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Abstract

A nonautonomous modified Leslie-Gower predator-prey model with Holling-type III schemes and a prey refuge is proposed
and studied in this paper. Sufficient conditions which guarantee the permanence and global stability of the system are obtained,
respectively. Our results indicate that the prey refuge has no influence on the persistent property of the system, while it has
positive effect on the stability property of the system. Numeric simulations show the feasibility of the main results. c©2017 All
rights reserved.
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1. Introduction

Throughout this paper, for a bounded continuous function g defined on R, let gL and gM be defined
as

gL = inf
t∈[0,+∞)

g(t), gM = sup
t∈[0,+∞)

g(t).

Traditional Leslie-Gower predator-prey model, which was proposed by Leslie [17, 18] takes the form:

dH

dt
= (r1 − a1P− b1H)H,

dP

dt
=
(
r2 − a2

P

H

)
P, (1.1)

where H and P are the density of prey species and the predator species at time t, respectively. In this
model, the “carrying capacity” of the predator’s environment is proportional to the number of prey.
Though at first sight the model seems very simple, its stability property was not investigated until 2001.
By constructing a suitable Lyapunov function, Korobeinikov [15] showed the unique positive equilibrium
of the system (1.1) is globally stable.
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Aziz-Alaoui and Daher Okiye [2] argued that a suitable predator prey model should incorporate
some kind of functional response, while the predator species could have other food resource. Basing on
those assumption, they proposed a predator-prey model with modified Leslie-Gower and Holling-type II
schemes as follow:

ẋ(t) = x
(
r1 − b1x−

a1y

x+ k1

)
,

ẏ(t) = y
(
r2 −

a2y

x+ k2

)
.

(1.2)

Such topic as the boundedness and global stability of the system were investigated in [2].
Yang and Li [31] argued that Holling-type III response exists universally in population dynamics, and

they proposed a system incorporating a modified version of the Leslie-Gower functional response as well
as that of the Holling-type III functional response:

ẋ(t) = x
(
a1 − bx−

c1xy

x2 + k1

)
,

ẏ(t) = y
(
a2 −

c2y

x+ k2

)
.

(1.3)

They investigated the local stability property of the above system. For more works on Leslie-Gower
predator-prey model, one could refer to [1, 4, 7, 8, 19, 21, 26, 29, 30, 34–37] and the references cited
therein.

On the other hand, more and more scholars paid attention to the dynamic behaviors of the predator-
prey system incorporating a prey refuge. Kar and Misra [14] proposed the following prey-predator model
with Holling type II response function incorporation a prey refuge:

dx

dt
= αx(1 −

x

k
) −

β(1 −m)xy

1 + a(1 −m)x
,

dy

dt
= −γy+

cβ(1 −m)xy

1 + a(1 −m)x
.

Some interesting results about the existence of unique global asymptotical stable limit cycle were obtained.
Huang et al. [12] studied the influence of prey refuge on the prey-predator model with Holling type

III functional response:
dx

dt
= ax− bx2 −

α(1 −m)2x2y

β2 + (1 −m)2x2 ,

dy

dt
= −cy+

kα(1 −m)2x2y

β2 + (1 −m)x2 .

They investigated the existence of unique globally asymptotically stable limit cycle and the globally at-
tractive positive equilibrium.

It is natural to investigate the influence of prey refuge on the Leslie-Gower type predator-prey model.
Already, Chen et al. [7] extended the model (1.1) by incorporating a refuge protecting mH of the prey,
where m ∈ [0, 1) is constant and proposed the following system:

dH

dt
= (r1 − b1H)H− a1(1 −m)HP,

dP

dt
=
(
r2 − a2

P

(1 −m)H

)
P,

where m ∈ [0, 1) and ri,ai, i = 1, 2, b1 are all positive constants. They showed that the unique positive
equilibrium of the system is globally stable, consequently, prey refuge has no influence on the persistent
property of the system.

