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Abstract
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1. Introduction

Duality principles in Gabor theory such as the Ron-Shen duality principle [13] and the Wexler-Raz
biorthogonality relations [17] play a fundamental role for analyzing Gabor systems. Casazza et al. in [4]
introduced a general approach to derive duality principles in abstract frame theory. For each sequence in
a separable Hilbert space they defined a Riesz-dual sequence dependent only on two orthonormal bases.
They characterize exactly properties of the first sequence in terms of the Riesz-dual sequence, which
yields duality relations for the frame setting. Frames were first introduced by Duffin and Schaeffer [9] in
the context of nonharmonic Fourier series and reintroduced in 1986 by Daubechies et al. in [8]. Currently,
frames play important roles in many applications in mathematics, science, and engineering such as signal
processing, image processing, data compression, etc.

Let {ei}i∈I and {hi}i∈I be orthonormal bases for a separable Hilbert space H and let f = {fi}i∈I be any
sequence in H for which

∑
i∈I |〈fi, ej〉|2 <∞ for all j ∈ I. Then the Riesz-dual sequence (R-dual sequence)

of {fi}i∈I with respect to {ei}i∈I and {hi}i∈I as the sequence {W f
j }j∈I is given by:

W f
j =

∑
i∈I
〈fi, ej〉hi, ∀j ∈ I.

This simple construction gives a powerful tool for deriving duality principles in general frame theory.
There exists a symmetric relation between the sequences {W f

j }j∈I and {fi}i∈I as follows:

fi =
∑
j∈I
〈W f
j ,hi〉ej, ∀i ∈ I.
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In particular, this shows that {fi}i∈I is the R-dual sequence for {W f
j }j∈I with respect to {hi}i∈I and {ei}i∈I.

We refer the reader to the articles [6, 7, 14, 18] for an introduction about the theory and applications of
R-dual sequences.

Recently, Sun in [15, 16] and Casazza and Kutyniok in [3] introduced a generalization of frames which
covers many other recent generalizations of frames, e.g., bounded quasi-projectors, frames of subspaces,
outer frames, oblique frames, pseudo-frames, and a class of time-frequency localization operators. Sun
showed that all of the above applications of frames are special cases of generalized frames.

Let H and K be two separable Hilbert spaces and let {Vi}i∈I be a family of closed subspaces of K

and B(H,Vi) denote the collection of all bounded linear operators from H into Vi for all i ∈ I. Then,
Λ = {Λi ∈ B(H,Vi) : i ∈ I} is a generalized frame or simply a g-frame for H with respect to {Vi}i∈I if
there exist constants 0 < C 6 D <∞ such that:

C‖f‖2 6
∑
i∈I
‖Λif‖2 6 D‖f‖2, ∀f ∈ H. (1.1)

The constants C and D are called g-frame bounds. If only the right-hand inequality of (1.1) is required,
we call it a g-Bessel sequence. Since almost all applications require a finite model for their numerical
treatment, we restrict ourselves to a finite-dimensional space in the following examples.

Example 1.1. Let H = Cn and V1 = V2 = . . . = Vn = Cn+1. Define

Λ1 =


1 0 . . . 0
1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

 , Λ2 =


0 1 . . . 0
0 1 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 0

 , . . . , Λn =


0 0 . . . 1
0 0 . . . 1
0 0 . . . 1
...

...
...

0 0 . . . 1

 .

Then, the set Λ = {Λi}
n
i=1 is a g-frame for Cn with respect to Cn+1 with g-frame bounds A = 2 and

B = n+ 1. To see this explicitly, note that for any f = (z1, z2, . . . , zn) in Cn, we have

n∑
i=1

‖Λif‖2 = 2|z1|
2 + 3|z2|

2 + . . . + (n+ 1)|zn|2.

From this, we have

2‖f‖2 6
n∑
i=1

‖Λif‖2 6 (n+ 1)‖f‖2.

In frames theory an input signal is represented by a collection of scalar coefficients that measure the
projection of that signal onto each frame vector. The representation space employed in this theory equals
`2(I). However, in g-frames theory an input signal is represented by a collection of vector coefficients that
represent the projection (not just the projection energy) onto each subspace. Therefore the representation
space employed in this setting is(∑

i∈I
⊕Vi

)
`2 =

{
{g ′i}i∈I| g

′
i ∈ Vi,

∑
i∈I
‖g ′i‖2 <∞}.

In order to analyze a signal f ∈ H, i.e., to map it into the representation space, the analysis operator TΛ :
H→

(∑
i∈I⊕Vi

)
`2 given by TΛf = {Λif}i∈I is applied. The associated synthesis operator, which provides

a mapping from the representation space to H, is defined to be the adjoint operator T∗Λ :
(∑

i∈I⊕Vi
)
`2 →

H, which is given by T∗Λ({g
′
i}i∈I) =

∑
i∈IΛ

∗
ig
′
i. By composing TΛ and T∗Λ we obtain the g-frame operator

SΛ : H → H, SΛf = T∗ΛTΛf =
∑
i∈IΛ

∗
iΛif, which is a positive, self-adjoint and invertible operator and
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C 6 ‖SΛ‖ 6 D. The canonical dual g-frame for {Λi}i∈I is defined by {Λ̂i}i∈I where Λ̂i = ΛiS
−1
Λ which

is also a g-frame for H with respect to {Vi}i∈I with 1
D and 1

C as its lower and upper frame bounds,
respectively. Also we have

f =
∑
i∈I

Λ∗i Λ̂if =
∑
i∈I

Λ̂∗iΛif, ∀f ∈ H.

Moreover, {ΛiS
− 1

2
Λ }i∈I is a Parseval g-frame for H with respect to {Vi}i∈I.

Generalized Riesz-dual sequence or simply g-R-dual sequence is a natural generalization of R-dual
sequence which provides a powerful tool in the analysis of duality relations in general g-frame theory.
The purpose of this paper is to introduce the concept of Riesz-dual sequence for g-frames. We give
characterizations of g-R-dual sequences and prove that g-R-dual sequences share many useful properties
with R-dual sequences. In this article, we show that in fact for each sequence of operators we can construct
a corresponding sequence of operators with a kind of duality relation between them. This construction is
used to prove duality principles in g-frame theory, which can be regarded as general versions of several
well-known duality principles for g-frames. We also give a generalized version of Riesz-dual sequences.

The content of this paper is as follows: In the rest of this section we will briefly recall the necessary
parts from g-bases, g-orthonormal bases, and g-Riesz bases. For more information we refer to [1, 2, 5,
10, 11]. In Section 2, we define the g-R-dual sequence from a g-Bessel sequence with respect to a pair of
g-orthonormal bases as generalization of Riesz-dual sequence. In this section, we characterize to which
extent the g-R-dual sequence of a g-Bessel sequence depends on the chosen g-orthonormal bases. In
Section 3, first we obtain the g-frame conditions for a sequence of operators and its g-R-dual sequence.
We also characterize those pairs of g-frames and their g-R-dual sequences, which are equivalent (unitarily
equivalent). Finally, Section 4 deals with duality principle for g-frames. In this section we study properties
of dual g-frames and canonical dual g-frames.

