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Abstract

A new class of multifunctions, called upper (lower) α(µX,µY)-continuous multifunctions, has been defined and stud-
ied. Some characterizations and several properties concerning upper (lower) α(µX,µY)-continuous multifunctions are obtained.
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1. Introduction

General topology has shown its fruitfulness in both the pure and applied directions. In reality it is used
in data mining, computational topology for geometric design and molecular design, computer-aided de-
sign, computer-aided geometric design, digital topology, information system, non-commutative geometry
and its application to particle physics, one can observe the influence made in these realms of applied re-
search by general topological spaces, properties and structures. Continuity is a basic concept for the study
of generalized topological spaces. This concept has been extended to the setting of multifunctions and has
been generalized by weaker forms of open sets such as α-open sets [18], semi-open sets [15], preopen sets
[16], β-open sets [1] and semi-preopen sets [3]. Multifunctions and of course continuous multifunctions
stand among the most important and most researched points in the whole of the mathematical science.
Many different forms of continuous multifunctions have been introduced over the years. Some of them
are semi-continuity [22], α-continuity [17], precontinuity [24], quasi-continuity [23], γ-continuity [2] and
δ-precontinuity [21]. Most of these weaker forms of continuity, in ordinary topology such as α-continuity
and β-continuity, have been extended to multifunctions [20, 25–28]. Császár [5] introduced the notions of
generalized topological spaces and generalized neighbourhood systems. The classes of topological spaces
and neighbourhood systems are contained in these classes, respectively. Specifically, he introduced the no-
tions of continuous functions on generalized topological spaces and investigated the characterizations of
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generalized continuous functions. Kanibir and Reilly [14] extended these concepts to multifunctions. The
purpose of the present paper is to define the notion of upper (lower) α(µX,µY)-continuous multifunctions
and to obtain several characterizations and several properties of these multifunctions.

2. Preliminaries

Let X be a set and denote P(X) the power set of X. We call a class µ ⊆ P(X) a generalized topology
(briefly GT) on X, if ∅ ∈ µ and an arbitrary union of elements of µ belongs to µ [5]. A set with a GT
is said to be a generalized topological space (briefly GTS). For a GTS (X,µ), the elements of µ are called
µ-open sets and the complements of µ-open sets are called µ-closed sets. For A ⊆ X, we denote by cµ(A)
the intersection of all µ-closed sets containing A and by iµ(A) the union of all µ-open sets contained in
A. Then we have iµ(iµ(A)) = iµ(A), cµ(cµ(A)) = cµ(A) and iµ(A) = X− cµ(X−A). According to [11],
for A ⊆ X and x ∈ X, we have x ∈ cµA iff x ∈M ∈ µ implies M∩A 6= ∅. Let B ⊆ P(X) satisfy ∅ ∈ B. Then
all unions of some elements of B constitute a GT µ(B) and B is said to be a base for µ(B) [10]. Let µ be a
GT on a set X 6= ∅. Observe that X ∈ µ must not hold, if all the same X ∈ µ then we say that the GT µ is
strong [7]. In general, let Mµ denote the union of all elements of µ, of course, Mµ ∈ µ and Mµ = X, iff µ
is a strong GT. Let us now consider those GT’s µ that satisfy the condition: if M,M ′ ∈ µ then M∩M ′ ∈ µ.
We shall call such a GT quasi-topology (briefly QT) [9], the QT’s clearly are very near to the topologies.

A subset A of a generalized topological space (X,µ) is said to be µ-semi-open [8] (resp. µ-preopen,
µ-α-open, µ-β-open), if A ⊆ cµ(iµ(A)) (resp. A ⊆ iµ(cµ(A)), A ⊆ iµ(cµ(iµ(A))), A ⊆ cµ(iµ(cµ(A)))).
The family of all µ-semi-open (resp. µ-preopen, µ-α-open, µ-β-open) sets of X containing a point x ∈ X
is denoted by σ(µ, x) (resp. π(µ, x), α(µ, x), β(µ, x)). The family of all µ-semi-open (resp. µ-preopen,
µ-α-open, µ-β-open) sets of X is denoted by σ(µ) (resp. π(µ), α(µ), β(µ)). It is shown in [8, Lemma 2.1]
that α(µ) = σ(µ) ∩ π(µ) and it is obvious that σ(µ) ∪ π(µ) ⊆ β(µ). The complement of a µ-semi-open
(resp. µ-preopen, µ-α-open, µ-β-open) set is said to be µ-semi-closed (resp. µ-preclosed, µ-α-closed,
µ-β-closed).

The intersection of all µ-semi-closed (resp. µ-preclosed, µ-α-closed, µ-β-closed) sets of X containing A
is denoted by cσ(A). cπ(A), cα(A) and cβ(A) are defined similarly. The union of all µ-semi-open (resp.
µ-preopen, µ-α-open, µ-β-open) sets of X contained in A is denoted by iσ(A), iπ(A), iα(A) and iβ(A),
respectively.