Corresponding to system (1.2) recently, Yue [36] proposed and studied the following modified Leslie-
Gower predator-prey model with Holling-type II schemes and a prey refuge

ẋ(t) = x
(
r1 − b1x−

a1(1 −m)y

(1 −m)x+ k1

)
,
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ẏ(t) = y
(
r2 −

a2y

(1 −m)x+ k2

)
,

where x(t) and y(t) denote the densities of the predator and prey species at time t, respectively and all
the coefficients are all positive constants, 0 6 m < 1. The author obtained a set of sufficient conditions
which ensure the global attractivity of a positive equilibrium.

Now stimulate by the works of [7] and [36], it is natural to incorporate the prey refuge to the sys-
tem (1.3) and investigate its dynamic behaviors, i.e., the following predator-prey system incorporating a
modified version of the Leslie-Gower functional response as well as that of the Holling-type III functional
response and a prey refuge:

ẋ(t) = x
(
a1 − bx

)
−
c1(1 −m)2x2y

(1 −m)2x2 + k1
,

ẏ(t) = y
(
a2 −

c2y

(1 −m)x+ k2

)
.

(1.4)

Considering the biological and environmental periodicity change (i.e., seasonal effects of weather, food
supplies, mating habit etc.), it is reasonable to study the system with time varying coefficients. Recently,
many scholars (see [5, 6, 10, 11, 13, 16, 20, 22–25, 27, 28, 32, 33, 38]) studied the dynamics behaviors of
the non-autonomous predator-prey system, and their success motivated us to study the non-autonomous
case of the system (1.4), i.e.,

ẋ(t) = x
(
a1(t) − b(t)x

)
−
c1(t)(1 −m(t))2x2y

(1 −m(t))2x2 + k1(t)
,

ẏ(t) = y
(
a2(t) −

c2(t)y

(1 −m(t))x+ k2(t)

)
,

(1.5)

where x(t) and y(t) denote the densities of the predator and prey species at time t, respectively, in system
(1.5), we incorporating a refuge protectingm(t)x of the prey, wherem(t) ∈ [0, 1), this leaves (1−m(t))x of
the prey available to the predator. All the other parameters have the same meaning as that of the system
(1.3).

Throughout this paper, we assume that

(H1) ki(t), ci(t),ai(t), i = 1, 2, m(t),b(t) are continuous and strictly positive functions, which satisfy

min{cLi ,kLi ,aLi ,mL,bL} > 0,

max{cMi ,kMi ,aMi ,mM,bM} < +∞.

We consider (1.5) together with the following initial conditions

x(0) > 0, y(0) > 0. (1.6)

It is not difficult to see that solutions of (1.5)-(1.6) are well-defined for all t > 0 and satisfy

x(t) > 0, y(t) > 0, ∀t > 0.

Definition 1.1. If there exist positive constants m1, M1, m2 and M2, which are independent of the solu-
tions of system (1.5) such that each solution (x(t),y(t))T of system (1.5) satisfies

0 < m1 6 lim inf
t→+∞ x(t) 6 lim sup

t→+∞ x(t) 6M1,

0 < m2 6 lim inf
t→+∞ y(t) 6 lim sup

t→+∞ y(t) 6M2,

then system (1.5) is permanent.

Definition 1.2. Let (x(t),y(t))T and (x1(t),y1(t))
T be any two positive solutions of system (1.5)-(1.6), if

lim
t→+∞(|x(t) − x1(t)|+ |y(t) − y1(t)|) = 0,

then system (1.5) is globally attractive.
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As far as system (1.5) is concerned, the most important topic is to investigate the persistent and
stability property of the system and to find out the influence of prey refuge on the dynamic behaviors of
the system.

The paper is arranged as follows: In Section 2 we obtain sufficient conditions which guarantee the
permanence of the system (1.5). In Section 3 we obtain sufficient conditions which ensure the global
attractivity of the system (1.5). In Section 4 an example together with its numeric simulations to illustrate
the feasibility of the main results. We end this paper by a briefly discussion as Section 5. For more works
on predator-prey system incorporating a prey refuge, one can refer to [23–29] and the references cited
therein.

