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Abstract
In this paper, we consider a numerical method for reconstructing piecewise constant Robin coefficients from boundary

measurements. An adaptive total variation functional is proposed. The boundary integral equation method is utilized for
discretizing the functional, and the Gauss-Newton method is employed for solving the non-linear problem. c©2017 all rights
reserved.
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1. Introduction

Let Ω be a smooth bounded domain in R2 with boundary Γ . Consider the Robin boundary value
problem for the Laplace equation {

∆u = 0, in Ω,
∂u
∂ν + pu = g, on ∂Ω = Γ .

(1.1)

Here ~ν is the unit outward norm direction on Γ . p = p(x) is the Robin coefficient with support contained
in Γ1 ⊂ Γ , and g = g(x) is a prescribed input function.

In this paper, we are interested in the reconstruction of an unknown piecewise constant Robin param-
eter p from a measurement of the solution u = u0 on another part Γ0 of the boundary, where Γ0 ∩ Γ1 = ∅.
The inverse problem arises from various nondestructive evaluation methods, where an unknown material
profile in a non-accessible part of the boundary is to be recovered from a partial boundary measurement
made on an accessible part of the boundary. For example, in corrosion detection [12, 17, 23, 24], p repre-
sents the corrosion damage profile on a non-accessible boundary, and u0 is the electrostatic measurement
made on an accessible boundary. In the study of MOSFET semiconductor devices [1, 7, 20, 21], the Robin
coefficient p contains information on the quality and location of the non-accessible metal-to-silicon contact
window, and voltage measurement u0 on an accessible part is used to extract p.

The main purpose of this paper is to present a numerical method for the reconstructing a piecewise
constant Robin parameter in two-dimensional case.

The Robin inverse problem has been the subject of many recent studies, and most of them are con-
cerned with important properties of the forward map from p to u0, such as uniqueness, continuity with
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respect to proper norms, and differentiability and stability in various forms. Some numerical methods of
recovering the Robin coefficient have been proposed [3, 5, 6, 8–11, 13, 14, 16, 19]. However, these methods
are not applied in the reconstruction of piecewise constant Robin coefficient.

In the case of a piecewise constant Robin coefficient, Jin and Zou [15] proposed a variational formu-
lation based on the Modica-Mortola functional. This method has the advantage of being robust to noise,
however, many parameters are naturally involved because of the regularization of the class of admissible
parameters by H1 functions. Chaabane et al. [4] presented a numerical method in the two- and three-
dimension case based on the Kohn-Vogelius method, however, they do not consider the regularization
term of Robin coefficient p in the proposed cost functional.

We first recast the inverse problem as an integral equation formulation, which is particularly advan-
tageous when we look for numerical solution for both the forward and inverse problem. However the
inverse problem is still an ill-posed problem in Hadamard’s sense because it is sensitive to errors no mea-
sured data. To prevent such a blowing up, we penalize the oscillatory behaviors by adding an adaptive
total variation regularization term in the least square function to be minimized. We present numerical
method for the Robin inverse problem based on the objective functional that consists of least squares
functional and a regularization term. Gauss-Newton method is employed for the solution of the opti-
mization problem, and we introduce the adjoint method to solve the gradient and the Hessian matrix of
the nonlinear fit-to-data functional.

The rest of the paper is organized as follows. Section 2 formulates the inverse problem by boundary
integral equations, and the numerical methods based on fit-to-data least squares and regularization are
presented. In Section 3, we present the adaptive TV functional for the inverse problem, and we discuss
discretization for planar domains, in particular for ellipses in Section 4. In Section 5 we solve the gradient
and Hessian matrix of the nonlinear fit-to-data functional, and then solve the optimization problem by
using the Gauss-Newton method. Numerical examples are then presented in Section 6 to show the
effectiveness of our numerical methods in recovering the Robin coefficients from noisy data.

2. Nonlinear integral equation

We first introduce the boundary integral equation formulation for boundary value problem (1.1). We
assume that the domain Ω has a smooth boundary Γ , the closed subsets Γ0 and Γ1 are disjoint, and p(t)
is a nonnegative function on Γ with supp(p) ⊂ Γ1. Let Φ = Φ(x,y) be the fundamental solution for the
Laplacian in R2:

Φ(x,y) =
1

2π
ln

1
|x− y|

for x 6= y.