Now let K 6= ∅ be an index set, Xk 6= ∅ for k ∈ K, and X =
∏
k∈K Xk the Cartesian product of the sets

Xk. We denote by pk the projection pk : X → Xk. Suppose that, for k ∈ K, uk is a given GT on Xk. Let
us consider all sets of the form

∏
k∈K Xk where Mk ∈ µk and with the exception of a finite number of

indices k, Mk = Zk = Mµk . We denote by B the collection of all these sets. Clearly ∅ ∈ B so that we
can define a GT µ = µ(B) having B for base. We call µ the product [12] of the GT’s µk and denote it by
Pk∈Kµk.

Let us write i = iµ, c = cµ, ik = iµk , ck = cµk . Consider in the following Ak ⊆ Xk, A =
∏
k∈KAk,

x ∈
∏
k∈K Xk and xk = pk(x).

Proposition 2.1 ([12]). cA =
∏
k∈K ckAk.

Proposition 2.2 ([32]). Let A =
∏
k∈KAk ⊆

∏
k∈K Xk and K0 be a finite subset of K. If Ak ∈ {Mk,Xk} for each

k ∈ K−K0, then iA =
∏
k∈K ikAk.

Throughout this paper, the spaces (X,µX) and (Y,µY) (or simply X and Y) always mean generalized
topological spaces. By a multifunction F : X → Y, we mean a point-to-set correspondence from X into Y,
and we always assume that F(x) 6= ∅ for all x ∈ X. For a multifunction F : X→ Y, we shall denote the upper
and lower inverse of a set G of Y by F+(G) and F−(G), respectively, that is F+(G) = {x ∈ X : F(x) ⊆ G} and
F−(G) = {x ∈ X : F(x) ∩G 6= ∅}. In particular, F−(y) = {x ∈ X : y ∈ F(x)} for each point y ∈ Y. For each
A ⊆ X, F(A) = ∪x∈AF(x). Then F is said to be a surjection, if F(X) = Y or equivalently, if for each y ∈ Y
there exists an x ∈ X such that y ∈ F(x).



N. Srisarakham, C. Boonpok, J. Math. Computer Sci., 17 (2017), 255–265 257

Definition 2.3 ([4]). Let (X,µX) and (Y,µY) be generalized topological spaces. A multifunction F : X→ Y

is said to be:

(1) upper β(µX,µY)-continuous at a point x ∈ X, if for each µY-open set V of Y such that F(x) ⊆ V , there
exists U ∈ β(µX, x) such that F(U) ⊆ V ;

(2) lower β(µX,µY)-continuous at a point x ∈ X, if for each µY-open set V of Y such that F(x) ∩ V 6= ∅,
there exists U ∈ β(µX, x) such that F(z)∩ V 6= ∅, for every z ∈ U;

(3) upper (resp. lower) β(µX,µY)-continuous, if F has this property at each point of X.

3. Characterizations

In this section, the notion of upper (lower) α(µX,µY)-continuous multifunctions is introduced and
some characterizations and basic properties of upper (lower) α(µX,µY)-continuous multifunctions are
investigated and obtained.

Definition 3.1. Let (X,µX) and (Y,µY) be generalized topological spaces. A multifunction F : X → Y is
said to be:

(1) upper α(µX,µY)-continuous at a point x ∈ X, if for each µY-open set V of Y such that F(x) ⊆ V , there
exists U ∈ α(µX, x) such that F(U) ⊆ V ;

(2) lower α(µX,µY)-continuous at a point x ∈ X, if for each µY-open set V of Y such that F(x) ∩ V 6= ∅,
there exists U ∈ α(µX, x) such that F(z)∩ V 6= ∅, for every z ∈ U;

(3) upper (resp. lower) α(µX,µY)-continuous, if F has this property at each point of X.

Example 3.2. Let X = {1, 2, 3} and Y = {a,b, c}. Define a generalized topology µX = {∅, {1}, {1, 2}} on X
and a generalized topology µY = {∅, {a}, {a,b}} on Y. A multifunction F : (X,µX) → (Y,µY) is defined as
follows: F(1) = F(2) = {a} and F(3) = {c}. Then F is upper α(µX,µY)-continuous.

Remark 3.3. For a multifunction F : X→ Y, the following implication hold:

upper α(µX,µY)-continuity =⇒ upper β(µX,µY)-continuity.

The converse of the implication is not true in general as shown by the following example.

Example 3.4. Let X = {1, 2, 3} and Y = {a,b, c}. Define a generalized topology

µX = {∅, {1}, {2}, {1, 2}},

on X and a generalized topology µY = {∅, {a}, {b}, {a,b}} on Y. A multifunction F : (X,µX) → (Y,µY) is
defined as follows: F(1) = F(2) = {b} and F(3) = {a}. Then F is upper β(µX,µY)-continuous but not upper
α(µX,µY)-continuous, since {a} is µY-open but F+({a}) = {3} is not µX-α-open.