2. Permanence

Lemma 2.1 ([9]). If a > 0, b > 0 and ẋ > x(b− ax) when t > 0 and x(0) > 0, we have

lim inf
t→+∞ x(t) > b

a
.

If a > 0, b > 0 and ẋ 6 x(b− ax) when t > 0 and x(0) > 0, we have

lim sup
t→+∞ x(t) 6

b

a
.

Lemma 2.2. The domain R2
+ = {x,y)|x > 0,y > 0} is invariant with respect to (1.5).

Proof. Since

x(t) = x(0) exp
{ ∫t

0
∆1(s)ds

}
> 0, y(t) = y(0) exp

{ ∫t
0
∆2(s)ds

}
> 0,

where

∆1(s)
def
= a1(s) − b(s)x(s) −

c1(s)(1 −m(s))2x(s)y(s)

(1 −m(s))2(x(s))2 + k1(s)
,

∆2(s)
def
= a2(s) −

c2(s)y(s)

(1 −m(s))x+ k2(s)
.

The assertion of the lemma follows immediately for all t ∈ [0,+∞).

Lemma 2.3. Let (x(t),y(t))T be any solution of system (1.5)-(1.6), then

lim sup
t→+∞ x(t) 6

aM1
bL

def
= M1,

lim sup
t→+∞ y(t) 6

aM2
(
(1 −mL)M1 + k

M
2
)

cL2

def
= M2.

Proof. Let (x(t),y(t))T be any solution of system (1.5)-(1.6). From the first equation of system (1.5), it
follows that

ẋ(t) = x
(
a1(t) − b(t)x

)
−
c1(t)(1 −m(t))2x2y

(1 −m(t))2x2 + k1(t)
(2.1)

6 x(aM1 − bLx).

Applying Lemma 2.1 to (2.1), it immediately follows that

lim sup
t→+∞ x(t) 6

aM1
bL

def
= M1. (2.2)
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For any positive constant ε > 0 small enough, it follows from (2.2) that there exists a T1 > 0 such that

x(t) < M1 + ε, ∀t > T1. (2.3)

For t > T1, (2.3) together with the second equation of system (1.5) leads to

ẏ(t) = y
(
a2(t) −

c2(t)y

(1 −m(t))x+ k2(t)

)
(2.4)

6 y
(
aM2 −

cL2 y

(1 −mL)(M1 + ε) + k
M
2

)
.

Applying Lemma 2.1 to (2.4), it immediately follows that

lim sup
t→+∞ y(t) 6

aM2
(
(1 −mL)(M1 + ε) + k

M
2
)

cL2
.

Setting ε→ 0, then

lim sup
t→+∞ y(t) 6

aM2
(
(1 −mL)M1 + k

M
2
)

cL2

def
= M2. (2.5)

Lemma 2.4. Let (x(t),y(t))T be any solution of system (1.5)-(1.6), then

lim inf
t→+∞ x(t) > aL1 k

L
1

cM1 (1 −mL)2M2 + k
L
1 b

M

def
= m1, (2.6)

lim inf
t→+∞ y(t) >

rL2
(
(1 −mM)m1 + k

L
2
)

cM2

def
= m2.

Proof. For ε small enough, it follows from (2.5) that there exists a T2 > T1 such that

y(t) < M2 + ε, ∀t > T2. (2.7)

Let (x(t),y(t))T be any solution of system (1.5)-(1.6). For t > T2, (2.7) together with the first equation of
system (1.5) leads to

ẋ(t) = x
(
a1(t) − b(t)x

)
−
c1(t)(1 −m(t))2x2y

(1 −m(t))2x2 + k1(t)

> x
(
a1(t) − b(t)x

)
−
c1(t)(1 −m(t))2x2y

k1(t)

> x
(
aL1 −

cM1 (1 −mL)2(M2 + ε)

kL1
x− bMx

)
.