Definition 1.2. A generalized Schauder basis or simply a g-basis for H with respect to {Wi}i∈I is a family
of onto operators Γ = {Γj ∈ B(H,Wj)| j ∈ I} such that for all f ∈ H there exist unique vectors gj ∈Wj, i ∈ I
with

f =
∑
j∈I

Γ∗j gj. (1.2)

In this case, there exist unique operators Λj ∈ B(H,Wj) such that

f =
∑
j∈I

Γ∗j Λjf =
∑
j∈I

Λ∗j Γjf,

for all f ∈ H. Moreover, the sequences {Γj}j∈I and {Λj}j∈I are g-biorthogonal, i.e., ΛiΓ∗j gj = δijgj for
all i, j ∈ I,gj ∈ Wj and {Λj}j∈I itself forms a g-basis for H with respect to {Wi}i∈I that so-called dual
g-basis of {Γj}j∈I. A g-basis is an unconditional g-basis, if the series in (1.2) converges unconditionally.
Consequently, for a g-basis the ordering in (1.2) can be crucial. If {Λi}i∈I is a g-basis only for its closed
linear span, we call it a g-basic sequence with respect to {Wi}i∈I.

Definition 1.3. Let {Ξi ∈ B(H,Wi)| i ∈ I} be a sequence of operators. Then

(i) {Ξi}i∈I is a g-complete set for H with respect to {Wi}i∈I, if H = span{Ξ∗i (Wi)}i∈I.
(ii) {Ξi}i∈I is a g-orthonormal system for H with respect to {Wi}i∈I, if ΞiΞ∗j = δijIWj

for all i, j ∈ I.
(iii) A g-complete and g-orthonormal system {Ξi}i∈I is called a g-orthonormal basis for H with respect

to {Wi}i∈I.

Definition 1.4. A sequence Γ = {Γj ∈ B(H,Wj)| j ∈ I} is called a g-Riesz basis for H with respect to {Wj}j∈I,
if {Γj}j∈I is a g-complete set for H with respect to {Wj}j∈I and there exist constants 0 < A 6 B < ∞ such
that

A
∑
j∈I
‖gj‖2 6

∥∥∑
j∈I

Γ∗j gj
∥∥2

6 B
∑
j∈I
‖gj‖2, (1.3)
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for all sequences {gj}j∈I ∈
(∑

j∈I⊕Wj
)
`2 . We define the g-Riesz basis bounds for {Γj}j∈I to be the largest

number A and the smallest number B such that this inequality (1.3) holds. If {Γj}j∈I is a g-Riesz basis only
for span{Γ∗j (Wj)}j∈I, we call it a g-Riesz basic sequence for H with respect to {Wj}j∈I.

The following well-known characterization of g-orthonormal bases is sometimes more useful which is
taken from [2].

Lemma 1.5. Let Ξ = {Ξi}i∈I be a g-orthonormal system for H with respect to {Wi}i∈I. Then the following
conditions are equivalent:

(i) Ξ is a g-orthonormal basis for H with respect to {Wi}i∈I.
(ii)
∑
i∈I Ξ

∗
iΞi = IH.

(iii) ‖f‖2 =
∑
i∈I ‖Ξ∗iΞif‖2, ∀f ∈ H.

(iv) ‖f‖2 =
∑
i∈I ‖Ξif‖2, ∀f ∈ H.

(v) < f,g >=
∑
i∈I < Ξif,Ξig >, ∀f,g ∈ H.

(vi) If Ξif = 0 for all i ∈ I, then f = 0.

For any given g-frame there is a natural procedure to construct a g-Riesz basis with the same g-frame
bounds, see, e.g., [1] for a proof of this standard result.

Lemma 1.6. Let {Ξj}j∈I be a g-orthonormal system for H with respect to {Wj}j∈I and U : H → H a bounded
bijective operator. Then the following items hold.

(i) The sequence {ΞjU
∗}j∈I is a g-Riesz basis for H with respect to {Wj}j∈I with g-frame operator UU∗ and

optimal bounds 1
‖U−1‖2 , ‖U‖2.

(ii) The dual g-Riesz basis of {ΞjU∗}j∈I is {ΞjU−1}j∈I with g-frame operator (UU∗)−1 and the optimal bounds are
1
‖U‖2 , ‖U−1‖2.

(iii) Let Γ = {Γj}j∈I be a g-frame for H with respect to {Wj}j∈I with optimal bounds A, B. Then {ΞjS
1
2
Γ }j∈I is a

g-Riesz basis for H with respect to {Wj}j∈I with optimal bounds A, B. The dual g-Riesz basis of {ΞjS
1
2
Γ }j∈I is

{ΞjS
− 1

2
Γ }j∈I, with optimal bounds 1

B , 1
A .

(iv) Let Γ = {Γj}j∈I be a g-Riesz basis for H with respect to {Wj}j∈I, then {ΓjS
− 1

2
Γ }j∈I is a g-orthonormal basis for

H with respect to {Wj}j∈I.
(v) Let Γ = {Γj ∈ B(H,Wj)| j ∈ I} be arbitrary sequence. If span{Γ∗j (Wj)}j∈I = H and∥∥∑

j∈I
Γ∗j gj

∥∥2
=
∑
j∈I
‖gj‖2, ∀{gj}j∈I ∈

(∑
j∈I
⊕Wj

)
`2 ,

then Γ = {Γj}j∈I is a g-orthonormal basis for H with respect to {Wi}i∈I.

Let Ξ = {Ξi}i∈I be a g-orthonormal basis for H with respect to {Wi}i∈I. If f =
∑
i∈I Ξ

∗
igi, then the

coordinate representation of f ∈ H relative to the g-orthonormal basis Ξ is [f]Ξ = {gi}i∈I. In this case
{gi}i∈I ∈

(∑
i∈I⊕Wi

)
`2 and ‖f‖ =

∥∥[f]Ξ∥∥`2 .

Definition 1.7. Let Ξ = {Ξi}i∈I and Ξ ′ = {Ξ ′i}i∈I be g-orthonormal bases for H with respect to {Wi}i∈I
and {Vi}i∈I, respectively. The transition matrix from Ξ to Ξ ′ is the matrix B = [Bij] whose (i, j)-entry is
Bij = Ξ

′
iΞ
∗
j for all i, j ∈ I. We also have B[f]Ξ = [f]Ξ ′ where, [f]Ξ and [f]Ξ ′ are the coordinate representation

of an arbitrary vector f ∈ H in the basis Ξ and Ξ ′, respectively. We show that the transition matrix from
Ξ ′ to Ξ is B−1 = B∗. Let B∗ = [B∗ij], then B∗ij = (Bji)

∗ = ΞiΞ
′∗
j for all i, j ∈ I. By Lemma 1.5 we have

[BB∗]ij =
∑
k∈I

BikB
∗
kj =

∑
k∈I

E ′iE
∗
kEkE

′∗
j = E

′
i

(∑
k∈I

E∗kEk
)
E ′
∗
j = E

′
iIHE

′∗
j = E

′
iE
′∗
j = δijIWj

.