Lemma 3.5. The following are equivalent for a subset A of a generalized topological space (X,µX):

(1) A ∈ α(µX);
(2) U ⊆ A ⊆ iµX(cµX(U)) for some µX-open set U;
(3) U ⊆ A ⊆ cσX(U) for some µX-open set U;
(4) A ⊆ cσX(iµX(A)).

Theorem 3.6. Let (X,µX) be a quasi-topological space and (Y,µY) a generalized topological space. The following
are equivalent for a multifunction F : X→ Y:

(1) F is upper α(µX,µY)-continuous at x ∈ X;
(2) x ∈ cσX(iµX(F+(V))) for any µY-open set V of Y containing F(x);
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(3) for any U ∈ σ(µX, x) and any µY-open set V of Y containing F(x), there exists a nonempty µX-open set UV
of X such that UV ⊆ U and F(UV) ⊆ V .

Proof.

(1) ⇒ (2): Let V be any µY-open such that F(x) ⊆ V . Then there exists U ∈ α(µX) containing x such that
F(U) ⊆ V , hence x ∈ U ⊆ F+(V). Since U is µX-α-open, by Lemma 3.5 we have x ∈ U ⊆ cσX(iµX(U)) ⊆
cσX(iµX(F

+(V))).

(2) ⇒ (3): Let V be any µY-open set of Y such that F(x) ⊆ V . Then x ∈ cσX(iµX(F
+(V))). Let U

be any µX-semi-open set containing x. Then U ∩ iµX(F+(V)) 6= ∅ and U ∩ iµX(F+(V)) ∈ σ(µX). Put
UV = iµX(U∩ iµX(F+(V))), then UV is a nonempty µY-open set of X, UV ⊆ U and F(UV) ⊆ V .

(3)⇒ (1): Let V be any µY-open set of Y containing F(x). For each U ∈ σ(µX, x), there exists a nonempty
µX-open set UV such that UV ⊆ U and F(UV) ⊆ V . Let W = ∪{UV : U ∈ σ(µX, x)}. Then W is µX-open
in X, x ∈ cσX(W) and F(W) ⊆ V . Put S = W ∪ {x}, then W ⊆ S ⊆ cσX(W). Therefore, by Lemma 3.5,
x ∈ S ∈ α(µX) and F(S) ⊆ V . This shows that F is upper α(µX,µY) continuous at x.

Theorem 3.7. Let (X,µX) be a quasi-topological space and (Y,µY) a generalized topological space. The following
are equivalent for a multifunction F : X→ Y:

(1) F is lower α(µX,µY)-continuous at x ∈ X;
(2) x ∈ cσX(iµX(F−(V))) for any µY-open set V of Y such that F(x)∩ V 6= ∅;
(3) for any U ∈ σ(µX, x) and any µY-open set V of Y such that F(x) ∩ V 6= ∅, there exists a nonempty µX-open

set UV of X such that F(u)∩ V 6= ∅, for every u ∈ UV and UV ⊆ V .

Proof. The proof is similar to that of Theorem 3.6.

Lemma 3.8. The following are equivalent for a subset A of a generalized topological space (X,µX):

(1) A is µX-α-closed in X, if and only if iσX(cµX(A)) ⊆ A;
(2) iσX(cµX(A)) = cµX(iµX(cµX(A)));
(3) cαX(A) = A∪ cµX(iµX(cµX(A))).

A subset Nx of a generalized topological space (X,µX) is said to be µX-neighbourhood (resp. µX-α-
neighbourhood) of a point x ∈ X, if there exists a µX-open (resp. µX-α-open) set U such that x ∈ U ⊆ Nx.

Theorem 3.9. Let (X,µX) and (Y,µY) be generalized topological spaces. The following are equivalent for a multi-
function F : X→ Y:

(1) F is upper α(µX,µY)-continuous;
(2) F+(V) ∈ α(µX) for any µY-open set V of Y;
(3) F−(M) is µX-α-closed in X for any µY-closed set M of Y;
(4) iσX(cµX(F

−(B))) ⊆ F−(cµY (A)) for any subset A of Y;
(5) cαX(F

−(A)) ⊆ F−(cµY (A)) for any subset A of Y;
(6) for each point x of X and each µY-neighbourhood V of F(x), F+(V) is a µX-α-neighbourhood of x;
(7) for each point x of X and each µY-neighbourhood V of F(x), there exists a µX-α-neighbourhood U of x such

that F(U) ⊆ V .

Proof.

(1) ⇒ (2): Let V be any µY-open set of Y and let x ∈ F+(V). By Theorem 3.6, x ∈ cσX(iµX(F+(V))).
Therefore, we obtain F(x) ⊆ cσX(iµX(F+(V))). It follows from Lemma 3.5 that F+(V) ∈ α(µX).

