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Abstract

This paper is a continuation of the investigations of F-contraction. The aim of this article is to extend the concept of F-
contraction on closed ball. We introduce the notion of Ćirić type multivalued F-contraction on closed ball and establish new
fixed point theorems for Ćirić type multivalued F-contraction on closed ball in a complete metric space. Our results are very
useful for the contraction of the mapping only on closed ball instead on the whole space. Some comparative examples are
constructed whose illustrate the superiority of our results. Our results provide extension as well as substantial generalizations
and improvements of several well-known results in the existing comparable literature. c©2017 All rights reserved.
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1. Introduction

We recollect some essential notations, required definitions, and primary results coherent with the
literature. For a nonempty set X, we denote by N(X) the class of all nonempty subsets of X. Let (X,d)
be a metric space. For x ∈ X and A ⊆ X, we denote D(x,A) = inf {d(x,y) : y ∈ A}. We denote by CL(X)
the class of all nonempty closed subsets of X, by CB(X) the class of all nonempty closed and bounded
subsets of X and by K(X) the class of all compact subsets of X. Let H be the Hausdorff metric induced by
the metric d on X, that is,

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
,

for every A,B ∈ CB(X). Let T : X −→ CB(X) be a multi-valued mapping. A point q ∈ X is said to be a
fixed point of T if q ∈ Tq.

The fixed point theory of multivalued contraction mappings using the Hausdorff metric was initiated
by Nadler [35], who extended the Banach contraction principle to multivalued mappings.
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Theorem 1.1 ([35]). Let (X,d) be a complete metric space and T : X −→ CB(X) be a multi-valued mapping such
that for all x,y ∈ X

H(Tx, Ty) 6 kd(x,y),

where 0 < k < 1. Then T has a fixed point.

From the application point of view the situation is not yet completely satisfactory because there are
many situations in which the mappings are not contractive on the whole space but instead they are
contractive on its subsets. However, by imposing a subtle restriction, one can establish the existence of
a fixed point of such mappings. Shoaib et al. [41] proved significant results concerning the existence of
fixed points of the dominated self-mappings satisfying some contractive conditions on closed ball in a
0-complete quasi-partial metric space. Other results on closed ball can be seen in [9–12]. Over the years,
fixed point theory has been generalized in different ways by several mathematicians (see [2, 3, 8, 13–
19, 23–25, 29, 31, 33, 40].

For x ∈ X and ε > 0, B(x, ε) = {y ∈ X : d(x,y) 6 ε} is a closed ball in (X,d).

Definition 1.2 ([38]). Let T : X → X and α : X× X → [0,+∞). We say that T is α-admissible if x,y ∈ X,
α(x,y) > 1 implies that α(Tx, Ty) > 1.

Definition 1.3 ([37]). Let T : X → X and α,η : X × X → [0,+∞) be two functions. We say that T is
α-admissible mapping with respect to η if x,y ∈ X, α(x,y) > η(x,y) implies that α(Tx, Ty) > η(Tx, Ty).

If η(x,y) = 1, then above definition reduces to Definition 1.2. If α(x,y) = 1, then T is called an
η-subadmissible mapping.

Definition 1.4 ([26]). Let (X,d) be a metric space. Let T : X → X and α,η : X× X → [0,+∞) be two
functions. We say that T is α-η-continuous mapping on (X,d) if for given x ∈ X, and sequence {xn} with

xn → x as n→∞, α(xn, xn+1) > η(xn, xn+1) for all n ∈N⇒ Txn → Tx.

Hussain et al. [27] modified the notions of α∗-admissible and α∗-ψ-contractive mappings as follows:

Definition 1.5 ([27]). Let T : X → 2X be a multifunction, α,η : X × X → [0,+∞) be two functions
where η is bounded. We say that T is α∗-admissible mapping with respect to η if α(x,y) > η(x,y)
implies α∗(Tx, Ty) > η∗(Tx, Ty), x,y ∈ X, where α∗(A,B) = inf {α(x,y) : x ∈ A, y ∈ B} and η∗(A,B) =
sup {η(x,y) : x ∈ A, y ∈ B}.

If η(x,y) = 1 for all x,y ∈ X, then this definition reduces to [27, Definition 4.1]. In Definition 1.5, if
α(x,y) = 1 for all x,y ∈ X, then T is called η∗-subadmissible mapping.