Similarly, [B∗B]ij = δijIWj
. This implies that BB∗ = B∗B = I, where I is the identity matrix.

Since almost all applications require a finite model for their numerical treatment, we restrict ourselves
to a finite-dimensional space in the following example.
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Example 1.8. Let H = C2n and W1 =W2 = . . . =Wn = C2. Define

Ξ1 =

[
1 0 . . . 0 0
0 1 . . . 0 0

]
, . . . ,Ξn =

[
0 0 . . . 1 0
0 0 . . . 0 1

]
.

A direct calculation shows that ‖Ξk‖ = 1 and ΞkΞ∗` = δk` for any 1 6 k, ` 6 n. We also have
n∑
k=1

‖Ξkf‖2 =

n∑
k=1

(|z2k−1|
2 + |z2k|

2) = ‖f‖2, ∀f = {zi}
2n
i=1 ∈ C2n.

Therefore Ξ = {Ξk}
n
k=1 is a g-orthonormal basis for C2n with respect to C2. Similarly, the sequence

Ψ = {Ψk}
n
k=1 defined by

Ψ1 =

[
0 1 . . . 0 0
1 0 . . . 0 0

]
, . . . ,Ψn =

[
0 0 . . . 0 1
0 0 . . . 1 0

]
,

is also a g-orthonormal basis for C2n with respect to C2 and the matrix

B =
[
ΨiΞ

∗
j

]
n×n =

 A 0
. . .

0 A

 ,

where A =

[
0 1
1 0

]
is the transition matrix from Ξ to Ψ. Hence, for any f ∈ C2n we have B[f]Ξ = [f]Ψ.

Example 1.9. Let H = C2n and W1 =W2 = . . . =W2n = C2. Define

Γ1 =

[
1 0 . . . 0 0
0 2 . . . 0 0

]
, . . . , Γn =

[
0 0 . . . 2n− 1 0
0 0 . . . 0 2n

]
.

Since, for every gi = (z2i−1, z2i) ∈ C2, we have
∥∥∑n

i=1 Γ
∗
i gi
∥∥2

=
∑2n
i=1 i

2|zi|
2. Thus {Γi}ni=1 is a g-Riesz basis

for C2n with respect to C2 with g-Riesz bounds 1 and 4n2. Moreover, we can write {Γi}
n
i=1 = {ΞiU

∗}ni=1,
where U is a bounded bijective operator defined by

U =


1 0 . . . 0
0 2 . . . 0
...

...
...

0 0 . . . 2n

 ,

and Ξ = {Ξk}
n
k=1 is the g-orthonormal basis defined in Example 1.8.

2. The g-R-dual sequence

In this section we define the g-R-dual sequence from a sequence of operators. Then we exactly charac-
terize to which extent the g-R-dual sequence of a g-Bessel sequence depends on the chosen g-orthonormal
bases.

Definition 2.1. Let Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I be g-orthonormal bases for H with respect to {Wi}i∈I and
{Vi}i∈I, respectively. Let Λ =

{
Λi : H → Vi| i ∈ I

}
be such that the series

∑
i∈IΛ

∗
ig
′
i is convergent for all

{g ′i}i∈I ∈
(∑

i∈I⊕Vi
)
`2 . For all j ∈ I, let

ΓΛj : H→Wj, ΓΛj =
∑
i∈I

ΞjΛ
∗
iΨi.

Then {ΓΛj }j∈I is called the generalized Riesz-dual sequence (g-R-dual sequence) for the sequence Λ with
respect to (Ξ,Ψ).
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Notice that the hypothesis that the series
∑
i∈IΛ

∗
ig
′
i is convergent for all {g ′i}i∈I ∈

(∑
i∈I⊕Vi

)
`2 is

always fulfilled if the sequence Λ = {Λi}i∈I is g-Bessel sequence with respect to {Vi}i∈I.

Example 2.2. Let H = C2n and let {Ξi}ni=1, {Ψi}
n
i=1 be the g-orthonormal bases for H with respect to C2

defined in Example 1.8. Define

Λ1 =

[
1 1 . . . 0 0
0 1 . . . 0 0

]
, . . . ,Λn =

[
0 0 . . . 1 1
0 0 . . . 0 1

]
.

Then, Λ = {Λi}
n
i=1 is a g-Bessel sequence for H with respect to C2 with g-Bessel bound B = 3. The

g-R-dual sequence for the sequence Λ with respect to (Ξ,Ψ) is defined as follows:

ΓΛ1 =

[
0 1 . . . 0 0
1 1 . . . 0 0

]
, . . . , ΓΛn =

[
0 0 . . . 0 1
0 0 . . . 1 1

]
,

which is also a g-Bessel sequence for H with respect to C2 with g-Bessel bound B = 3.

Now, we need an algorithm to invert the process and calculate {Λi}i∈I from the sequence {ΓΛj }j∈I.

Theorem 2.3. Let Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I be g-orthonormal bases for H with respect to {Wi}i∈I and {Vi}i∈I,
respectively. Let {Λi}i∈I be a g-Bessel sequence for H with respect to {Vi}i∈I. Then, for all i ∈ I,

Λi =
∑
j∈I

Ψi(Γ
Λ
j )∗Ξj.

In particular, this shows that {Λi}i∈I is the g-R-dual sequence for {ΓΛj }j∈I with respect to (Ψ,Ξ).

Proof. The definition of {ΓΛj }j∈I implies that for every i, j ∈ I

Ψi(Γ
Λ
j )∗ = Ψi

(∑
k∈I

ΞjΛ
∗
kΨk

)∗
=
∑
k∈I

ΨiΨ
∗
kΛkΞ

∗
j =
∑
k∈I

δikΛkΞ
∗
j = ΛiΞ

∗
j .

Therefore Ψi(ΓΛj )∗ = ΛiΞ
∗
j . Now, by Lemma 1.5 we have

Λi = ΛiIH = Λi
(∑
j∈I

Ξ∗jΞj
)
=
∑
j∈I

ΛiΞ
∗
jΞj =

∑
j∈I

Ψi(Γ
Λ
j )∗Ξj.