(2)⇔ (3): This follows from the fact that F+(Y −A) = X− F−(A) for any subset A of Y.
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(3)⇒ (4): LetA be any subset of Y. Then F−(cµY ) is closed in Y. By Lemma 3.8, we have iσX(cµX(F
−(A)))⊆

iσX(cµX(F
−(cµY (A)))) ⊆ F−(cµY (A)).

(4)⇒ (5): Let A be any subset of Y. By Lemma 3.8, we have

cαX(F
−(A)) = F−(A)∪ iσX(cµX(F

−(A))) ⊆ F−(cµY (A)).

(5)⇒ (3): Let M be any µY-closed set of Y. Then we have

cαX(F
−(M)) ⊆ F−(cµY (M)) = F−(M).

This shows that F−(M) is µX-α-closed in X.

(2) ⇒ (6): Let x ∈ X and V be a µY-neighbourhood of F(x). Then there exists a µY-open set G of Y
such that F(x) ⊆ G ⊆ V . Therefore, we obtain x ∈ F+(G) ⊆ F+(V). Since F+(G) ∈ α(µX), F+(V) is a
µX-α-neighbourhood of x.

(6) ⇒ (7): Let x ∈ X and V be a µY-neighbourhood of F(x). Put U = F+(V), then U is a µX-α-
neighbourhood of x and F(U) ⊆ V .

(7)⇒ (1): Let x ∈ X and V be any µY-open set of Y such that F(x) ⊆ V . Then V is a µY-neighbourhood
of F(x). There exists a µX-α-neighbourhood U of x such that F(U) ⊆ V . Therefore, there exists W ∈ α(µX)
such that x ∈W ⊆ U, hence F(W) ⊆ V .

Theorem 3.10. Let (X,µX) and (Y,µY) be generalized topological spaces. The following are equivalent for a
multifunction F : X→ Y:

(1) F is lower α(µX,µY)-continuous;
(2) F−(V) ∈ α(µX) for any µY-open set V of Y;
(3) F+(M) is µX-α-closed in X for any µY-closed set M of Y;
(4) iσX(cµX(F

+(A))) ⊆ F+(cµY (A)) for any subset A of Y;
(5) cαX(F

+(A)) ⊆ F+(cµY (A)) for any subset A of Y;
(6) F(cαX(B)) ⊆ cµY (F(B)) for any subset B of X;
(7) F(iσX(cµX(B))) ⊆ cµY (F(B)) for any subset B of X;
(8) F(cµX(iµX(cµX(B)))) ⊆ cµY (F(B)) for any subset B of X.

Proof. The proofs except for the following are similar to those of Theorem 3.9 and are thus omitted.

(5)⇒ (6): Let B be any subset of X. Since B ⊆ F+(F(B)), we have

cαX(B) ⊆ cαX(F
+(F(B)))

⊆ F+(cµY (F(B))),

and F(cαX(B)) ⊆ cµY (F(B)).

(6)⇒ (7): This follows immediately from Lemma 3.8.

(7)⇒ (8): This is obvious by Lemma 3.8.

(8) ⇒ (1): Let x ∈ X and V be any µY-open set such that F(x) ∩ V 6= ∅. Then x ∈ F−(V). We shall show
that F−(V) ∈ α(µX). By hypothesis, we have

F(cµX(iµX(cµX(F
+(Y − V))))) ⊆ cµY (F(F

+(Y − V)))

⊆ Y − V ,

and hence cµX(iµX(cµX(F
+(Y − V)))) ⊆ F+(Y − V) = X− F−(V). Therefore, we obtain

F−(V) ⊆ iµX(cµX(iµX(F
−(V))))

and hence F−(V) ∈ α(µ). Put U = F−(V). We have x ∈ U ∈ α(µX) and F(u)∩V 6= ∅ for every u ∈ U. Thus
F is lower α(µX,µY)-continuous.
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Definition 3.11 ([13]). A family U = {Uγ : γ ∈ Γ } of sets in a generalized topological space (X,µ) is called
µ-locally finite, if for each x ∈ X there exists V ∈ µ containing x such that V intersects at most finitely
many members of U.

Definition 3.12. A subset A of a generalized topological space (X,µX) is said to be µX-α-paracompact, if
every cover of A by µX-open sets of X is refined by a cover of A which consists of µX-open sets of X and
is µX-locally finite in X.

Definition 3.13. A subset A of a generalized topological space (X,µX) is said to be µX-α-regular, if for
each point x ∈ A and each µX-open set U of X containing x, there exists a µX-open set G of X such that
x ∈ G ⊆ cµX(G) ⊆ U.

Lemma 3.14. If A is a µX-α-regular µX-α-paracompact subset of a quasi-topological space (X,µX) and U is a
µX-open neighbourhood of A, then there exists a µX-open set G of X such that A ⊆ G ⊆ cµX(G) ⊆ U.

Definition 3.15. Let (X,µX) and (Y,µY) be generalized topological spaces. A multifunction F : X → Y is
said to be punctually µ-α-paracompact (resp. punctually µ-α-regular), if for each x ∈ X, F(x) is µY-α-
paracompact (resp. µY-α-regular).

