (ii) generates a critical point uc ∈ W  

uc ≠ 0 of Iλ by the formula 

                                                                     uc = rcvc(x)                                                                   (2.12) 

Where rc > 0 is define by (2.8). 

3. Main result  

Let us consider the conditional variational problem: 

                                    
−∆pu = λ u p−2u + f x, u     ,   x ∈ Ω

u = 0                                     ,          x ∈ ∂Ω
                          (3.1) 

Let λ1 > 0 be the first positive eigenvalue of (1.2) with the Dirichlet condition u = 0 on ∂Ω 

and u1 = u1(x) be the corresponding positive eigenfunction. 

We will assume 0 ≤ λ < λ1 and function F(x, u) is α-homogenous for every u ∈ W .Set  

                                          Hλ v =   ∇v pdx
Ω

− λ  v pdx
Ω

                                (3.2) 

It follows from Lemma 1that   Hλ v ≥ 0 for any v ∈ W and it follows from (3.2) that  

(Hλ
′ v , v)w = pHλ v  , v ∈ W .  

There fore (2.10) is fulfilled if we assume  

Hλ v = 1 

As a contraint and we have to consider the critical point of I λ v  satisfying  F x, u dx
Ω

> 0 

.due to the case (i) from Remark 1. 

Let us consider the conditional variational problem: 

  (pλ) find a maximiser vc ∈ W  of the problem 

0 < Mλ = Sup{ F x, v dx ;     F x, v dx
Ω

> 0,
Ω

Hλ v = 1} 

Then vc  is a solution to (pλ) if and only if vc  is a minimiser of I λ subject to the constraint 

Hλ v = 1 due Lemma 2. 

Proof.Let us consider the set  

Wλ =  v ∈ W ; Hλ v = 1   
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From the variational characterisation of  λ1  and 0 ≤ λ < λ1, it follows that Wλ ≠ ∅ . Next we 

prove that this set is bounded in w. Due to the variational characterisation (2.4) of λ1 , we get 

for any v ∈ Wλ: 

                          ∇v pdx
Ω

− λ  v pdx
Ω

+ 1 ≤
λ

λ1
  ∇v pdx
Ω

+ 1             (3.3) 

It follows from (3.3) that for 0 ≤ λ < λ1 , v ∈ Wλ: 

                          ∇v pdx
Ω

≤
λ1

λ1−λ
 . 

Hence the maximising sequence {vn }n=1
∞  for (pλ) is bounded in W. Consequently, we may 

assume that 

vn → vc     in  W 

Due to  A1 , we have  

                                   F x, un dx →  F x, u dx
Ω

= Mλ > 0
Ω

                          (3.4) 

Moreover, we have Hλ vn = 1 and due to the weak lower semicontinuity of the norm  .  w  

and  A0  we get  

                                                ∇vc 
pdx

Ω
≤ lim infn→∞   ∇vn pdx

Ω
, 

 F x, vc dx = lim
n→∞

 F x, vn dx
Ω

 
Ω

 

Hence  

                                                 Hλ vc =   ∇vc 
pdx

Ω
− λ  vc 

pdx ≤ 1
Ω

                           (3.5)                                

it follows from (3.4) that vc ≠ 0 and we may also assume vc ≥ 0.we prove that, in fact, 

equality holds in (3.5) .assume that this is not true, 

                                                                              Hλ vc < 1, 

We find kc > 1 such that  

Hλ kcvc = 1 

Then v c = kcvc ∈ Wλ and  

                                   F x, u c dx = kc
α
 F x, vc dx
Ω

= kc
αMλ > 0

Ω
 

Which is a contradiction. Hence vc ∈ Wλis the solution of (pλ). 
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