

Available online at

http://www.TJMCS.com

The Journal of Mathematics and Computer Science Vol. 4 No.1 (2012) 53 - 59

Existence solution for class of p-laplacian equations

Malihe bagheri

Department of mathematic, Golestan Institute of Higher Education, Golestan Province, Iran bagherima@yahoo.com

mahnaz bagheri

Department of mathematice, Islamic Azad University, behshar Branch, Iran m.bagheri@iaubs.ac.ir

Received: December 2011, Revised: March 2012

Online Publication: May 2012

Abstract

We study existence of positive solution of the equation

$$-\Delta_p u = \lambda |u|^{p-2} u + f(x, u)$$

with zero Dirichlet boundary conditions in bounded domain $\Omega \subset \mathbb{R}^n$ where Δ_p denotes the plaplacian operator defined by $-\Delta_p z = \text{div}(|\nabla z|^{p-2}\nabla z); p, \lambda \in \mathbb{R}$ and p > 1.0ur main result establishes the existence of weak solution.

Keywords: p-laplacian, weak solution, homogenous.

1. Introduction

In this paper, we are concerned with the existence of positive weak solution for the following problem

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u + f(x, u) &, x \in \Omega \\ u = 0 &, x \in \partial \Omega \end{cases}$$
 (1.1)

Where $-\Delta_p z=\text{div}(|\nabla z|^{p-2}\nabla z);\; p>1$ and Ω is a bounded domain in \mathbb{R}^n .

This problem is studied in connection with the corresponding eigenvalue problem for the plaplacian

$$-\Delta_{p} u = \lambda |u|^{p-2} u \tag{1.2}$$

With the Dirichlet condition

$$\mathbf{u} = \mathbf{0} \tag{1.3}$$

We concentrate on the existence of positive solution to (1.1) when $\lambda < \lambda_1$.

The similar equation (1.1) in the whole of \mathbb{R}^n is studied in [1,2]. Essentially the similar result as here we proved in [2] using a bifurcatin argument combined with a critical point theory. we study the problem (1.1) using the fibrering method introduce in [3,4]. In section 2 we present some notation and preliminary result.

2. Notation and preliminary results

DIFINITION 1. Let Ω be a bounded domain in \mathbb{R}^n , $1 .we will work in the Sobolev space <math>W = W_0^{1,P}(\Omega)$ equipped with the norm

$$||u||_{w} = (\int_{0} |\nabla u|^{p} dx)^{1/p}$$
 (2.1)

DIFINITION 2. we say that $u \in W$ is a weak solution of (1.1) if

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v dx = \lambda \int_{\Omega} |u|^{p-2} u v dx + \int_{\Omega} v f(x, u) dx$$
 (2.2)

For any $v \in W$.

We will denote by $(.,.)_w$ the duality pairing between W^* (the dual space) and W so that the principal part (2.2) can be written as

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v dx = (-\Delta_p u, v)_w.$$

DIFINITION 3. A real number λ is called an eigenvalue and $\in W$, $u(x) \not\equiv 0$ is a corresponding eigenfunction to the problem (1.2), (1.3) if

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v dx = \lambda \int_{\Omega} |u|^{p-2} u v dx \tag{2.3}$$

Holds for every $v \in W$.

LEMMA 1. (See [5, 6]) there exists the first positive eigenvalue λ_1 of the problem (1.2),(1.3) which is characterize as the minimum of the Rayleigh quotient:

$$\lambda_1 = \min_{\substack{u \in W \\ \int_{\Omega} |u|^p dx > 0}} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx} > 0$$
 (2.4)

It follows from the continuity of the Nemytskii operator [6] and the Sobolev Embedding theorem implies that:

 (A_0) The functional

$$u \to \int_{\Omega} |u|^p dx$$

Is weakly continous on W.

Analogously, It follows from $F \in L^{\infty}(\Omega)$ that:

 (A_1) The functional

$$u \to \int_0^\infty F(x,u)dx$$

Is weakly continous on W.

Let us consider the Euler functional

$$I_{\lambda}(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{\lambda}{p} \int_{\Omega} |u|^p dx + \int_{\Omega} F(x, u) dx$$
 (2.5)

Associated with (1.1) where F(x,u) is primery function f.

It is clear a ciritical point of I_{λ} corresponds to a weak solution of boundary-value problem (1.1).