Definition 2.4. Let Ξ = {Ξj}j∈I be a g-orthonormal basis for H with respect to {Wj}j∈I and let Λ = {Λi}i∈I
be a g-Bessel sequence for H with respect to {Vi}i∈I with the g-frame operator SΛ : H → H, respectively.
Then the matrix representation of SΛ with respect to Ξ is the matrix [SΛ] = [Sij], with Sij = ΞiSΛΞ

∗
j .

Therefore

[SΛ] :
(∑
i∈I
⊕Wi

)
`2 →

(∑
i∈I
⊕Wi

)
`2 , with [SΛf]Ξ = [SΛ][f]Ξ, ∀f ∈ H.

Suppose A = [Aij] with Aij = ΛiΞ∗j , then A∗ = [A∗ij] and A∗ij = ΞiΛ
∗
j for all i, j ∈ I. Therefore

A :
(∑
i∈I
⊕Wi

)
`2 →

(∑
i∈I
⊕Vi

)
`2 , and A∗A :

(∑
i∈I
⊕Wi

)
`2 →

(∑
i∈I
⊕Wi

)
`2 .

The matrix A is called the analysis matrix for Λ with respect to Ξ. A direct calculation shows that for
every f ∈ H we have A[f]Ξ = TΛf. We also have

[A∗A]ij =
∑
k∈I

[A∗]ik[A]kj =
∑
k∈I

ΞiΛ
∗
kΛkΞ

∗
j = Ξi

(∑
k∈I

Λ∗kΛk

)
Ξ∗j = ΞiSΛΞ

∗
j = Sij = [SΛ]ij.

Thus, A∗A = SΛ, where A∗A = SΛ means that A∗A = [SΛ].
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The following result is a generalization of [4, Proposition 3] to g-frames about dependence of the
g-R-dual sequence {ΓΛj }j∈J to choose the g-orthonormal bases Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I.

Theorem 2.5. Let Ξ = {Ξj}j∈I, Ξ ′ = {Ξ ′j}j∈I and Ψ = {ψi}i∈I, Ψ ′ = {ψ ′i}i∈I be g-orthonormal bases for H with
respect to {Wj}j∈I and {Vi}i∈I and let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to {Vi}i∈I. Denote
the analysis matrix for Λ with respect to Ξ by A and the g-R-dual sequences of Λ with respect to (Ξ,Ψ) and (Ξ ′,Ψ ′)
by {ΓΛj }j∈J, {Γ ′Λj }j∈J, respectively. Then the following conditions are equivalent.

(i) ΓΛj = Γ ′Λj for all j ∈ I.
(ii) If B and C are the transition matrices from Ξ to Ξ ′ and Ψ to Ψ ′, respectively, then AB∗ = CA.

Proof. Let B = [Bij] and C = [Cij]. By the definition of {ΓΛj }j∈J, {Γ ′Λj }j∈J for every i, j ∈ I we have
Ψi(Γ

Λ
j )∗ = ΛiΞ

∗
j and Ψ ′i(Γ

′Λ
j )∗ = ΛiΞ

′∗
j . Since

[AB∗]ij =
∑
k∈I

AikB
∗
kj =

∑
k∈I

ΛiΞ
∗
kΞkΞ

′∗
j = Λi

(∑
k∈I

Ξ∗kΞk

)
Ξ ′
∗
j = ΛiΞ

′∗
j = Ψ

′
i(Γ
′Λ
j )∗

and

[CA]ij =
∑
k∈I

CikAkj =
∑
k∈I

Ψ ′iΨ
∗
kΛkΞ

∗
j =
∑
k∈I

Ψ ′iΨ
∗
kΨk(Γ

Λ
j )∗ = Ψ ′i

(∑
k∈I

Ψ∗kΨk

)
(ΓΛj )∗ = Ψ ′i(Γ

Λ
j )∗,

the conclusion follows.

Corollary 2.6. In addition to the hypothesis of Theorem 2.5, if Λ = {Λi}i∈I is a g-frame for H with respect to
{Vi}i∈I and {ΓΛj }j∈I = {Γ ′Λj }j∈I, then A∗C∗AS−1

Λ B
∗ = I, where I is the identity matrix.

Proof. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I. Definition 2.4 implies that S−1
Λ A

∗A = I.
Thus, if ΓΛj = Γ ′Λj for all j ∈ I, then by Theorem 2.5, AB∗ = CA. This implies B∗ = S−1

Λ A
∗CA. But B has

to be unitary, which yields A∗C∗AS−1
Λ B

∗ = I.

Recall that two sequences {Γj}j∈I and {Γ ′j }j∈I are called equivalent (unitarily equivalent) in H with
respect to {Wj}j∈I, if there exists a bounded linear invertible (unitary) operator T : H → H such that
TΓ∗j = Γ ′∗j for all j ∈ I.

To have a better understanding of the different types of equivalency, we prove the following charac-
terization result.

Theorem 2.7. In addition to the hypothesis of Theorem 2.5, if Γ = {ΓΛj }j∈I and Γ ′ = {Γ ′Λj }j∈I are g-frames for H

with respect to {Wj}j∈I and {Vj}j∈I, respectively, then the following statements hold.

(i) If Λ = {Λi}i∈I is a g-frame for H with respect to {Vi}i∈I, then {ΓΛj }j∈I is equivalent to {Γ ′Λj }j∈I in H with
respect to {Wj}j∈I if and only if ker(A) = ker(AB∗).

(ii) {ΓΛj }j∈I is unitarily equivalent to {Γ ′Λj }j∈I in H with respect to {Wj}j∈I, if and only if

A∗A = (AB∗)∗(AB∗).

Moreover, if Λ = {Λi}i∈I is a g-frame for H with respect to {Vi}i∈I, then the above is equivalent to SΛ =
BSΛB

∗.

Proof.

(i) First we observe that, for every g ′ = {g ′k}k∈I ∈
(∑

j∈I⊕Vj
)
`2 we have∑

k∈I
‖g ′k‖2 =

∑
k∈I
〈g ′k,g ′k〉 =

∑
k∈I

〈∑
i∈I

Ψ ′kΨ
′∗
ig
′
i,g
′
k

〉
=
〈∑
i∈I

Ψ ′
∗
ig
′
i,
∑
k∈I

Ψ ′
∗
kg
′
k

〉
=
∥∥∑
k∈I

Ψ ′
∗
kg
′
k

∥∥2.
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Therefore, ∑
k∈I

Ψ ′
∗
kg
′
k = 0⇔ g ′ = 0.

(Necessity). Suppose that {ΓΛj }j∈I is equivalent to {Γ ′Λj }j∈I in H with respect to {Wj}j∈I, then there exists
a bounded linear invertible operator T : H→ H such that

T
(∑
j∈I

(ΓΛj )∗gj
)
=
∑
j∈I

(Γ ′
Λ
j )
∗gj, ∀ {gj}j∈I ∈

(∑
j∈I
⊕Wj

)
`2 .