(2.8)

Applying Lemma 2.1 to (2.8), it immediately follows that

lim inf
t→+∞ x(t) > aL1

cM1 (1 −mL)2(M2 + ε)

kL1
+ bM

.

Setting ε→ 0, then

lim inf
t→+∞ x(t) > aL1 k

L
1

cM1 (1 −mL)2M2 + kL1 b
M

def
= m1. (2.9)

Let ε > 0 be any positive constant small enough such that ε < 1
2m1. It then follows from (2.9) that there
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exists a T3 > T2 such that
x(t) > m1 − ε, ∀t > T3. (2.10)

From the second equation of system (1.5) and (2.10), we have

ẏ(t) = y
(
a2(t) −

c2(t)y

(1 −m(t))x+ k2(t)

)
> y(t)

[
aL2 −

cM2 y(t)

(1 −mM)(m1 − ε) + k
L
2

]
.

(2.11)

Applying Lemma 2.1 to (2.11), then

lim inf
t→+∞ y(t) >

aL2
(
(1 −mM)(m1 − ε) + k

L
2
)

cM2
.

Setting ε→ 0 in above inequality leads to

lim inf
t→+∞ y(t) >

aL2
(
(1 −mM)m1 + k

L
2
)

cM2

def
= m2. (2.12)

As a direct corollary of Lemma 2.3 and (2.4), we have:

Theorem 2.5. Under the assumption (H1) holds, system (1.5)-(1.6) is permanent.

Remark 2.6. Noting that conditions of Theorem 2.5 is independent of the prey refuge which means that
prey refuge has no influence on the persistent property of the system.

3. Global attractivity

Before we state the main result of this section, we introduce some notations. Set

∆1(m1)
def
= ((1 −m(t))2m2

1 + k1(t)
)2,

∆1(M1)
def
= ((1 −m(t))2M2

1 + k1(t)
)2,

∆2(m1)
def
= ((1 −m(t))m1 + k2(t)

)2,

A1(t)
def
= b(t) +

c1(t)(1 −m(t))2k1(t)m2

∆1(M1)

−
c1(t)(1 −m(t))4M2M

2
1

∆1(m1)
−
c2(t)(1 −m(t))M2

∆2(m1)
,

A2(t)
def
=

c2(t)m2

(1 −m(t))M2 + k2(t)
−

c1(t)(1 −m(t))2M1

(1 −m(t))2m2
1 + k1(t)

.

Theorem 3.1. In addition to (H1), assume further that

lim inf
t→+∞

{
A1(t),A2(t)

}
> 0, (3.1)

then for any positive solutions (x(t),y(t))T and (x1(t),y1(t))
T of system (1.5), one has

lim
t→+∞(|x(t) − x1(t)|+ |y(t) − y1(t)|) = 0.
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Noting that conditions of Theorem 3.1 are all depend on time t, and this in some cases maybe not
be easy to verify, in this case we could use the following corollary to verify the stability property of the
system.

Corollary 3.2. In addition to (2.6), assume further that

A1 > 0, A2 > 0,

then for any positive solutions (x(t),y(t))T and (x1(t),y1(t))
T of system (1.5), one has

lim
t→+∞(|x(t) − x1(t)|+ |y(t) − y1(t)|) = 0,

where

A1
def
= bL +

cL1 (1 −mM)2kL1m2(
(1 −mL)2M2

1 + k
M
1

)2

−
cM1 (1 −mL)4M2M

2
1(

(1 −mM)2m2
1 + k

L
1

)2 −
cM2 (1 −mL)M2(

(1 −mM)m1 + k
L
1

)2 ,

A2
def
=

cL2m2

(1 −mL)M2 + k
M
2

−
cM1 (1 −mL)2M1

(1 −mM)2m2
1 + k

L
1

.