Definition 1.6 ([33]). Let (X,d) be a metric space. Let T : X → CL(X) and α : X× X → [0,+∞) be two
functions. We say that T is α-continuous multivalued mapping on (CL(X),H) if for given x ∈ X, and
sequence {xn} with lim

n−→∞d(xn, x) = 0 , α(xn, xn+1) > 1 for all n ∈N we have lim
n−→∞H(Txn, Tx) = 0.

In 2012, Wardowski [45] introduced a new type of contractions called F-contraction and proved new
fixed point theorems concerning F-contraction. He generalized the Banach contraction principle in a
different way than as it was done by different investigators; see [1, 4, 6, 7, 20–22, 28, 32, 34, 39, 40, 42–44].
Piri et al. [36] defined the F-contraction as follows.

Definition 1.7 ([36]). Let (X,d) be a metric space. A mapping T : X → X is said to be an F-contraction if
there exists τ > 0 such that

∀x,y ∈ X, d(Tx, Ty) > 0⇒ τ+ F (d(Tx, Ty)) 6 F (d(x,y)) , (1.1)

where F : R+ → R is a mapping satisfying the following conditions:
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(F1) F is strictly increasing, i.e., for all x,y ∈ R+ such that x < y, F(x) < F(y);
(F2) for each sequence {αn}

∞
n=1 of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F(αn) = −∞;

(F3) there exists κ ∈ (0, 1) such that limα→0+ α
kF(α) = 0.

We denote by ∆F, the set of all functions satisfying the conditions (F1)-(F3).

Example 1.8 ([45]). Let F : R+ → R be given by the formula F(α) = lnα. It is clear that F satisfies (F1)-(F3)
for any κ ∈ (0, 1). Each mapping T : X→ X satisfying (1.1) is an F-contraction such that

d(Tx, Ty) 6 e−τd(x,y) for all x,y ∈ X, Tx 6= Ty.

It is clear that for x,y ∈ X such that Tx = Ty the inequality d(Tx, Ty) 6 e−τd(x,y), also holds, i.e., T is a
Banach contraction.

Example 1.9 ([45]). If F(α) = lnα+α, α > 0, then F satisfies (F1)-(F3) and the condition (1.1) is of the form

d(Tx, Ty)
d(x,y)

6 ed(Tx,Ty)−d(x,y) 6 e−τ for all x,y ∈ X, Tx 6= Ty.

Remark 1.10. From (F1) and (1.1) it is easy to conclude that every F-contraction is necessarily continuous.

Wardowski [45] stated a modified version of the Banach contraction principle as follows.

Theorem 1.11 ([45]). Let (X,d) be a complete metric space and let T : X → X be an F-contraction. Then T has a
unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N converges to x∗.

Hussain et al. [26] introduced the following family of new functions.
Let ∆G denote the set of all functions G : (R+)4 → R+ satisfying: (G) for all t1, t2, t3, t4 ∈ R+ with

t1t2t3t4 = 0, there exists τ > 0 such that G(t1, t2, t3, t4) = τ.

Definition 1.12 ([26]). Let (X,d) be a metric space and T be a self-mapping on X. Let α,η : X× X →
[0,+∞) be two functions. We say that T is α-η-GF-contraction if for x,y ∈ X, with η(x, Tx) 6 α(x,y) and
d(Tx, Ty) > 0 we have

G(d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)) + F (d(Tx, Ty)) 6 F (d(x,y)) ,

where G ∈ ∆G and F ∈ ∆F.

Lately, Acar et al. [5] introduced the concept of generalized multivalued F-contraction mappings
and established a fixed point result, which was a proper generalization of some multivalued fixed point
theorems including Nadler’s.

Definition 1.13 ([5]). Let (X,d) be a metric space and T : X −→ CB(X) be a mapping. Then T is said to be
a generalized multivalued F-contraction if F ∈ ∆F and there exists τ > 0 such that

x,y ∈ X, H(Tx, Ty) > 0⇒ τ+ F(H(Tx, Ty)) 6 F(M(x,y)),

where
M(x,y) = max{d(x,y),D(x, Tx),D(y, Ty),

1
2
[D(x, Ty) +D(y, Tx)]}.

Theorem 1.14 ([5]). Let (X,d) be a complete metric space and T : X → K(X) be a generalized multivalued
F-contraction. If T or F is continuous, then T has a fixed point in X.

We now introduce the concept of α-η-continuous for multivalued mappings in metric spaces.