Now, Ag = 0 with g = {gj}j∈I, if and only if

T−1(∑
j∈I

(Γ ′
Λ
j )
∗gj
)
=
∑
j∈I

(ΓΛj )∗gj =
∑
k∈I

∑
j∈I

Ψ∗kΛkΞ
∗
jgj =

∑
k∈I

∑
j∈I

Ψ∗kAkjgj =
∑
k∈I

Ψ∗k(Ag)k = 0,

if and only if∑
k∈I

Ψ ′
∗
k(AB

∗g)k =
∑
k∈I

Ψ ′
∗
k

(∑
j∈I

[AB∗]kjgj
)

=
∑
k∈I

∑
j∈I

∑
i∈I

Ψ ′
∗
kAkiB

∗
ijgj

=
∑
k∈I

∑
j∈I

∑
i∈I

Ψ ′
∗
kΛkΞ

∗
iΞiΞ

′∗
jgj

=
∑
k∈I

∑
j∈I

Ψ ′
∗
kΛk

(∑
i∈I

Ξ∗iΞiΞ
′∗
jgj
)

=
∑
k∈I

∑
j∈I

Ψ ′
∗
kΛkΞ

′∗
jgj =

∑
j∈I

(Γ ′Λj )∗gj = TT
−1(∑

j∈I
(ΓΛj ′ )

∗gj
)
= 0,

if and only if AB∗g = 0.
(Sufficiency). Suppose that ker(A) = ker(AB∗). Define the operator T as follows:

T : span
{
(ΓΛj )∗(Wj)

}
j∈I → span

{
(Γ ′
Λ
j )
∗(Wj)

}
j∈I, T

(∑
j∈J

(ΓΛj )∗gj
)
=
∑
j∈J

(Γ ′Λj )∗gj,

for all J ⊂ I with |J| <∞ and gj ∈Wj (j ∈ J). Let C,D > 0 be the g-frame bounds for g-frame Λ = {Λi}i∈I.
Then we have ∥∥T(∑

j∈J
(ΓΛj )∗gj

)∥∥2
=
∥∥∑
j∈J

(Γ ′Λj )∗gj
∥∥2

=
∥∥∑
k∈I

∑
j∈J

Ψ ′
∗
kΛkΞ

′∗
jgj
∥∥2

=
∥∥∑
k∈I

Ψ ′
∗
kΛk

(∑
j∈J

Ξ ′
∗
jgj
)∥∥2

=
∑
k∈I

∥∥Λk(∑
j∈J

Ξ ′
∗
jgj
)∥∥2

6 D
∥∥∑
j∈J

Ξ ′
∗
jgj
∥∥2

= D
∑
j∈J
‖gj‖2 = D

∥∥∑
j∈J

Ξ∗jgj
∥∥2

6
D

C

∑
k∈I

∥∥Λk(∑
j∈J

Ξ∗jgj
)∥∥2

=
D

C

∥∥∑
k∈I

Ψ∗kΛk
(∑
j∈J

Ξ∗jgj
)∥∥2

=
D

C

∥∥∑
j∈J

(∑
k∈I

ΞjΛ
∗
kΨk

)∗
gj
∥∥2

=
D

C

∥∥∑
j∈J

(ΓΛj )∗gj
∥∥2.

This shows that T is a bounded linear operator. To prove invertibility of T we compute

T
(∑
j∈J

(ΓΛj )∗gj
)
=
∑
j∈J

(Γ ′Λj )∗gj =
∑
k∈I

∑
j∈J

Ψ ′
∗
kΛkΞ

′∗
jgj =

∑
k∈I

∑
j∈J

Ψ ′
∗
kΛk

(∑
i∈I

Ξ∗iΞiΞ
′∗
jgj
)

=
∑
k∈I

Ψ ′
∗
k

(∑
j∈J

[AB∗]kjgj
)
=
∑
k∈I

Ψ ′
∗
k(AB

∗g)k.
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We also have ∑
j∈J

(ΓΛj )∗gj =
∑
k∈I

∑
j∈J

Ψ∗kΛkΞ
∗
jgj =

∑
k∈I

Ψ∗k(Ag)k.

Hence,

T
(∑
j∈J

(ΓΛj )∗gj
)
= 0⇔

∑
j∈J

(ΓΛj )∗gj = 0.

This implies that T is invertible operator. Now, the g-completeness of Γ and Γ ′ for H with respect to
{Wi}i∈I implies that T has an extension invertible on H and T(ΓΛj )∗ = (Γ ′Λj )

∗ for all j ∈ I.

(ii) First, we prove [A∗A]ij = Γ
Λ
i (ΓΛj )∗ and [(AB∗)∗(AB∗)]ij = Γ

′Λ
i (Γ ′Λj )∗. To see this, we have

ΓΛi (ΓΛj )∗ =
(∑
k∈I

ΞiΛ
∗
kΨk

)(∑
m∈I

Ψ∗mΛmΞ
∗
j

)
=
∑
k∈I

∑
m∈I

δkmΞiΛ
∗
kΛmΞ

∗
j =
∑
k∈I

ΞiΛ
∗
kΛkΞ

∗
j

=
∑
k∈I

A∗ikAkj = [A∗A]ij.

Moreover, we obtain

Γ ′Λi (Γ ′Λj )∗ =
(∑
k∈I

Ξ ′iΛ
∗
kΨ
′
k

)(∑
m∈I

Ψ ′∗mΛmΞ
′∗
j

)
=
∑
k∈I

∑
m∈I

δkmΞ
′
iΛ
∗
kΛmΞ

′∗
j =

∑
k∈I

(ΛkΞ
′∗
i )∗(ΛkΞ

′∗
j )

=
∑
k∈I

(∑
n∈I

ΛkΞ
∗
nΞnΞ

′∗
i

)∗(∑
m∈I

ΛkΞ
∗
mΞmΞ

′∗
j

)
=
∑
k∈I

(∑
n∈I

AknB
∗
ni

)∗(∑
m∈I

AkmB
∗
mj

)
=
∑
k∈I

(AB∗)∗ik(AB
∗)kj = [(AB∗)∗(AB∗)]ij.

Now, let A∗A = (AB∗)∗(AB∗). Define the operator T as follows:

T : span
{
(ΓΛj )∗(Wj)

}
j∈I → span

{
(Γ ′
Λ
j )
∗(Wj)

}
j∈I, T

(∑
j∈J

(ΓΛj )∗gj
)
=
∑
j∈J

(Γ ′Λj )∗gj,

for all finite subsets J ⊂ I and gj ∈ Wj (j ∈ J). Let f1, f2 ∈ span
{
(ΓΛj )∗(Wj)

}
j∈I as f1 =

∑
j∈J1

(ΓΛj )∗g1j

and f2 =
∑
j∈J2

(ΓΛj )∗g2j, we have

〈Tf1, Tf2〉 =
〈∑
j∈J1

(Γ ′Λj )∗g1j,
∑
k∈J2

(Γ ′Λk )∗g2k
〉

=
∑
j∈J1

∑
k∈J2

〈Γ ′Λk (Γ ′Λj )∗g1j,g2k〉

=
〈∑
j∈J1

(ΓΛj )∗g1j,
∑
k∈J2

(ΓΛk )∗g2k
〉

= 〈f1, f2〉.