We will assume that the function F(x,u) is α -homogenous for every $u \in W$.let us split the function $u \in W$ as follows:

$$u(x) = rv(x) \tag{2.6}$$

 $r \in \mathbb{R}$, $u \in W$ and substitute (2.6) into (2.5). We get

$$I_{\lambda}(rv) = \frac{|r|^p}{p} \int_{\Omega} |\nabla v|^p dx - \frac{\lambda |r|^p}{p} \int_{\Omega} |v|^p dx + r^{\alpha} \int_{\Omega} F(x, v) dx \qquad (2.7)$$

Let $u \in W$ be the critical point of $I_{\lambda}(u)$.then

$$\frac{\partial I_{\lambda}(rv)}{\partial r}=0,$$

$$|r|^{p-2}r\int_{\Omega}|\nabla v|^{p}dx-\lambda|r|^{p-2}r\int_{\Omega}|v|^{p}dx+\alpha r^{\alpha}\int_{\Omega}F(x,v)dx=0$$

Looking for nontirivial solutions $u \not\equiv 0$, we have to consider $r \neq 0$ under the assumption $\alpha, r > 0, F(x, u) \neq 0$ and $\int_{\Omega} |\nabla v|^p dx - \lambda \int_{\Omega} |v|^p dx \neq 0$, Hence

$$\int_{\Omega} |\nabla v|^p dx - \lambda \int_{\Omega} |v|^p dx + \alpha r^{\alpha - p} \int_{\Omega} F(x, v) dx = 0$$

We get from here that

$$r^{\alpha-p} = \frac{\int_{\Omega} |\nabla v|^p dx - \lambda \int_{\Omega} |v|^p dx}{\alpha \int_{\Omega} F(x, v) dx} > 0$$
 (2.8)

If we calculate r from (2.8) and substitute it into (2.7), we get

$$\tilde{I}_{\lambda}(v) = I_{\lambda}(r(v)v)$$

$$= \left(\frac{1}{p} - 1\right) \cdot \frac{\left|\int_{\Omega} |\nabla v|^{p} dx - \lambda \int_{\Omega} |v|^{p} dx\right|^{\frac{\alpha}{\alpha - p}}}{\left|\alpha \int_{\Omega} F(x, u) dx\right|^{\frac{p}{\alpha - p}}} \operatorname{sgn}(\alpha \int_{\Omega} F(x, v) dx)$$
(2.9)

REMARK 1. we would like to point out that r = r(v) is well defined (and consequently the function $r \to I_{\lambda}(rv)$ has a unique turning point) provided either

(i)
$$\int_{\Omega} F(x, v) dx > 0 \text{ and } \int_{\Omega} |\nabla v|^{p} dx - \lambda \int_{\Omega} |v|^{p} dx > 0$$

or

(ii)
$$\int_{\Omega} F(x, v) dx < 0$$
 and $\int_{\Omega} |\nabla v|^p dx - \lambda \int_{\Omega} |v|^p dx < 0$

LEMMA 2. Let us consider the constraint H (v) =c, where the function H: W $\rightarrow \mathbb{R}$ satisfies the following condition:

$$(H'(v), v)_w \neq 0 \text{ if } H(v) = c$$
 (2.10)

then every conditional critical point of the problem

$$\operatorname{crit} \{\tilde{I}_{\lambda}(v); H(v) = c\} \tag{2.11}$$

LEMMA 3. Every critical point $v_c \neq 0$ of \tilde{I}_{λ} satisfying (i) or (ii) generates a critical point $u_c \in W$ $u_c \neq 0$ of I_{λ} by the formula

$$u_c = r_c v_c(x) \tag{2.12}$$

Where $r_c > 0$ is define by (2.8).

3. Main result

Let us consider the conditional variational problem:

$$\begin{cases}
-\Delta_p u = \lambda |u|^{p-2} u + f(x, u) , & x \in \Omega \\
u = 0 , & x \in \partial\Omega
\end{cases}$$
(3.1)

Let $\lambda_1>0$ be the first positive eigenvalue of (1.2) with the Dirichlet condition u=0 on $\partial\Omega$ and $u_1=u_1(x)$ be the corresponding positive eigenfunction.

We will assume $0 \le \lambda < \lambda_1$ and function F(x, u) is α -homogenous for every $u \in W$. Set

$$H_{\lambda}(v) = \int_{\Omega} |\nabla v|^{p} dx - \lambda \int_{\Omega} |v|^{p} dx$$
 (3.2)

It follows from Lemma 1that $H_{\lambda}(v) \ge 0$ for any $v \in W$ and it follows from (3.2) that

$$(H_{\lambda}'(v), v)_{w} = pH_{\lambda}(v), v \in W.$$

There fore (2.10) is fulfilled if we assume

$$H_{\lambda}(v) = 1$$

As a contraint and we have to consider the critical point of $\tilde{I}_{\lambda}(v)$ satisfying $\int_{\Omega} F(x,u)dx > 0$.due to the case (i) from Remark 1.