From now on, without loss of generality, we assume that there exists a point x0 ∈ Ω such that |x− x0| 6= 0
for all x ∈ ∂Ω. Then Theorem 3.16 in [2] guarantees that the corresponding single-layer boundary integral
operator is injective.

As shown in [2], the PDE formulation (1.1) for u ∈ H1(Ω) is equivalent to the following integral
equation for the trace of u on Γ , denote by u ∈ H1/2(Γ):

1
2
u(x) +

∫
Γ

(
∂Φ(x,y)
∂νy

+ p(y)Φ(x,y)
)
u(y)dsy =

∫
Γ

Φ(x,y)g(y)dsy, x ∈ Γ . (2.1)

Define

(Du)(x) =

∫
Γ

∂Φ(x,y)
∂νy

u(y)dsy,

(Su)(x) =

∫
Γ

Φ(x,y)u(y)dsy,
for x ∈ Γ . (2.2)

Then (2.1) can be written as

A(p)(u) := (
1
2
I+D)u+ S(pu) = Sg. (2.3)
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The system of integral equations (2.1) and (2.2) equivalent to our inverse problem is not unique. In
fact, represent the solution u as surface superposition of point sources given by the fundamental solution
with an unknown density one can derive a different system of integral equation equivalent to our inverse
problem.

For the further investigation of the nonlinear integral equation, we introduce a parameterization on
the integral equation for the numerical solution. In this preliminary study, for the sake of simplicity we
confine ourselves to smooth boundaries Γ of class C2, that is, we represent

Γ := {z(t) : t ∈ [0, 2π]}

with a 2π periodic C2-smooth function z : R→ R2 such that z is injective on [0, 2π) and satisfies z
′
(t) 6= 0

for all t. Setting
u(t) := |z

′
(t)|ϕ(z(t))

we obtain the parameterized integral operators

(S̃u)(t) =
1

2π

∫ 2π

0
ln

1
|z(t) − z(τ)|

u(τ)dτ

and

(D̃u)(t) =
1

2π|z ′(t)|

∫ 2π

0

[z
′
(t)]⊥ · [z(t) − z(τ)]
|z(t) − z(τ)|2

u(τ)dτ,

for t ∈ [0, 2π]. Here, we used the notation a⊥ = (a2,−a1) for any vector a = (a1,a2).
For the discretization of the integral operators we note that the 2π periodic kernel of the S̃ can be

decomposed in the form

ln
1

|z(t) − z(τ)|
= − ln | sin

t− τ

2
|+ ln

sin t−τ2
|z(t) − z(τ)|

,

where the second term is smooth with diagonal values

lim
τ→t

ln
sin t−τ2

|z(t) − z(τ)|
= − ln 2|z

′
(t)|.

Hence, the well established trigonometric interpolation quadrature rules on equidistant meshes for
logarithmic singularities as described in [18] are available. The 2π periodic kernel of D̃ is smooth with
diagonal term

[z
′
(t)]⊥ · z ′′(t)
4π|z ′(t)|3

and therefore the trapezoidal rule can be employed.

3. The regularization of the inverse problem

Note that the forward problem is to solve (2.1) or (2.3) to obtain u on Γ for given p, and the Robin
inverse problem is to find p on Γ1 such that the solution u of (2.1) matches the given knowledge u0 on Γ0:

u|Γ0 = u0.

We denote the restriction operator from Γ to Γ0 by R0: that is, for u defined on Γ , R0u is defined on
Γ0 with (R0u)(x) = u(x) for x ∈ Γ0. Then, for a given input g, the measurement u0 of u on Γ0 can be
expressed as

R0u = u0.
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When the data u0 is perturbed, the solution of the inverse problem does not depend continuously on the
data even if it does exist, as easily conceived from the severe ill-posedness of the inverse problem. Hence,
instead of working directly with equation (2.1), we turn to a variational formulation of the problem,
thereby transforming it to an optimization problem. That is, we seek a solution to this equation match to
the nonlinear constrained regularized least-squares problem: min

p

1
2
||R0u− u0||

2
L2(Γ0)

+
α

2
ATV(p),

s.t. A(p)(u) = Sg.
(3.1)

Here ATV(p) =
∫
Γ

| ∂p∂n |
2√

| ∂p∂n |
2+ε2

is a adaptive total variation (ATV) regularization functional, that is, in order

to cut down the nondifferentiability of the Euclidean norm at the origin, we consider the approximation
to total variation (TV) functional, which was first introduced by Rudin, Osher, and Fatemi (ROF) in their
pioneering work [22] on edge preserving image denoising. It was designed with the explicit goal of
preserving sharp discontinuities in image while removing noise and other unwanted fine scale detail.
The revolutionary aspect of the ROF model is its regularization term that allows for discontinuities but
at the same time disfavors oscillations. α is a positive regularization parameter. However, the proposed
ATV appropriate the TV when |∂p∂n | >> ε , and tend to Winer filtering when |∂p∂n | << ε.