This implies that T is a bounded linear surjective isometry operator. Thus, the g-completeness of Γ and Γ ′

for H with respect to {Wi}i∈I implies that T has an extension isometry on H and T(ΓΛj )∗ = (Γ ′Λj )
∗ for all

j ∈ I. This shows that Γ is unitarily equivalent to Γ ′ in H with respect to {Wj}j∈I. The converse implication
is obvious. Finally, if Λ = {Λi}i∈I is a g-frame for H with respect to {Vi}i∈I, then, since A∗A = SΛ, thus

SΛ = A∗A = (AB∗)∗(AB∗) = BA∗AB∗ = BSΛB
∗.
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3. Characterizations of equivalence of the g-R-dual sequence

In this section we first characterize all sequences with lower g-frame bound. Next, we obtain the g-
frame conditions for a sequence of operators and its g-R-dual sequence. We also characterize those pairs
of g-frames and their g-R-dual sequences, which are equivalent (unitarily equivalent).

Recall that a family {Λi}i∈I is a g-frame sequence with respect to {Vi}i∈I, if it is a g-frame for
span{Λ∗i (Vi)}i∈I with respect to {Vi}i∈I.

There exists a characterization of frames which keeps the information about the frame bounds ([5,
Lemma 5.5.5]). A similar result holds in g-frame situation.

Proposition 3.1. Let Λ = {Λi ∈ B(H,Vi) : i ∈ I}. Then the following conditions are equivalent.

(i) Λ = {Λi}i∈I is a g-frame sequence with respect to {Vi}i∈I with g-frame bounds A and B.
(ii) The synthesis operator T∗Λ is well-defined on

(∑
i∈I⊕Vi

)
`2 such that:

A‖g ′‖2
`2 6 ‖T∗Λg ′‖2 6 B‖g ′‖2

`2 , ∀ g ′ ∈ (kerT∗Λ)
⊥.

Proof. This follows immediately from [5, Lemma 5.5.5].

The next result shows a basic connection between a sequence of operators and its g-R-dual sequence
which will be used frequently in what follows.

Theorem 3.2. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to {Vi}i∈I. Then for every {gj}j∈I ∈(∑
j∈I⊕Wj

)
`2 , {g ′i}i∈I ∈

(∑
i∈I⊕Vi

)
`2 satisfying f =

∑
j∈I Ξ

∗
jgj and h =

∑
i∈I Ψ

∗
ig
′
i, we have∥∥∥∑

j∈I
(ΓΛj )∗gj

∥∥∥2
=
∑
i∈I
‖Λif‖2 and

∥∥∥∑
i∈I

Λ∗ig
′
i

∥∥∥2
=
∑
j∈I
‖ΓΛj h‖2.

Proof. It is easy to check that∥∥∥∑
j∈I

(ΓΛj )∗gj

∥∥∥2
=
∥∥∥∑
j∈I

(∑
i∈I

ΞjΛ
∗
iΨi
)∗
gj

∥∥∥2
=
∥∥∥∑
i∈I

Ψ∗iΛif
∥∥∥2

=
〈∑
i∈I

Ψ∗iΛif,
∑
j∈I

Ψ∗jΛjf
〉

=
∑
i∈I

∑
j∈I
〈Λif,ΨiΨ∗jΛjf〉

=
∑
i∈I

∑
j∈I
〈Λif, δijΛjf〉 =

∑
i∈I
‖Λif‖2.

Similarly, the second claim follows from Theorem 2.3.

Corollary 3.3. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to {Vi}i∈I. Then

‖T∗ΓΛ
(
[f]Ξ
)
‖ = ‖TΛf‖`2 , ‖T∗Λ

(
[f]Ψ

)
‖ = ‖TΓΛf‖`2 ,

for every f ∈ H.

Proof. This follows immediately from Theorem 3.2.

There exists an interesting relation between the synthesis operator of Λ = {Λi}i∈I and the span of
{(ΓΛj )∗(Wj)}j∈I, which will turn out to be very useful in the sequel.

Theorem 3.4. LetΛ = {Λi}i∈I be a g-Bessel sequence for H with respect to {Vi}i∈I with g-R-dual sequence {ΓΛj }j∈I
with respect to (Ξ,Ψ). Then the following statements hold.

(i) f ∈
(
span{(ΓΛj )∗(Wj)}j∈I

)⊥ if and only if [f]Ψ ∈ ker T∗Λ.
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(ii) f ∈
(
span{Λ∗j (Vj)}j∈I

)⊥ if and only if [f]Ξ ∈ ker T∗
ΓΛ

.

Proof. Let f ∈ H. First for each j ∈ J and gj ∈Wj we observe that

〈f, (ΓΛj )∗gj〉 =
∑
i∈J
〈f,Ψ∗iΛiΞ∗jgj〉 =

〈∑
i∈J

Λ∗iΨif,Ξ
∗
jgj
〉
=
〈
T∗Λ([f]Ψ),Ξ

∗
jgj
〉
.

Since Ξ = {Ξj}j∈J is a g-orthonormal basis for H with respect to {Wj}j∈I,
〈
T∗Λ([f]Ψ),Ξ

∗
jgj
〉
= 0 for all j ∈ I

and gj ∈ Wj, if and only if T∗Λ([f]Ψ) = 0. Thus, f ∈
(

span{(ΓΛj )∗(Wj)}j∈I
)⊥ is equivalent to [f]Ψ ∈ ker T∗Λ.

Similarly, the second claim follows from Theorem 2.3.

Corollary 3.5. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to {Vi}i∈I with g-R-dual sequence
{ΓΛj }j∈I with respect to (Ξ,Ψ). Then

dim
(
span{(ΓΛj )∗(Wj)}j∈I

)⊥
= dim ker T∗Λ and dim

(
span{Λ∗j (Vj)}j∈I

)⊥
= dim ker T∗ΓΛ .

Proof. This follows immediately from Theorem 3.4.

The next result shows a kind of equilibrium between a sequence of operators and its R-dual sequence.
It can be viewed as a general version of [4, Proposition 13].

Corollary 3.6. The following conditions are equivalent.

(i) Λ = {Λi}i∈I is a g-frame sequence with respect to {Vi}i∈I with g-frame bounds A, B.
(ii) {ΓΛj }j∈I is a g-frame sequence with respect to {Wj}j∈I with g-frame bounds A, B.

(iii) {ΓΛj }j∈I is a g-Riesz basic sequence with respect to {Wj}j∈I with g-frame bounds A, B.