One may be interesting in seeking the influence of prey refuge on the stability property of the system
as a direct consequence of Corollary 3.2, we have:

Corollary 3.3. In addition to (2.6), assume further that

A3 > 0, A4 > 0,

then for any positive solutions (x(t),y(t))T and (x1(t),y1(t))
T of system (1.5), one has

lim
t→+∞(|x(t) − x1(t)|+ |y(t) − y1(t)|) = 0,

where

A3
def
= bL −

cM1 (1 −mL)4M2M
2
1(

kL1
)2 −

cM2 (1 −mL)M2(
kL1
)2 ,

A4
def
=

cL2m2

M2 + k
M
2

−
cM1 (1 −mL)2M1

kL1
.

Remark 3.4. Noting that if m(t) is large enough, then A3 > 0, A4 > 0 always hold and consequently,
predator and prey species could be coexistence in a stable state. This means that prey refuge has positive
effect to the stability property of the system.

Proof of Theorem 3.1. Condition (3.1) implies that there exists an enough small positive constant ε (without
loss of generality, we may assume that ε < 1

2 {m1,m2}) such that

A1(ε, t) = b(t) +
c1(t)(1 −m(t))2k1(t)(m2 − ε)

∆1(M
ε
1 )

−
c1(t)(1 −m(t))4(M2 + ε)(M1 + ε)

2

∆1(m
ε
1 )

−
c2(t)(1 −m(t))(M2 + ε)

∆2(mε
1 )

> ε,

(3.2)
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A2(ε, t) =
c2(t)(m2 − ε)

(1 −m(t))(M2 + ε) + k2(t)

−
c1(t)(1 −m(t))2(M1 + ε)

(1 −m(t))2(m1 − ε)2 + k1(t)
> ε,

where

∆1(m
ε
1 )

def
=
(
(1 −m(t))2(m1 − ε)

2 + k1(t)
)2,

∆1(M
ε
1 )

def
=
(
(1 −m(t))2(M1 + ε)

2 + k1(t)
)2,

∆2(m
ε
1 )

def
=
(
(1 −m(t))(m1 − ε) + k2(t)

)2.

For two arbitrary positive solutions (x(t),y(t))T and (x1(t),y1(t))
T of system (1.5). For above ε > 0, it

then follows from (2.2), (2.5), (2.10) and (2.12) that there exists a T > T3 such that for all t > T ,

x(t), x1(t) < M1 + ε, y(t),y1(t) < M2 + ε,
x(t), x1(t) > m1 − ε, y(t),y1(t) > m2 − ε.

Set
∆1(x(t), x1(t)) =

(
(1 −m(t))2(x1(t))

2 + k1(t)
)(
(1 −m(t))2(x(t))2 + k1(t)

)
,

∆2(x(t), x1(t)) =
(
(1 −m(t))x(t) + k2(t)

)(
(1 −m(t))x1(t) + k2(t)

)
.

Now we let
V1(t) = | ln x(t) − ln x1(t)|,

V2(t) = | lny(t) − lny1(t)|.

Then for t > T , we have

D+V1(t) 6 sgn(x(t) − x1(t))
(
− b(t)x(t) −

c1(t)(1 −m(t))2x(t)y(t)

(1 −m(t))2(x(t))2 + k1(t)

+ b(t)x1(t)
)
+
c1(t)(1 −m(t))2x1(t)y1(t)

(1 −m(t))2(x1(t))2 + k1(t)

)
6 −b(t)|x(t) − x1(t)|+ sgn(x(t) − x1(t))c1(t)(1 −m(t))2

×
(
−

x(t)y(t)

(1 −m(t))2(x(t))2 + k1(t)
+

x(t)y1(t)

(1 −m(t))2(x(t))2 + k1(t)

−
x(t)y1(t)

(1 −m(t))2(x(t))2 + k1(t)
+

x1(t)y1(t)

(1 −m(t))2(x1(t))2 + k1(t)

)
6 −b(t)|x(t) − x1(t)|+

c1(t)(1 −m(t))2x(t)

