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Abstract
We study existence of positive solution of the equation
—A,u = AulP%u + f(x, u)

with zero Dirichlet boundary conditions in bounded domain (1 ¢ R" where A, denotes the p-
laplacian operator defined by —A,z = div(|Vz|P~2Vz);p,A € R and p > 1.0ur main result
establishes the existence of weak solution.

Keywords: p-laplacian, weak solution, homogenous.
1. Introduction

In this paper, we are concerned with the existence of positive weak solution for the following
problem

_ = p—2
{ Aju=AulP“u+f(x,u) , xXEN (1.1)

u=20 , X € 00}
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Where —A,z = div(]Vz|P~2Vz); p > 1 and Q is a bounded domain in R" .

This problem is studied in connection with the corresponding eigenvalue problem for the p-
laplacian

—A,u = AulP~%u (1.2)
With the Dirichlet condition
u=20 (1.3)
We concentrate on the existence of positive solution to (1.1) when A < A;.

The similar equation (1.1) in the whole of R"is studied in [1,2].Essentially the similar result as
here we proved in [2] using a bifurcatin argument combined with a critical point theory.we
study the problem (1.1) using the fibrering method introduce in [3,4].In section 2 we present
some notation and preliminary result.

2. Notation and preliminary results

DIFINITION 1. Let £2 be a bounded domain in R*, 1 < p < co.we will work in the Sobolev space
W = WOLP () equipped with the norm

lull, = (J, VulPdx)'/? (2.1)
DIFINITION 2. we say that u € W is a weak solution of (1.1) if
fn |Vu|P~2VuVvdx = Afﬂ |ulP~2uvdx + fﬂ vf (x,u)dx (2.2)

Forany v e W.

We will denote by (.,.),, the duality pairing between W* (the dual space) and W so that the
principal part (2.2) can be written as

J, PulP=2vuvvdx = (=A,u,v),, .

DIFINITION 3. A real number A is called an eigenvalue and € W,u(x) # 0 is a corresponding
eigenfunction to the problem (1.2), (1.3) if

fn |[VulP2vuVvdx = Afﬂ [u|P~2uvdx (2.3)

Holds foreveryv € W.
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LEMMA 1. (See [5, 6]) there exists the first positive eigenvalue A, of the problem (1.2),(1.3) which
is characterize as the minimum of the Rayleigh quotient:

in ulP
A= M hlmlar (2.4)

fﬂ |u|P dx >0 ffl ulPdx

It follows from the continuity of the Nemytskii operator [6] and the Sobolev Embedding theorem
implies that:

(Ay) The functional

u —>f |ulPdx
0

Is weakly continous on W.
Analogously, It follows from F € L*(Q)that :

(A1) The functional

u- j F(x,u)dx
0

Is weakly continous on W.

Let us consider the Euler functional
1 2
L (w) =;fﬂ |l7u|7"dx—;f!2 |u|7"dx+f!2 F(x,u)dx (2.5)

Associated with (1.1) where F (x,u) is primery function f.
It is clear a ciritical point of I, corresponds to a weak solution of boundary-value problem (1.1).

We will assume that the function F(x,u) is a-homogenous for every u € W.let us split the
function u € W as follows:

u(x) = rv(x) (2.6)
r € R,u € W and subsititute (2.6) into (2.5). We get

Alr|P

L(rv) = %fﬂ |Vv|Pdx — fn |lv|Pdx + r® fﬂ F(x,v)dx (2.7)

Let u € Wbe the critical point of I, (u) .then
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oL (rv) 0
or

Irlp‘zrj |Vv|Pdx —Alrlp‘zrf [v|Pdx + ar"‘f F(x,v)dx =0
0 0 0

Looking for nontirivial solutions u % 0, we have to consider r # 0 under the assumption
a,r > 0,F(x,u) # 0 andf!2 |Vv|Pdx — Afﬂ |v|Pdx # 0,.Hence

f IVvlpdx—Af [v|Pdx + ar“‘pj F(x,v)dx =0
Q Q Q

We get from here that

Jo IVvIPdx =2 [, [vIPdx
o fy F(xv)dx

re P =

>0 (2.8)