Proof. (i)⇔ (ii). The Proposition 3.1 and Theorem 3.4 conclude that Λ = {Λi}i∈I is a g-frame sequence
with respect to {Vi}i∈I with g-frame bounds A, B if and only if

A‖[f]Ψ‖2
`2 6 ‖T∗Λ([f]Ψ)‖2 6 B‖[f]Ψ‖2

`2 ,

for all f ∈ span{(ΓΛj )∗(Wj)}j∈I. Now, Corollary 3.3 implies

A‖f‖2 6 ‖TΓΛf‖2
`2 6 B‖f‖2.

(i)⇔(iii). This equivalence follows immediately from Theorem 3.2.

The dimension condition in Corollary 3.5 will play a crucial role for the g-R-dual sequence. Using
Corollary 3.5 we can derive a simple characterization of a g-Riesz basic sequence being a g-R-dual se-
quence of a g-frame in the tight case.

Theorem 3.7. Let Λ = {Λi}i∈I be a A-tight g-frame for H with respect to {Vi}i∈I and let {Γj}j∈I be an A-tight
g-Riesz basic sequence in H with respect to {Wj}j∈I. Then {Γj}j∈I is a g-R-dual sequence of {Λi}i∈I with respect to
(Ξ,Ψ), if and only if

dim
(
span{Γ∗j (Wj)}j∈I

)⊥
= dim ker T∗Λ. (3.1)

Proof. The necessity of the condition in (3.1) follows from Corollary 3.5. Now, assume that (3.1) holds.
Then, according to Lemma 1.6 the sequence { 1√

A
Γj}j∈I is a g-orthonormal system for H with respect

to {Wj}j∈I. Suppose that Ξ = {Ξj}j∈I and Ψ = {Ψi}i∈I are g-orthonormal bases for H with respect to
{Wj}j∈I and {Vi}i∈I, respectively. Consider the g-R-dual {Θj}j∈I of Λ = {Λi}i∈I with respect to (Ξ,Ψ), i.e.,
Θj =

∑
i∈I ΞjΛ

∗
iΨi, j ∈ I. By Corollary 3.6 {Θj}j∈I is an A-tight g-Riesz basic sequence with respect to
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{Wj}j∈I and hence { 1√
A
Θj}j∈I is also a g-orthonormal system for H with respect to {Wj}j∈I. By Corollary

3.5 and (3.1),

dim
(
span{Θ∗j (Wj)}j∈I

)⊥
= dim ker T∗Λ = dim

(
span{Γ∗j (Wj)}j∈I

)⊥. (3.2)

In case
(
span{Θ∗j (Wj)}j∈I

)⊥
=
(
span{Γ∗j (Wj)}j∈I

)⊥
= {0}, the g-orthonormality of the sequences { 1√

A
Θi}i∈I

and { 1√
A
Γi}i∈I implies that there exists unitary operator

U : H→ H, by Γj = ΘjU
∗, ∀j ∈ I.

In case
(
span{Θ∗j (Wj)}j∈I

)⊥ 6= {0}, letting {Φj}j∈I and {Ωj}j∈I be g-orthonormal bases for(
span{Θ∗j (Wj)}j∈I

)⊥ and
(
span{Γ∗j (Wj)}j∈I

)⊥,

with respect to {Wj}j∈I, respectively, (3.2) implies that there exists unitary operator

U : H→ H, by Γj = ΘjU
∗, Ωj = ΦjU

∗ ∀j ∈ I.

In both cases, we have

Γj = ΘjU
∗ =

(∑
i∈I

ΞjΛ
∗
iΨi
)
U∗ =

∑
i∈I

ΞjΛ
∗
iΨiU

∗, ∀j ∈ I,

which shows that {Γj}j∈I is a g-R-dual sequence of {Λi}i∈I with respect to {Ξj}j∈I and {ΨiU
∗}i∈I.

The following result is about different types of equivalence of g-frames, which is taken from [12]. This
result will moreover be employed in several proofs in the sequel.

Proposition 3.8. Let Λ = {Λi}i∈I and Λ ′ = {Λ ′i}i∈I be Parseval g-frames for H1 and H2 with respect to {Vi}i∈I,
respectively. Then Λ is unitarily equivalent to Λ ′ if and only if the analysis operators TΛ and TΛ ′ have the same
range. Likewise, two g-frames with respect to {Vi}i∈I are equivalent if and only if their analysis operators have the
same range.

In the following we characterize those pairs of g-frames and their g-R-dual sequences, which are
equivalent (unitarily equivalent).

Theorem 3.9. Let {Λi}i∈I and {Λ ′i}i∈I be g-frames for H with respect to {Vi}i∈I. Then

(i) {Λi}i∈I is equivalent to {Λ ′i}i∈I in H with respect to {Vi}i∈I if and only if

span{(ΓΛj )∗(Wj)}j∈I = span{(ΓΛ
′

j )∗(Wj)}j∈I;

(ii) {Λi}i∈I is unitarily equivalent to {Λ ′i}i∈I in H with respect to {Vi}i∈I if and only if SΓΛ = SΓΛ ′ ;
(iii) {ΓΛj }j∈I is unitarily equivalent to {ΓΛ

′
j }j∈I in H with respect to {Wj}j∈I if and only if SΛ = SΛ ′ .

Proof.

(i) By Proposition 3.8, {Λi}i∈I and {Λ ′i}i∈I are equivalent in H with respect to {Vi}i∈I, if and only if RTΛ =
RTΛ ′ and hence ker T∗Λ = ker T∗Λ ′ . Now the claim follows from Theorem 3.4.

(ii) Using Propositions 3.1 and 3.8, {Λi}i∈I is unitarily equivalent to {Λ ′i}i∈I if and only if∥∥∑
i∈I

Λ∗ig
′
i

∥∥2
=
∥∥∑
i∈I

Λ ′
∗
ig
′
i

∥∥2, ∀ {g ′i}i∈I ∈ (ker T∗Λ)
⊥.

By Theorem 3.2, this in turn is equivalent to

〈SΓΛf, f〉 =
∑
j∈I
‖ΓΛj f‖2 =

∑
j∈I
‖ΓΛ ′j f‖2 = 〈SΓΛ ′ f, f〉,

for all f ∈ H and g ′i = Ψif (i ∈ I). It follows that SΓΛ = SΓΛ ′ , as required.
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(iii) The proof follows immediately from (ii) and Theorem 2.3.

Corollary 3.10. Let {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I. Then

span{(ΓΛj )∗(Wj)}j∈I = span{(Γ Λ̂j )∗(Wj)}j∈I,

where {Λ̂i}i∈I is the canonical dual g-frame of {Λi}i∈I.

Proof. Since {Λ̂i}i∈I is equivalent to {Λi}i∈I, this claim follows from Theorem 3.9.