Definition 1.15. Let (X,d) be a metric space. Let T : X → CB(X) and α,η : X× X → [0,+∞) be two
functions. We say that T is α-η-continuous multivalued mapping on (CB(X),H) if for given x ∈ X, and
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sequence {xn} with xn
d→ x as n→∞, α(xn, xn+1) > η(xn, xn+1) for all n ∈N we have Txn

H→ Tx, that is
lim
n→∞d(xn, x) = 0 and α(xn, xn+1) > η(xn, xn+1) for all n ∈N we have lim

n→∞H(Txn, Tx) = 0.

The following result regarding the existence of the fixed point of the mapping satisfying a contractive
condition on the closed ball is given in [30, Theorem 5.1.4]. The result is very useful in the sense that it
requires the contraction of the mapping only on the closed ball instead on the whole space.

Theorem 1.16 ([30]). Let (X,d) be a complete metric space, T : X→ X be a mapping, r > 0, and x0 be an arbitrary
point in X. Suppose there exists k ∈ [0, 1) with

d(Tx, Ty) 6 kd(x,y) for all x,y ∈ Y = B(x0, r)

and d(x0, Tx0) < (1 − k)r. Then there exists a unique point x∗ in B(x0, r) such that x∗ = Sx∗.

2. Fixed point theorem for Ćirić type GF-contraction on closed ball

In this section, we introduce multivalued fixed point theorem for modified F-contraction on closed
ball in complete metric spaces. We define multivalued α-η-GF-contraction on closed ball as follows:

Definition 2.1. Let (X,d) be a metric space and T : X → CB (X) . Also suppose that α,η : X × X →
{−∞} ∪ (0,+∞) are two functions. We say that T is Ćirić type multivalued α-η-GF-contraction on closed
ball if for x,y ∈ B(x0, r) ⊆ X with η∗(x, Tx) 6 α∗(x,y) and Tx 6= Ty we have

2G (D(x, Tx),D(y, Ty),D(x, Ty),D(y, Tx)) + F (H(Tx, Ty)) 6 F (M (x,y)) ,

where
M(x,y) = max{d(x,y),D(x, Tx),D(y, Ty),

1
2
[D(x, Ty) +D(y, Tx)]},

and
D(x0, Tx0) 6 (1 − k) r,

where k ∈ [0, 1),G ∈ ∆G, and F ∈ ∆F.

Now we state our main result.

Theorem 2.2. Let (X,d) be a complete metric space. Suppose T : X → CB (X) is Ćirić type multivalued α-η-GF-
contraction on closed ball B(x0, r) satisfying the following assertions:

(i) T is an α∗-admissible mapping with respect to η;
(ii) there exists x0 ∈ X such that α∗(x0, Tx0) > η∗(x0, Tx0);

(iii)
∑N
j=0D(x0, Tx0) 6 r for all j ∈N;

(iv) T is α-η-continuous multivalued mapping.

Then there exists a fixed point x∗ in B(x0, r) such that x∗ ∈ Tx∗.

Proof. Let x0 ∈ X, such that α∗(x0, Tx0) > η∗(x0, Tx0). Since T is an α∗-admissible mapping with respect
to η then there exists x1 ∈ Tx0 such that

α(x0, x1) = α∗(x0, Tx0) > η∗(x0, Tx0) = η(x0, x1).

If x1 ∈ Tx1, then x1 is a fixed point of T . So, we assume that x0 6= x1, then Tx0 6= Tx1. Since F is continuous
from the right, there exists a real number h > 1 such that

F (hH (Tx0, Tx1)) < F (H (Tx0, Tx1)) +G (D(x0, Tx0),D(x1, Tx1),D(x0, Tx1),D(x1, Tx0)) .
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Now from D (x1, Tx1) < hH (Tx0, Tx1) , we deduce that there exists x2 ∈ Tx1 such that d (x1, x2) 6
hH (Tx0, Tx1) . Consequently, we obtain

F(D(x1, Tx1)) 6 F(hH(Tx0, Tx1)) < F(H(Tx0, Tx1)) +G (D(x0, Tx0),D(x1, Tx1),D(x0, Tx1),D(x1, Tx0)) ,

which implies

2G (D(x0, Tx0),D(x1, Tx1),D(x0, Tx1),D(x1, Tx0)) + F(D(x1, x2))

6 2G (D(x0, Tx0),D(x1, Tx1),D(x0, Tx1),D(x1, Tx0)) + F (H(Tx0, Tx1))

+G (D(x0, Tx0),D(x1, Tx1),D(x0, Tx1),D(x1, Tx0))

6 F (M (x0, x1)) +G (D(x0, Tx0),D(x1, Tx1),D(x0, Tx1),D(x1, Tx0)) ,

and hence

G(D(x0, Tx0),D(x1, Tx1),D(x0, Tx1), 0) + F (M(Tx0, Tx1))

6 F

(
max

{
d (x0, x1) ,D (x0, Tx0) ,D (x1, Tx1) ,

D (x0, Tx1) +D (x1, Tx0)

2

})
.