By cα(F) : X→ Y, we shall denote a multifunction defined as follows: [cα(F)]+(x) = cαY (F(x)) for each
point x ∈ X.

Lemma 3.16. Let (X,µX) be a generalized topological space and (Y,µY) a quasi-topological space. If F : X → Y is
punctually µ-α-regular and punctually µ-α-paracompact, then [cα(F)]

+(V) = F+(V) for every µY-open set V of
Y.

Proof. Let V be any µY-open set of Y and x ∈ [cα(F)]
+(V). Then cαY (F(x)) ⊆ V and hence F(x) ⊆ V .

Therefore, x ∈ F+(V) and hence [cα(F)]
+(V) ⊆ F+(V). Let V be any µY-open set of Y and x ∈ F+(V). Then

F(x) ⊆ V . Since F(x) is µY-α-regular and µY-α-paracompact, by Lemma 3.14 there exists a µY-open set G
such that F(x) ⊆ G ⊆ cµY (G) ⊆ V , hence cαY (F(x)) ⊆ cµY (G) ⊆ V . This shows that x ∈ [cα(F)]

+(V) and
hence F+(V) ⊆ [cα(F)]

+(V). Consequently, we obtain [cα(F)]
+(V) = F+(V).

Theorem 3.17. Let (X,µX) be a generalized topological space and (Y,µY) a quasi-topological space. Let F : X→ Y

be punctually µ-α-regular and punctually µ-α-paracompact. Then F is upper α(µX,µY)-continuous, if and only if
cα(F) : X→ Y is upper α(µX,µY)-continuous.

Proof. Suppose that F is upper α(µX,µY)-continuous. Let x ∈ X and V be any µY-open set of Y such that
cµ(F)(x) ⊆ V . By Lemma 3.16, we have x ∈ [cµ(F)]

+(V) = F+(V). Since F is upper α(µX,µY)-continuous,
there exists U ∈ α(µX) containing x such that F(U) ⊆ V . Since F(z) is µY-α-regular and µY-α-paracompact
for each z ∈ U, by Lemma 3.14 there exists a µ-open set H such that F(z) ⊆ H ⊆ cµY (H) ⊆ V . Therefore,
we have cµY (F(z)) ⊆ cµY (H) ⊆ V for each z ∈ U and hence cµ(F)(U) ⊆ V . This shows that cµ(F) is upper
α(µX,µY)-continuous.

Conversely, suppose that cµ(F) : X → Y is upper α(µX,µY)-continuous. Let x ∈ X and V be any µY-
open set of Y such that F(x) ⊆ V . By Lemma 3.16, we have x ∈ F+(V) = [cµ(F)]

+(V) and hence cµ(F)(x) ⊆
V . Since cµ(F) is upper α(µX,µY)-continuous, there exists U ∈ α(µX, x) such that cµ(F)(U) ⊆ V , hence
F(U) ⊆ V . This shows that F is upper α(µX,µY)-continuous.

Lemma 3.18. Let (X,µX) and (Y,µY) be generalized topological spaces. For a multifunction F : X→ Y, it follows
that for each µY-α-open set V of Y [cα(F)]

−(V) = F−(V).

Proof. Suppose that V is any µY-α-open set of Y. Let x ∈ [cα(F)]
−(V). Then cµY (F(x)) ∩ V 6= ∅ and hence

F(x)∩ V 6= ∅. Therefore, we obtain x ∈ F−(V). This shows that [cα(F)]−(V) ⊆ F−(V). Let x ∈ F−(V). Then
we have ∅ 6= F(x) ∩ V ⊆ cαY (F(x)) ∩ V and hence x ∈ [cα(F)]

−(V). This shows that F−(V) ⊆ [cα(F)]
−(V).

Consequently, [cα(F)]−(V) = F−(V).
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Theorem 3.19. Let (X,µX) and (Y,µY) be generalized topological spaces. A multifunction F : X → Y is lower
α(µX,µY)-continuous, if and only if cα(F) : X→ Y is lower α(µX,µY)-continuous.

Proof. By utilizing Lemma 3.18, this can be proved similarly to that of Theorem 3.17.

For a multifunction F : X → Y, the graph multifunction GF : X → X × Y is defined as follows:
GF(x) = {x}× F(x) for every x ∈ X.

Lemma 3.20 ([19]). The following hold for a multifunction F : X→ Y:

(a) G+
F (A×B) = A∩ F

+(B);
(b) G−

F (A×B) = A∩ F
−(B);

for any subsets A ⊆ X and B ⊆ Y.

Definition 3.21 ([32]). A generalized topological space (X,µ) is called to be compact, if each cover of X
composed of elements of µ admits a finite subcover.

A subset M of a generalized topological space (X,µX) is said to be µX-compact, if every cover of M
by µX-open sets has a finite subcover.