(1 −m(t))2(x(t))2 + k1(t)
|y(t) − y1(t)|

+ sgn(x(t) − x1(t))c1(t)(1 −m(t))2y1(t)

×
(
−

x(t)

(1 −m(t))2(x(t))2 + k1(t)
+

x1(t)

(1 −m(t))2(x1(t))2 + k1(t)

)
6 −b(t)|x(t) − x1(t)|+

c1(t)(1 −m(t))2x(t)

(1 −m(t))2(x(t))2 + k1(t)
|y(t) − y1(t)|

−
c1(t)(1 −m(t))2k1(t)y1(t)

∆1(x(t), x1(t))
|x(t) − x1(t)|

+ sgn(x(t) − x1(t))
c1(t)(1 −m(t))4y1(t)x(t)x1(t)

∆1(x(t), x1(t))

(
− x1(t) + x(t)

)
6 −b(t)|x(t) − x1(t)|+

c1(t)(1 −m(t))2x(t)

(1 −m(t))2(x(t))2 + k1(t)
|y(t) − y1(t)|
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−
c1(t)(1 −m(t))2k1(t)y1(t)

∆1(x(t), x1(t))
|x(t) − x1(t)|

+
c1(t)(1 −m(t))4y1(t)x(t)x1(t)

∆1(x(t), x1(t))
|x(t) − x1(t)|

6 −b(t)|x(t) − x1(t)|+
c1(t)(1 −m(t))2(M1 + ε)

(1 −m(t))2(m1 − ε))2 + k1(t)
|y(t) − y1(t)|

−
c1(t)(1 −m(t))2k1(t)(m2 − ε)

∆1(M
ε
1 )

|x(t) − x1(t)|

+
c1(t)(1 −m(t))4(M2 + ε)(M1 + ε)

2

∆1(m
ε
1 )

|x(t) − x1(t)|,

and

D+V2(t) = sgn(y(t) − y1(t))
(
−

c2(t)y(t)

(1 −m(t))x(t) + k2(t)
+

c2(t)y1(t)

(1 −m(t))x1(t) + k2(t)

)
= sgn(y(t) − y1(t))

(
−

c2(t)y(t)

(1 −m(t))x(t) + k2(t)
+

c2(t)y1(t)

(1 −m(t))x(t) + k2(t)

−
c2(t)y1(t)

(1 −m(t))x(t) + k2(t)
+

c2(t)y1(t)

(1 −m(t))x1(t) + k2(t)

)
6 −

c2(t)y(t)

(1 −m(t))x(t) + k2(t)
|y(t) − y1(t)|

+ sgn(y(t) − y1(t))
c2(t)(1 −m(t))y1(t)

∆2(x(t), x1(t))

(
− x1(t) + x(t)

)
6 −

c2(t)(m2 − ε)

(1 −m(t))(M2 + ε) + k2(t)
|y(t) − y1(t)|

+
c2(t)(1 −m(t))(M2 + ε)

∆2(m
ε
1 )

|x(t) − x1(t)|.

Now let us set
V(t) = V1(t) + V2(t).

Then

D+V(t) 6 −
(
b(t) +

c1(t)(1 −m(t))2k1(t)(m2 − ε)

∆1(M
ε
1 )

−
c1(t)(1 −m(t))4(M2 + ε)(M1 + ε)

2

∆1(m
ε
1 )

−
c2(t)(1 −m(t))(M2 + ε)

∆2(mε
1 )

)
|x(t) − x1(t)|

−
( c2(t)(m2 − ε)

(1 −m(t))(M2 + ε) + k2(t)

−
c1(t)(1 −m(t))2(M1 + ε)

(1 −m(t))2(m1 − ε)2 + k1(t)

)∣∣∣y(t) − y1(t)|

= −A1(ε, t)|x(t) − x1(t)|−A2(ε, t)|y(t) − y1(t)|.