(2.1)

Now, since d(x0, x1).d(x1, x2).d(x0, x2).0 = 0, so from (G) there exists τ > 0 such that

G(D(x0, Tx0),D(x1, Tx1),D(x0, Tx1), 0) = τ.

Therefore from (2.1) we deduce that

τ+ F (d (x1, Tx1)) 6 F

(
max

{
d (x0, x1) ,D (x0, Tx0) ,D (x1, Tx1) ,

D (x0, Tx1) +D (x1, Tx0)

2

})
= F

(
max

{
d (x0, x1) ,D (x0, Tx0) ,D (x1, Tx1) ,

D (x0, Tx1) +D (x1, Tx0)

2

})
− τ

= F

(
max

{
d (x0, x1) ,D (x0, Tx0) ,D (x1, Tx1) ,

D (x0, x2) +D (x1, x1)

2

})
− τ

6 F (max {D (x0, Tx0) ,D (x1, Tx1)}) − τ.

(2.2)

If max {D (x0, Tx0) ,D (x1, Tx1)} = D (x1, Tx1), then (2.2) becomes

F (D (x1, Tx1)) 6 F (D (x1, Tx1)) − τ,

which does not hold true. Thus max {D (x0, Tx0) ,D (x1, Tx1)} = D (x0, Tx0) . Consequently,

F (D(x1, Tx1)) 6 F (D(x0, Tx0)) − τ.

From (iii), we deduce that
d(x0, x1) = D(x0, Tx0) 6 r,

thus, x1 ∈ B(x0, r). Suppose x2....xj ∈ B(x0, r) for some j ∈ N. As F is strictly increasing and repeating
these steps for x2....xj, we obtain

D(xj, Txj) 6 D(xj−1, Txj−1). (2.3)

Now, using triangular inequality and (2.3), we get

d(x0, xj+1) 6 d(x0, x1) + ... + d(xj, xj+1) 6
N∑
j=0

D(x0, Tx0) 6 r.

Thus xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N. By continuing this process, we obtain a sequence
{xn} ⊂ X such that xn /∈ Txn, xn+1 ∈ Txn,

η(xn−1, xn) = η∗(xn−1, Txn−1) 6 α∗(xn−1, Txn−1) = α(xn−1, xn),

and
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τ+ F (d (xn, xn+1))

6 F

(
max

{
d (xn−1, xn) ,D (xn−1, Txn−1) ,D (xn, Txn) ,

D (xn−1, Txn) +D (xn, Txn−1)

2

})
= F

(
max

{
d (xn−1, xn) ,D (xn−1, Txn−1) ,D (xn, Txn) ,

D (xn−1, Txn)
2

})
− τ

6 F (max {D (xn−1, Txn−1) ,D (xn, Txn)}) − τ.

If max {D (xn−1, Txn−1) ,D (xn, Txn)} = D (xn, Txn), then

F (D (xn, Txn)) 6 F (D (xn, Txn)) − τ.

Thus, max {D (xn−1, Txn−1) ,D (xn, Txn)} = D (xn−1, Txn−1) , we obtain

F (d(xn, xn+1)) 6 F (D(xn−1, Txn−1)) − τ, (2.4)

for all n ∈N∪ {0} . By (2.4), we have

F(d(xn, xn+1)) 6 F(D(xn−1, Txn−1)) − τ 6 F(D(xn−2, Txn−2)) − 2τ 6 · · · 6 F(D(x0, Tx0)) −nτ, (2.5)

for all n ∈N. Since F ∈ ∆F, so by taking limit as n −→∞ in (2.5), we deduce

lim
n→∞F(d (xn, xn+1)) = −∞ ⇐⇒ lim

n→∞d (xn, xn+1) = 0. (2.6)

Now from (F3), there exists 0 < k < 1 such that

lim
n→∞ [d (xn, xn+1)]

k F(d (xn, xn+1)) = 0. (2.7)

By (2.4), we have

d (xn, xn+1)
k F(d (xn, xn+1)) − d (xn, xn+1)

k F (d (x0, x1))

6 d (xn, xn+1)
k [F (d (x0, x1) −nτ)] − d (xn, xn+1)

k F (d (x0, x1))

= −nτ [d (xn, xn+1)]
k 6 0.