Since the forward problem (2.1) is well-posed, we denote its solution u by

u = A(p)−1f,

where f = Sg. Thus, the constrained least-squares problem (3.1) is reformulated as a unconstrained least-
squares problem:

min
p

J(p) =
1
2
||R0A(p)−1f− u0||

2
L2(Γ0)

+
α

2
ATV(p). (3.2)

4. Discretization for planar domains

In this section, we discuss the discretization of the least-squares functional (3.2) for planar domains.
In particular, details are given for representative domains with elliptic boundaries. For more details, we
refer readers to [19].

4.1. Parametrization of Γ
Suppose the boundary Γ of a planar domain Ω has a regular parametrization given by

(x1, x2) = (φ(t),ψ(t)) for 0 6 t 6 L,

with (φ(0),ψ(0)) = (φ(L),ψ(L)). Assume that φ(·) and ψ(·) are both C2 functions.
Define

Ks(t, s) = −
1

2π
(ln
√
(φ(s) −φ(t))2 + (ψ(s) −ψ(t))2)

√
(φ(s))2 + (ψ(s))2

and

Kd(t, s) =
1

2π
ψ
′
(s)(φ(t) −φ(s)) +φ

′
(s)(ψ(t) −ψ(s))

(φ(s) −φ(t))2 + (ψ(s) −ψ(t))2

for x = (φ(t),ψ(t)) and y = (φ(s),ψ(s)) on Γ with x 6= y (t 6= s). We can write the operators S and D as

(Su)(t) =

∫L
0
Ks(t, s)u(s)ds,

(Du)(t) =

∫L
0
Kd(t, s)u(s)ds,

where u(s) = u(φ(s),ψ(s)).
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4.2. Discretization
We use the mid-point quadrature rule to discretize the integral operators and central difference quo-

tients to approximate derivatives. Let the interval [0,L] be partitioned into n uniform subintervals:
[(i− 1)h, ih], i = 1, 2, . . . ,n, where h = L/n. Then the quadrature points are ti = (i− 1/2)h, i = 1, 2, . . . ,n.
Suppose

{ti}
n
i=1

⋂
{t : (φ(t),ψ(t)) ∈ Γ0} = {tm1+1, . . . , tm2}

and
{ti}

n
i=1

⋂
{t : (φ(t),ψ(t)) ∈ Γ1} = {tm3+1, . . . , tm4}.

Denote by u and p the discretized functions of u(t) on Γ , and p(t) on Γ1, respectively:

u = [u(t1), . . . ,u(tn)]T , p = [p(tm3+1), . . . ,p(tm4)]
T

and the discrete data

u0 = [u0(tm1+1), . . . ,u0(tm2)]
T , f = [f(t1), . . . , f(tn)]T .

Let the matrix representation of the kernel Kd be denoted by D and that of Ks be denoted by S. Then the
matrix representation of A(p) in (2.3) is

A(p) =
1
2
I+D+ SP,

where I is the identity matrix of order n and P = diag(p) with

pi =

{
p(ti), i = m3 + 1, . . . ,m4,
0, others.

As for the one dimension regularization term, we get the discretion of the ATV:

ATVε(p) = h
m4+1∑
i=m3+1

|pi − pi−1|
2√

|pi − pi−1|2 + ε2
,

where ε is a small positive parameter, and pm3 = 0, and pm4+1 = 0. We note that since

(φ(tm3),ψ(tm3)), (φ(tm4+1),ψ(tm4+1)) 6∈ Γ1,

pm3 = p(tm3) = 0, pm4+1 = p(tm4+1) = 0.
The least-square functional (3.2) then becomes

min
p

{
1
2
‖R0A(p)−1f − u0‖2 +αATV(p)}, (4.1)

where R0 is the discretization of the restriction operator R0, i.e.,

R0 = [O(m4−m3)×m3 , Im4−m3 ,O(m4−m3)×(n−m4)].