Theorem 3.22 ([32]). A generalized topological space (X,µ) is compact, if and only if every family of µ-closed
subsets of X which has the finite intersection property has nonempty intersection.

Theorem 3.23. Let (X,µX) be a topological space and (Y,µY) a generalized topological space. Let F : X → Y be a
multifunction such that F(x) is µY-compact for each x ∈ X. Then F is upper α(µX,µY)-continuous, if and only if
GF : X→ X× Y is upper α(µX,µX×Y)-continuous.

Proof. Suppose that F : X → Y is upper α(µX,µY)-continuous. Let x ∈ X and W be any µX×Y-open set
of X× Y containing GF(x). For each y ∈ F(x), there exists µX-open set U(y) ⊆ X and µY-open V(y) ⊆ Y
such that (x,y) ∈ U(y)× V(y) ⊆ W. The family {V(y) : y ∈ F(x)} is a µY-open cover of F(x) and there
exist a finite number of points, say, y1, y2,...,yn in F(x) such that F(x) ⊆ ∪{V(yi) : 1 6 i 6 n}. Set
G = ∩{U(yi) : 1 6 i 6 n} and H = ∪{V(yi) : 1 6 i 6 n}. Then G is µX-open in X and H is µY-open in Y
and {x}× F(x) ⊆ G×H ⊆W. Since F is upper α(µX,µY)-continuous, there exists U0 ∈ α(µX) containing x
such that F(U0) ⊆ H. By Lemma 3.20, we have G ∩U0 ⊆ G ∩ F+(H) = G+

F (G×H) ⊆ G+
F (W). Therefore,

we obtain G ∩U0 ∈ α(µX, x) and GF(G ∩U0) ⊆ W. This shows that GF is upper almost α(µX,µX×Y)-
continuous.

Conversely, suppose that GF : X → X× Y is upper α(µX,µX×Y)-continuous. Let x ∈ X and V be any
µY-open set of Y containing F(x). Since X× V is µX×Y-open in X× Y and GF(x) ∩ X× V , there exists
U ∈ α(µX) containing x such that GF(U) ∩ X× V . Therefore, by Lemma 3.20, U ⊆ G+

F (X× V) = F+(V)
and hence F(U) ⊆ V . This shows that F is upper α(µX,µY)-continuous.

Theorem 3.24. Let (X,µX) and (Y,µY) be generalized topological spaces. A multifunction F : X → Y is lower
α(µX,µY)-continuous, if and only if GF : X→ X× Y is lower α(µX,µX×Y)-continuous.

Proof. Suppose that F : X → Y is lower α(µX,µY)-continuous. Let x ∈ X and W be any µX×Y-open set of
X× Y such that GF(x) ∩W 6= ∅. There exists y ∈ F(x) such that (x,y) ∈ W and hence (x,y) ∈ U× Y ⊆ W
for some µX-open setU ⊆ X and µY-open set V ⊆ Y. Since F(x)∩V 6= ∅, there existsU0 ∈ α(µX) containing
x such that F(z) ∩ V 6= ∅ for each z ∈ U0, hence U0 ⊆ F−(V). By Lemma 3.20, U ∩U0 ⊆ U ∩ F−(V) =
G−
F (U× V) ⊆ G

−
F (W). Moreover, x ∈ U∩U0 ∈ α(µX) and hence GF is lower α(µX,µX×Y)-continuous.

Conversely, suppose that GF is upper α(µX,µX×Y)-continuous. Let x ∈ X and V be any µY-open set
of Y such that F(x)∩ V 6= ∅. Then X× V is µX×Y-open in X× Y and

GF(x)∩X× V = ({x}× F(x))∩ (X× V)
= {x}× (F(x)∩ V)
6= ∅.
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There exists U ∈ α(µX) containing x such that GF(z) ∩ X× V 6= ∅ for each z ∈ U. By Lemma 3.20, we
obtain U ⊆ G−

F (X×V) = F
−(V) and hence F(U) ⊆ V . This shows that F is lower α(µX,µY)-continuous.

Definition 3.25. A generalized topological space (X,µX) is said to be µX-α-compact, if every cover of X
by µX-α-open sets has a finite subcover.

A subset M of a generalized topological space (X,µX) is said to be µX-α-compact, if every cover of X
by µX-α-open sets has a finite subcover.

Theorem 3.26. Let (X,µX) and (Y,µY) be generalized topological spaces. Let F : X → Y be an upper α(µX,µY)-
continuous surjective multifunction such that F(x) is µY-compact for each x ∈ X. If (X,µX) is µX-α-compact, then
(Y,µY) is µY-compact.

Proof. Let {Vγ : γ ∈ Γ } be a µY-open cover of Y. For each x ∈ X, F(x) is µY-compact and there exists a finite
subset Γ(x) of Γ such that F(x) ⊆ ∪{Vγ : γ ∈ Γ(x)}. Set

V(x) = ∪{Vγ : γ ∈ Γ(x)}.