If we calculate r from (2.8) and substitute it into (2.7), we get

L) = LWv)

[e4

1 [ |Vv|Pdx —A [, |v|pdxﬁ
= (;_ 1 ,‘“ E _L| sgn(ocfQ F(x,v)dx) (2.9)

‘a fQ F(x,u)dx |a_p

REMARK 1. we would like to point out that r = r(v) is well defined (and consequently the
function r - I, (rv) has a unique turning point) provided either

(i) fQ F(x,v)dx > 0 and fQ |Vv|Pdx — Afn |v|Pdx > 0
or
(ii) fQ F(x,v)dx< 0 and fn |Vv|Pdx — ?\fﬂ |v|Pdx < 0

LEMMA 2. Let us consider the constraint H (v) =c, where the function H: W — R satisfies the
following condition:

(H'(v),v),, # 0 if H(v) = ¢ (2.10)
then every conditional critical point of the problem

crit {I, (v) ; H(v) = ¢} (2.11)
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LEMMA 3. Every critical point v, # 0 of I,satisfying (i) or (ii) generates a critical point u, € W
u. # 0 of [, by the formula

U, = r.ve(x) (2.12)
Where r. > 0 is define by (2.8).
3. Main result
Let us consider the conditional variational problem:

— — p-2
{ Aju=AlulPu+f(x,u) , x€Q (3.1)

u=20 , X € 0Q)

Let A; > 0 be the first positive eigenvalue of (1.2) with the Dirichlet condition u = 0 on 0}
and u; = uy(x) be the corresponding positive eigenfunction.

We will assume 0 < A < A; and function F(x,u) is a-homogenous for every u € W .Set
Hy(v) = [, IW[Pdx — A [, [v[Pdx (3.2)
It follows from Lemma 1that H,(v) = 0 for any v € W and it follows from (3.2) that
(H, (), V)y = pHi(v) ,vEW.
There fore (2.10) is fulfilled if we assume
H,(v) =1

As a contraint and we have to consider the critical point of I,(v) satisfying fQ F(x,u)dx > 0

.due to the case (i) from Remark 1.
Let us consider the conditional variational problem:

(py) find a maximiser v. € W of the problem
0 <M, = Sup{J, F(x,v)dx; [, F(x,v)dx > 0,H,(v) = 1}

Then v, is a solution to (p,) if and only if v, is a minimiser of I, subject to the constraint
H, (v) = 1 due Lemma 2.

Proof.Let us consider the set

W)\:{VEW;H}\(V):].}
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From the variational characterisation of A; and 0 < A < A, it follows that W, # @ . Next we
prove that this set is bounded in w. Due to the variational characterisation (2.4) of A;, we get
forany v € W;:

Jo IvvlPdx — A [ [v[Pdx+ 1 < %fﬂ |[Vv|Pdx + 1 (3.3)
It follows from (3.3) thatfor 0 < A < A, v E W;:

A
p < -
Jo 1Vv[Pdx < s

Hence the maximising sequence {v,},—; for (p,) is bounded in W. Consequently, we may
assume that

Due to (A;), we have
fQ F(x,u,)dx — fQ F(x,wdx=M, >0 (3.4)

Moreover, we have H,(v,) = 1 and due to the weak lower semicontinuity of the norm ||. ||,
and (A,) we get

Jo 1VvcIPdx < lim inf, L, [, Vv, [Pdx,

f F(x,v.)dx = limf F(x,v,)dx
Q n=%Jg

Hence

Hy(ve) = [, [Vv[Pdx =2 [ [ve[Pdx < 1 (3.5)
it follows from (3.4) that v. # 0 and we may also assume v. > 0.we prove that, in fact,
equality holds in (3.5) .assume that this is not true,

H}\(VC) < 1,
We find k. > 1 such that
H?\(kcvc) =1
Then V. = k.v. € W, and
Jo FxU)dx =k.* [, F(x,vo)dx = k"M, >0

Which is a contradiction. Hence v, € W, is the solution of (p;).
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