Here Or×s denotes the r× s zero matrix and Ir denotes the identity matrix of order r.

4.3. Elliptic domains
Suppose Ω is an ellipse in R2:

Ω =
{
(x1, x2) : (

x1

a
)2 + (

x2

b
)2 < 1

}
with a,b > 0. The usual parametrization for Γ is

(x1, x2) = (φ(t),ψ(t)) = (a cos(2πt),b sin(2πt)) for 0 6 t 6 1.

In this case, the kernels in the integral operators can explicitly be expressed as
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Ks(t, s) = − ln(2| sin(π(t− s))|
√
a2 sin2(π(t+ s)) + b2 cos2(π(t+ s)))×

√
a2 sin2(2π(s)) + b2 cos2(2π(s)),

Kd(t, s) = −
ab

2(a2 sin2(π(t+ s)) + b2 cos2(π(t+ s)))
,

for 0 6 t, s 6 1.
Since Kd(t, s) is smooth, we have

D = h[Kd(ti, tj)]ni,j=1.

As for Ks(t, s), since it is weakly singular at s = t and (t, s) = (0, 1) and (1, 0), special case should be taken
in discretizing

∫1
0 Ks(t, s)u(s)ds to avoid large errors, see [19]. By decomposing Ks(t, s) as

Ks(t, s) = (Ks1(t, s) +Ks2(t, s))Ks3(t, s),

where

Ks1(t, s) = ln(2| sin(π(t− s))|),

Ks2(t, s) = ln(
√
a2 sin2(π(t+ s)) + b2 cos2(π(t+ s))),

Ks3(s) = −

√
a2 sin2(2π(s)) + b2 cos2(2π(s)),

and using the fact that ∫ 1

0
ln |2 sin(πs)|ds = 0,

one can remove the singularity by subtraction:∫ 1

0
Ks(t, s)u(s)ds =

∫ 1

0
Ks1(t, s)[Ks3(s)u(s) −Ks3(t)u(t)]ds+

∫ 1

0
Ks2(t, s)Ks(s)u(s)ds.

It follows that ∫ 1

0
Ks(ti, s)u(s)ds ≈ h

n∑
j=1

(
Ks(ti, tj) − δij

n∑
k=1

Ks1(ti, tk)Ks3(ti)

)
u(tj),

where δij is the Kronecker symbol, i.e., δij = 1 if i = j and 0 otherwise. Therefore,

S =

[
hKs(ti, tj) − δijh

n∑
k=1

Ks1(ti, tk)Ks3(ti)u(ti)

]n
i,j=1

.

5. The Gauss-Newton method

We consider solving the regularized minimization problem (4.1) by using the well-known Gauss-
Newton method (GNM), which is one of the most popular quasi-Newton methods for solving nonlinear
optimization problems without constraints. This method has been proven to have good performance even
for non-smooth optimizations.

We see that in order to solve (4.1) by using the Gauss-Newton algorithm, we are required to compute
the gradients and the Hessian matrix of F(p) ≡ 1

2‖R0A(p)−1f − u0‖2
2 and TV(p). We note that

∂

∂pi
R0A(p)−1f = lim

τ→0
R0[A(p + τei)−1 −A(p)−1)]f/τ

= lim
τ→0

R0A(p + τei)−1 · [A(p) −A(p + τei)]/τ ·A(p)−1f

= −R0A(p)−1S diag(δm3+i,1, . . . , δm3+i,n)A(p)
−1f,
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where ei is the ith column of the identity matrix of order n. Denoting A(p)−1f by up = (u1, . . . ,un)T ,
then

∂

∂pi
R0A(p)−1f = −R0A(p)−1S (0, . . . , 0,um3+i, 0, . . . , 0)T .

It follows that
∂

∂pi
F(p) = −(0, . . . , 0,um3+i, 0, . . . , 0)STA(p)−TRT0 (R0up − u0).