Let us consider the conditional variational problem:

 (p_{λ}) find a maximiser $v_c \in W$ of the problem

$$0 < M_{\lambda} = Sup\{\int_{\Omega} F(x, v)dx; \int_{\Omega} F(x, v)dx > 0, H_{\lambda}(v) = 1\}$$

Then v_c is a solution to (p_{λ}) if and only if v_c is a minimiser of \tilde{I}_{λ} subject to the constraint $H_{\lambda}(v) = 1$ due Lemma 2.

Proof.Let us consider the set

$$W_{\lambda} = \{ v \in W ; H_{\lambda}(v) = 1 \}$$

From the variational characterisation of λ_1 and $0 \le \lambda < \lambda_1$, it follows that $W_\lambda \ne \emptyset$. Next we prove that this set is bounded in w. Due to the variational characterisation (2.4) of λ_1 , we get for any $v \in W_\lambda$:

$$\int_{\Omega} |\nabla v|^p dx - \lambda \int_{\Omega} |v|^p dx + 1 \le \frac{\lambda}{\lambda_1} \int_{\Omega} |\nabla v|^p dx + 1$$
 (3.3)

It follows from (3.3) that for $0 \le \lambda < \lambda_1$, $v \in W_{\lambda}$:

$$\int_{\Omega} |\nabla v|^p dx \le \frac{\lambda_1}{\lambda_1 - \lambda}.$$

Hence the maximising sequence $\{v_n\}_{n=1}^{\infty}$ for (p_{λ}) is bounded in W. Consequently, we may assume that

$$v_n \rightarrow v_c$$
 in W

Due to (A_1) , we have

$$\int_{0} F(x, u_{n}) dx \rightarrow \int_{0} F(x, u) dx = M_{\lambda} > 0$$
 (3.4)

Moreover, we have $H_{\lambda}(v_n)=1$ and due to the weak lower semicontinuity of the norm $\|.\|_w$ and (A_0) we get

$$\textstyle \int_{\Omega} \, |\nabla v_c|^p dx \leq \lim \inf_{n \to \infty} \int_{\Omega} \, |\nabla v_n|^p dx \text{,}$$

$$\int_{\Omega} F(x, v_c) dx = \lim_{n \to \infty} \int_{\Omega} F(x, v_n) dx$$

Hence

$$H_{\lambda}(v_c) = \int_{\Omega} |\nabla v_c|^p dx - \lambda \int_{\Omega} |v_c|^p dx \le 1$$
 (3.5)

it follows from (3.4) that $v_c \neq 0$ and we may also assume $v_c \geq 0$.we prove that, in fact, equality holds in (3.5) .assume that this is not true,

$$H_{\lambda}(v_c) < 1$$
,

We find $k_c > 1$ such that

$$H_{\lambda}(k_c v_c) = 1$$

Then $\tilde{v}_c = k_c v_c \in W_{\lambda}$ and

$$\int_{\Omega} F(x, \tilde{u}_c) dx = k_c^{\alpha} \int_{\Omega} F(x, v_c) dx = k_c^{\alpha} M_{\lambda} > 0$$

Which is a contradiction. Hence $v_c \in W_{\lambda}$ is the solution of (p_{λ}) .

Refernces

- 1. P.Drabek and y. Hung Bifurcation problems for the p-Laplacian in \mathbb{R}^n . Trans. Amer.Math .Soe.
- 2. p.Drabek and Y. Hung. Multiple positive solutions of quasilinear elliptic equations in \mathbb{R}^n . Nonlinear. Anal. Theory, Meth. and Appl.
- 3. S.I.Pohozaev. On one approach to nonlinear equations .Dokl.Akad.Nauk 247 (1979), 1327 31
- 4. S.I.Pohozaev. On fibering method for the solution of nonlinear boundary value problems. Trudy Mat. Inst. Steklov. 192 (1990), 140-63
- 5. A.Anane simplicite et isolation de la premiere valeure proper du p-Laplacian avec poids.C.R.Acad.Sci.Paris Ser.I 305(1987), 725-8
- 6. G.Barles. Remarks on uniqueness results of the first eigenvalue of the p-Laplacian. Ann.Fac.Sci.Toulouse9 (1988), 76-75