Since F is upper α(µX,µY)-continuous, there exists U(x) ∈ α(µX) containing x such that F(U(x)) ⊆ V(x).
The family {U(x) : x ∈ X} is a µX-α-open cover of X and there exist a finite number of points, say, x1,
x2, · · · , xn in X such that X = ∪{U(xi) : 1 6 i 6 n}. Therefore, we have Y = F(X) = F(∪ni=1U(xi)) =
∪ni=1F(U(xi)) ⊆ ∪ni=1V(xi) = ∪ni=1 ∪γ∈Γ(xi) Vγ. This shows that (Y,µY) is µY-compact.

Definition 3.27 ([30]). A generalized topological space (X,µ) is said to be µ-Hausdorff, if for any pair of
distint points x and y of X, there exist disjoint µ-open sets U and V of X containing x and y, respectively.

For a multifunction F : X → Y, the graph G(F) of F is defined as follows: G(F) = {(x,y) : x ∈ X and
y ∈ F(x)}.

Theorem 3.28. Let (X,µX) be a generalized topological space and (Y,µY) a quasi-topological space. If F : X→ Y is
an upper α(µX,µY)-continuous multifunction into a µY-Hausdorff space (Y,µY) and F(x) is µY-compact for each
x ∈ X, then the graph G(F) is µX×Y-α-closed in X× Y.

Proof. Let (x,y) ∈ X× Y −G(F). Then y ∈ Y − F(x). For each z ∈ F(x), there exist µY-open sets V(z)
and W(y) containing z and y, respectively, such that V(z) ∩W(y) = ∅. The family {V(z) : z ∈ F(x)} is
a µY-open cover of F(x) and there exist a finite number of points in F(x), say, z1, z2, · · · , zn such that
F(x) ⊆ ∪{V(zi) : 1 6 i 6 n}. Set G = ∪{V(zi) : 1 6 i 6 n} and H = ∩{W(yi) : 1 6 i 6 n}. Since
F(x) ⊆ G and F is upper α(µX,µY)-continuous, there exists U ∈ α(µX) such that x ∈ U and F(U) ⊆ G.
Therefore, we obtain F(U) ∩H = ∅ and hence (U×H) ∩G(F) = ∅. Since U×H is µX×Y-α-open in X× Y
and (x,y) ∈ U×H, (x,y) 6∈ cαX×Y (G(F)) and G(F) is µX×Y-α-closed in X× Y.

In the following (D,>) is a directed set, (Fλ) is a net of multifunctions Fλ : X → Y, λ ∈ D where F is
multifunction on X into Y.

Definition 3.29. Let (Fλ)λ∈D be a net of multifunctions on X into Y. A multifunction F~ : X→ Y is defined
as follows: for each x ∈ X,

F~(x) = {y ∈ Y : for each µY-neighbourhood of y and each η ∈ D such that λ > η and V ∩ Fλ(x) 6= ∅},

is called the upper generalized topological limit of the net (Fλ).

Definition 3.30. A net (Fλ)λ∈D is said to be equally upper α(µX,µY)-continuous at x0 ∈ X, if for every
µX-open set Vλ containing Fλ(x0) there exists a µX-α-open set U containing x0 such that Fλ(U) ⊆ Vλ for
all λ ∈ D.
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Theorem 3.31. Let (Fλ)λ∈D be a net of multifunctions from a generalized topological space (X,µX) into a µY-
compact generalized topological space (Y,µY). If the following are satisfied:

(a) ∩{(Y − Fη(x)) : η > λ} ∈ µY , for each λ ∈ D and each x ∈ X;
(b) (Fλ) is equally upper α(µX,µY)- continuous on X;

then F~ is upper α(µX,µY)-continuous on X.

Proof. It is known that F~(x) = ∩{cµY (∪{Fη(x) : η > λ}) : λ ∈ D}. From (a), we have

F~(x) = ∩{[∪{Fη(x) : η > λ}] : λ ∈ D}.

Since the net (∪{Fη(x) : η > λ})λ∈D is a family of µY-closed sets having the finite intersection property
and Y is µY-compact, it follows that F~(x) 6= ∅ for each x ∈ X. Now, let x0 ∈ X and let V ∈ µY such that
V 6= Y and F~(x0) ⊆ V . Then F~(x0) ∩ (Y − V) = ∅, F~(x0) 6= ∅ and Y − V 6= ∅. It results that ∩{[∪{Fη(x) :
η > λ}] : λ ∈ D} ∩ (Y − V) = ∅ and hence ∩{[∪{Fη(x0) ∩ (Y − V) : η > λ}] : λ ∈ D} ∩ (Y − V) = ∅. Since Y
is µY-compact and the family {[∪{Fη(x0) ∩ (Y − V) : η > λ}] : λ ∈ D} is a family of µY-closed sets with the
empty intersection, there exists λ ∈ D such that for each η ∈ D with η > λ we have F~(x0)∩ (Y − V) = ∅,
hence Fη(x0) ⊆ V . Since the net (Fλ)λ∈D is equally upper α(µX,µY)-continuous on X, it results that there
exists a µX-α-open set U containing x0 such that Fη(U) ⊆ V for each η > λ, hence Fη(x)∩ (Y − V) = ∅ for
each x ∈ U. Then, we have ∪{Fη(x)∩ (Y −V) : η > λ} = ∅, hence ∩{[∪{Fη(x) : η > λ}] : λ ∈ D}∩ (Y −V) = ∅.
This implies that F~(U) ⊆ V . If V = Y, then it is clear that for each µX-α-open set U containing x0 we
have F~(U) ⊆ V . Hence, F~ is upper α(µX,µY)-continuous at x0. Since x0 is arbitrary, so the proof is
complete.