4. Duality properties of the g-R-dual sequence

In this section we characterize all properties of a g-Bessel sequence in terms of properties of their g-R-
dual sequence. We will study properties of dual g-frames and canonical dual g-frames. This is a general
version of duality principle for g-frames which follows from the Casazza duality relations [4].

The next result gives an explicit form for g-R-dual sequence of the canonical dual g-frame.

Theorem 4.1. Let {Λi}i∈I and {Ωi}i∈I be g-frames for H with respect to {Vi}i∈I. Then {Ωi}i∈I is a dual g-frame
of {Λi}i∈I if and only if g-R-dual sequences {ΓΛj }j∈I and {ΓΩj }j∈I are g-biorthogonal, i.e.,

ΓΛi (ΓΩj )∗gj = Γ
Ω
i (ΓΛj )∗gj = δijgj, ∀ i, j ∈ I, gj ∈Wj.

Proof. Let {Ωi}i∈I be a dual g-frame of {Λi}i∈I. By definition of {ΓΩj }j∈I and {ΓΛj }j∈I for every i, j ∈ I and
gj ∈Wj we have

ΓΛi (ΓΩj )∗gj =
∑
k∈I

ΞiΛ
∗
kΨk

(∑
m∈I

ΞjΩ
∗
mΨm

)∗
gj

=
∑
k∈I

∑
m∈I

ΞiΛ
∗
kΨkΨ

∗
mΩmΞ

∗
jgj

=
∑
k∈I

ΞiΛ
∗
kΩkΞ

∗
jgj = Ξi

(∑
k∈I

Λ∗kΩkΞ
∗
jgj
)
= ΞiΞ

∗
jgj = δijgj.

The converse implication similarly follows from Theorem 2.3.

Corollary 4.2. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I with canonical dual g-frame denoted by
{Λ̂i}i∈I. Then the g-R-dual sequences {ΓΛj }j∈I and {Γ Λ̂j }j∈I are g-biorthogonal, i.e.,

ΓΛi (Γ Λ̂j )∗gj = Γ
Λ̂
i (ΓΛj )∗gj = δijgj

for all i, j ∈ I and gj ∈Wj. Thus {Γ Λ̂j }j∈I is the dual g-Riesz basic sequence of {ΓΛj }j∈I.

The next result is a characterization of tight g-frames in terms of their g-R-dual sequence.

Corollary 4.3. {Λi}i∈I is an A-tight g-frame for H with respect to {Vi}i∈I if and only if g-R-dual sequence
{ 1√
A
ΓΛj }j∈I is a g-orthonormal system for H with respect to {Wj}j∈I. Thus the sequence {Λi}i∈I is a Parseval

g-frame if and only if, its g-R-dual sequence is an orthonormal system.

Proof. This follows immediately from Lemma 1.6, Corollary 3.6, and Theorem 4.2.

Theorem 4.4. Let {Λi}i∈I and {Ωi}i∈I be g-frames for H with respect to {Vi}i∈I. Then {Ωi}i∈I is a dual g-frame of
{Λi}i∈I if and only if, there exists a g-Bessel sequence {Θj}j∈I for

(
span{(ΓΛj )∗(Wj)}j∈I

)⊥ with respect to {Wj}j∈I,

such that ΓΩj = Γ Λ̂j +Θj for all j ∈ I.
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Proof. Suppose that {Ωi}i∈I is a dual g-frame of {Λi}i∈I. By Theorem 4.1 we have〈
(ΓΩi − Γ Λ̂i )∗gi, (ΓΛj )∗gj

〉
=
〈
gi, (ΓΩi − Γ Λ̂i )(ΓΛj )∗gj

〉
=
〈
gi, ΓΩi (ΓΛj )∗gj

〉
−
〈
gi, Γ Λ̂i (ΓΛj )∗gj

〉
= 〈gi, δijgj〉− 〈gi, δijgj〉 = 0,

for all i, j ∈ I and gi ∈Wi,gj ∈Wj. Thus, Definition 2.1 implies that Θj = ΓΩj − Γ Λ̂j is a g-Bessel sequence

for
(
span{(ΓΛj )∗(Wj)}j∈I

)⊥ with respect to {Wj}j∈I and ΓΩj = Γ Λ̂j +Θj. Now for the opposite implication,

suppose that there exists a g-Bessel sequence {Θj}j∈I for
(
span{(ΓΛj )∗(Wj)}j∈I

)⊥ with respect to {Wj}j∈I,

such that ΓΩj = Γ Λ̂j +Θj for all j ∈ I. By Theorem 2.3, we have

Ωi = Λ̂i +
∑
j∈I

Ψi(Θj)
∗Ξj for all i ∈ I.

So, for each f ∈ H∑
i∈I

Λ∗iΩif =
∑
i∈I

Λ∗i
(
Λ̂i +

∑
j∈I

ΨiΘ
∗
jΞj
)
f =
∑
i∈I

Λ∗i Λ̂if+
∑
i∈I

∑
j∈I

Λ∗iΨiΘ
∗
jΞjf = f+

∑
j∈I

∑
i∈I

Λ∗iΨiΘ
∗
jΞjf,

since Θ∗jΞjf ∈
(
span{(ΓΛj )∗(Wj)}j∈I

)⊥ for all j ∈ I. Theorem 3.4 implies that∑
i∈I

Λ∗iΨiΘ
∗
jΞjf = 0.

This proves that {Ωi}i∈I is a dual g-frame of {Λi}i∈I.

Among the dual g-frames the canonical dual g-frame is distinguished by the following properties.

Theorem 4.5. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I with canonical dual g-frame denoted by
{Λ̂i}i∈I and let {Ωi}i∈I be a dual g-frame of {Λi}i∈I. Then

‖Γ Λ̂j ‖ 6 ‖ΓΩj ‖ for all j ∈ I,

with equality if and only if {Ωj}j∈I = {Λ̂j}j∈I.

Proof. By Theorem 4.4, {Ωi}i∈I is a dual g-frame of {Λi}i∈I if and only if ΓΩj = Γ Λ̂j +Θj, where (Γ Λ̂j )∗g ∈
span{(ΓΛj )∗(Wj)}j∈I and Θ∗jg ∈

(
span{(ΓΛj )∗(Wj)}j∈I

)⊥ for all j ∈ I,g ∈Wj. Hence

‖ΓΩj ‖2 = ‖(ΓΩj )∗‖2 = sup
‖g‖=1

‖(ΓΩj )∗g‖2 = sup
‖g‖=1

‖(Γ Λ̂j )∗g‖2 + sup
‖g‖=1

‖Θ∗jg‖2

= ‖(Γ Λ̂j )∗‖2 + ‖Θ∗j ‖2 = ‖Γ Λ̂j ‖2 + ‖Θj‖2 > ‖Γ Λ̂j ‖2,

with equality if and only if {Ωj}j∈I = {Λ̂j}j∈I.
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