Thus, we get
∇F(p) = −diag(um3+1, . . . ,um4)S

T
1A(p)

−TRT0 (R0up − u0),

where S1 = S(·,m3 + 1 : m4).
The Hessian of the F(p) can be expressed as

H(p) = HGN(p) +
d2R′A(p)−1f

dp2 (R′A(p)u− f),

where

HGN(p) = (
dR′A(p)−1f

dp
)∗
dR′A(p)−1f

dp

= (R0A(p)−1S1diag(um3+1, . . . ,um4))
T (R0A(p)−1S1diag(um3+1, . . . ,um4))

is the Gauss-Newton approximation to the Hessian. This has several computational advantages. First, it
can be much easier to compute than the full Hessian, since it does not involve the second derivative term.
Second, the Gauss-Newton approximation is positive semidefinite, and it is positive definite if the first
derivative has full rank. This guarantees that the Gauss-Newton step is a descent direction.

It is easy to see that the gradient of ATVε(p) is given by

∇ATVε(p) = ETdiag(φ(p))Ep,

where diag(φ(p)) denotes the diagonal matrix whose ith diagonal entry is ((Eip)2+2β2)

((Eip)2+β2)
3
2

, and the Hessian

of TVε(p) is given by
Hess(ATVε(p)) = ETdiag(ψ(p))E,

where diag(ψ(p)) denotes diagonal matrix whose ith diagonal entry is

[(Eip)2 + ε2][3(Eip)2 + 2ε2] − 2[(Eip)2 + 2ε2](Eip)2

((Eip)2 + ε2)
5
2

=
(Eip)2 + ε(Eip) + 2ε2

((Eip)2 + ε2)
5
2

and

E =


−1 1
0 −1 1

. . . . . . . . .
−1 1
0 −1

 .

Since an expression for the gradient and Hessian of the object functional is explicitly available, the
Gauss-Newton iteration can be readily applied to the optimization problem.

6. Numerical examples

In this section, we use the Gauss-Newton method to solve the inverse problem on elliptic domains.
Our tests are carried out by using Matlab. We set uniform partitions on the parameter domain [0,L]

with h = 0.0025. In all the examples below, we first choose p(t) and g(t) and obtain the solution u(t) by
solving (2.3), and produce the data u0 from u|Γ0 with certain levels of random noise added:

u0(ti) = u(ti) + δ ∗ rand(m2 −m1, 1), i = m1 + 1, . . . ,m2,
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where the symbol ‘rand’ denotes a random number from the uniform distribution of interval (0,1), and δ
is the absolute noise level.

Consider the problem with the following parameters:

a = 1,b = 0.2,
Γ0 = {(a cos(2πt),b sin(2πt)) : t ∈ [0.65, 0.85]} (a centred segemet on the bottom half),
Γ1 = {(a cos(2πt),b sin(2πt)) : t ∈ [0.15, 0.45]} (a centred segemet on the top half),

g(a cos(2πt)),b sin(2πt)) =

{
1, if t ∈ [0.4, 0.6],
0, elsewhere on Γ .

In our experiments, we consider the different cases about the unknown Robin parameter ptrue: the
first one deals with two singularity point, and in the second numerical test, the unknown parameter ptrue
presents four singularity points. Figure 1 illustrates the convergence of the forward algorithm. The L1

relative error between the numerical solution pnum and ptrue is equal to 10−3 with 30 iterations in the
case of two singular points and to 10−4 with 40 iterations for the second example (see Figure 2).
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Figure 1: Reconstructions of a singular Robin parameter. (left) The case of two singular points. (right)
The case of tree singular points.
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Figure 2: The L1 relative error between ptrue and pnum with respect to number of iteration. (left) The
case of two singular points. (right) The case of tree singular points.
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In the following figures, we present some numerical tests with different values of noisy data.
For 5% of noisy data (see Figure 3 (a), (b)), we have an error of 1.3% after 55 iterations for two singular

point and 1.6% after 70 iterations for four singular points.
For 10% of noisy data (see Figure 3 (c), (d)), we have an error of 2.1% after 86 iterations for two singular

point and 3% after 90 iterations for four singular points.
For 15% of noisy data (see Figure 3 (e), (f)), we have an error of 4.3% after 100 iterations for two

singular point and 5.2% after 110 iterations for four singular points.
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Figure 3: Reconstruction of ptrue with noisy data.

7. Conclusion

Because of its severe ill-posedness, it is difficult to design accurate and robust reconstruction methods
for the Robin inverse problem. We have formulated the problem in the setting of boundary integral
equations, and presented a numerical algorithm of gradient type solving the Robin inverse problem in
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the class of piecewise constant functions in two dimensional case. This way of solving the inverse problem
has the advantage of being accurate, robust and much faster than other methods.
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