(2.8)

Letting n −→∞ in (2.8) and applying (2.6) and (2.7), we have,

lim
n−→∞n [d (xn, xn+1)]

k = 0, (2.9)

we observe that from (2.9), then there exists n1 ∈N, such that n (d(xn, xn+1))
k 6 1 for all n > n1, we get

d(xn, xn+1) 6
1

n
1
k

for all n > n1. (2.10)

Now, m,n ∈N such that m > n > n1. Then, by the triangle inequality and from (2.10) we have

d(xn, xm) 6 d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·+ d(xm−1, xm)

=

m−1∑
i=n

d(xi, xi+1) 6
∞∑
i=n

d(xi, xi+1) 6
∞∑
i=n

1

i
1
k

.

The series
∑∞
i=n

1

i
1
k

is convergent. This implies that {xn} is a Cauchy sequence. Since X is a complete

metric space, there exists x∗ ∈ X such that lim
n−→∞d(xn, x∗) = 0. By (2.3) and α-η-continuity of the multi-

valued mapping T , we get
lim
n→∞H(Txn, Tx∗) = 0.

Now we obtain
D (x∗, Tx∗) = lim

n→∞D(xn+1, Tx∗) 6 lim
n→∞H(Txn, Tx∗) = 0.

Therefore, x∗ ∈ Tx∗ and hence T has a fixed point.
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Example 2.3. Let X = R+. Define T : X → CB(X), α : X × X → {−∞} ∪ (0,+∞), η : X × X → R+,
G : (R+)4 → R+, and F : R+ → R by

Tx =

{ [
0, x3

]
, if x ∈ [0, 1] ,

2x, if x ∈ (1,∞) , α(x,y) =
{
ex+y, if x ∈ [0, 1] ,
1
3 , otherwise,

η(x,y) =
1
2

for all x,y ∈ X, G(t1, t2, t3, t4) = τ > 0 and F(t) = ln t with t > 0.

And x0 = 1
2 , r = 1,B(x0, r) = [0, 1] , then

d(
1
2

, T
1
2
) =

∣∣∣∣1
2
−

1
6

∣∣∣∣ = 1
3
< r.

If x,y ∈ B(x0, r), then α(x,y) = ex+y > 1
2 = η(x,y). On the other hand, Tx ∈ [0, 1] for all x ∈ [0, 1]. Then

α(Tx, Ty) > η(x, Tx) with H(Tx, Ty) =
∣∣x

3 − y
3

∣∣ > 0 and clearly α(0, T0) > η(0, T0). Hence we have

H(Tx, Ty) =
∣∣∣x
3
−
y

3

∣∣∣ < |x− y| 6M(x,y).

Consequently,
τ+ F (H(Tx, Ty)) = τ+ lnH(Tx, Ty) 6 lnM(x,y) = F (M(x,y)) .

If x /∈ B(x0, r) or y /∈ B(x0, r), then α(x,y) = 1
3 � 1

2 = η(x,y), either

2 |x− y| > |x− y| ,
|2x− 2y| > |x− y| ,
|Tx− Ty| > |x− y| ,

τ+ F (d(Tx, Ty)) > F (d(x,y)) .

Then the contractive condition does not hold on X.

3. Conclusion

In this connection, the main aim of our paper is to present fixed point theorem for modified F-
contraction on closed ball for multivalued mapping and different from F-contractions given in [26, 36, 45].
Existence of fixed point results of such type of F-contraction on closed ball in complete metric space are
established. The study of results is very useful in the sense that it requires the F-contraction mapping
only on the closed ball instead on the whole space. The new concepts lead to further investigations and
applications. It will be also interesting to apply these concepts in a different metric spaces.
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[14] L. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273.
[15] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715–

722.
[16] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74–79.
[17] B. Fisher, Set-valued mappings on metric spaces, Fund. Math., 112 (1981), 141–145.
[18] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608.
[19] N. Hussain, S. Al-Mezel, P. Salimi, Fixed points for ψ-graphic contractions with application to integral equations, Abstr.

Appl. Anal., 2013 (2013), 11 pages. 1
[20] N. Hussain, M. Arshad, M. Abbas, A. Hussain, Generalized dynamic process for generalized (f,L)-almost F-contraction

with applications, J. Nonlinear Sci. Appl., 9 (2016), 1702–1715. 1
[21] A. Hussain, M. Arshad, S. U. Khan, τ-Generalization of fixed point results for F-contractions, Bangmod Int. J. Math.

Comp. Sci., 1 (2015), 136–146.
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