Definition 3.32. The µX-α-frontier of a subset A of a generalized topological space (X,µX), denoted by
µX-α-Fr(A), is defined by µX-α-Fr(A) = cαX(A)∩ cαX(X−A) = cαX(A) − iαX(A).

Theorem 3.33. Let (X,µX) and (Y,µY) be generalized topological spaces. The set of all points of X at which
a multifunction F : X → Y is not upper (resp. lower) α(µX,µY)-continuous is identical with the union of the
µX-α-frontier of the upper (resp. lower) inverse images of µX-open sets containing (resp. meeting) F(x).

Proof. We prove only the case for upper α(µX,µY)-continuous because the case for lower α(µX,µY)-
continuous is similarly shown. Let x ∈ X at which F is not upper α(µX,µY)-continuous. There exists
a µX-open set V of Y containing F(x) such that U∩ (X− F+(V)) 6= ∅ for every U ∈ α(µX, x). Therefore, we
have x ∈ cµX(X− F+(V)) = X− iµX(F

+(V)) and x ∈ F+(V). Hence, we obtain x ∈ µX-α-Fr(A).
Conversely, suppose that V is µX-open set of Y containing F(x) such that x ∈ µX-α-Fr(A). If F is

upper α(µX,µY)-continuous at x, there exists U ∈ α(µX, x) such that U ⊆ F+(V). This implies that
x ∈ iαX(F+(V)). This is a contradiction and hence F is not upper α(µX,µY)-continuous at x.

Definition 3.34 ([31]). A generalized topological space (X,µ) is said to be connected (called µ-connected
in [6]), if there are no nonempty disjoint sets U,V ∈ µ such that U∪ V = X.

Definition 3.35 ([31]). A generalized topological space (X,µ) is said to be α-connected, if (X,α(µ)) is
connected.

Definition 3.36. Let (X,µX) and (Y,µY) be generalized topological spaces. A multifunction F : X → Y is
said to be punctually µ-connected, if for each x ∈ X, F(x) is µY-connected.

Theorem 3.37. Let F be a multifunction from an α-connected generalized topological space (X,µX) into a gener-
alized topological space (Y,µY) such that F is punctually µ-connected. If F is upper α(µX,µY)-continuous, then
(Y,µY) is µY-connected.

Proof. Suppose that (Y,µY) is not µY-connected and let Y = U ∪ V be a partition of Y. Then both U and
V are µY-open and µY-closed subsets of Y. Since F is upper α(µX,µY)-continuous, F+(U) and F+(U) are
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µX-α-open subsets of X. In view of the fact that F+(U), F+(V) are disjoint and F is punctually µ-connected,
X = F+(U) ∪ F+(V) is a partition of X. This is contrary to the α-connectedness of (X,µX). Hence, it is
obtained that (Y,µY) is µY-connected.

Definition 3.38 ([29]). A generalized topological space (X,µ) is said to be µ-regular, if for each µ-closed
set F of X not containing x, there exist disjoint µ-open sets U and V such that x ∈ U and F ⊆ V .

Definition 3.39. A generalized topological space (X,µX) is said to be µX-α-T2, if for any pair of distinct
points x and y of X, there exist disjoint µX-α-open sets U and V such that x ∈ U and y ∈ V .

Definition 3.40. Let (X,µX) and (Y,µY) be generalized topological spaces. A multifunction F : X → Y is
said to be punctually µ-closed, if for each x ∈ X, F(x) is µY-closed.

Theorem 3.41. Let F : X → Y be an upper α(µX,µY)-continuous multifunction and punctually µ-closed from a
generalized topological space (X,µX) to a µY-normal generalized topological space (Y,µY) and let F(x)∩ F(y) = ∅
for each distinct pair x,y ∈ X. Then (X,µX) is µX-α-T2.

Proof. Let x and y be any two distinct points in X. Then we have F(x) ∩ F(y) = ∅. Since (Y,µY) is
a µY-normal space, it follows that there exist disjoint µY-open sets U and V containing F(x) and F(y),
respectively. Therefore, F+(U) and F+(U) are disjoint µX-α-open sets containing x and y, respectively.
Thus, it is obtained that (X,µX) is µX-α-T2.
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