(3.3)

Integrating both sides of (3.3) on interval [T , t), then

V(t) − V(T) 6
∫t
T

[
−A1(ε, s)|x(s) − x1(s)|−A2(ε, s)|y(s) − y1(s)|

]
ds, for t > T .
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It follows from (3.2) that

V(t) + ε

∫t
T

[
|x(s) − x1(s)|+ |y(s) − y1(s)|

]
ds 6 V(T), for t > T .

Therefore, V(t) is bounded on [T ,+∞) and also∫t
T

[
|x(s) − x1(s)|+ |y(s) − y1(s)|

]
ds < +∞.

By Theorem 2.5, |x(t) − x1(t)|, |y(t) − y1(t)| are bounded on [T ,+∞). On the other hand, it is easy to see
that ẋ(t), ẏ(t), ẋ1(t) and ẏ1(t) are bounded for t > T . Therefore, |x(t) − x1(t)|, |y(t) − y1(t)| are uniformly
continuous on [T ,+∞). By [3, Barbălat Lemma], one can conclude that

lim
t→+∞

[
|x(t) − x1(t)|+ |y(t) − y1(t)|

]
= 0.

This ends the proof of Theorem 3.1.

4. Numeric example

Now let us consider the following example.

Example 4.1.

ẋ(t) = x
(

39 + sin t− 10x−
2(1 − 0.5)2xy

(1 − 0.5)2x2 + 9

)
,

ẏ(t) = y
(

2 + sin t−
3y

(1 − 0.5)x+ 1

)
.

(4.1)

Corresponding to system (1.5), one has

a1(t) = 39 + sin t, b(t) = 10, c1(t) = 2, m = 0.5,

k1(t) = 9, a2(t) = 2 + sin t, c2(t) = 3, k2(t) = 1.

And so,

M1 =
rM1
bL1

= 4, M2 =
aM2
(
(1 −mL)M1 + k

M
2
)

cL2
=

3(0.5× 4 + 1)
3

= 3.

By simple computation, one can easily verify that

A3
def
= bL −

cM1 (1 −mL)4M2M
2
1(

kL1
)2 −

cM2 (1 −mL)M2(
kL1
)2

= 10 −
2× 1

16 × 3× 16
92 −

3× 0.5× 3
92 > 7 > 0,

A4
def
=

cL2m2

M2 + k
M
2

−
cM1 (1 −mL)2M1

kL1

=
3× 0.6
3 + 1

−
2× 0.25× 4

9
> 0.4 − 0.3 = 0.1 > 0.

Thus, it follows from Theorem 2.5 and Corollary 3.3 that system (4.1) is permanent and globally attractive,
numeric simulations (Figures 1, 2) also support this finds.
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Figure 1: Dynamic behavior of the first component x(t) of the
solution (x(t),y(t)) of system (4.1) with the initial condition
(x(0),y(0)) = (1, 2), (1, 3), (4, 4), (6, 5) and (8, 1), respectively.

Figure 2: Dynamic behavior of the second component y(t) of
the solution (x(t),y(t)) of system (4.1) with the initial condition
(x(0),y(0)) = (1, 2), (1, 3), (4, 4), (6, 5) and (8, 1), respectively.

5. Discussion

In this paper, stimulated by the works of [7] and [36], we propose a predator-prey system incorpo-
rating a modified version of the Leslie-Gower functional response as well as that of the Holling-type III
functional response and a prey refuge. We pay attention to the nonautonomous case and aim at investi-
gating the persistent and stability property of the system.

One interesting finding is that for system (1.5), the prey refuge has no influence on persistent property
of the system, such a finding is similar to that of Chen et al. [7], and different to Yue [36].

We mention here that a more suitable population model should consider the stage structure of the
species and it seems interesting to propose and study the stage-structure predator-prey system incorpo-
rating a prey refuge, we leave this for future investigation.

Acknowledgment

The research was supported by the Natural Science Foundation of Fujian Province (2015J01012,
2015J01019).

References
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267–270. 3

[4] L.-J. Chen, F.-D. Chen, Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett.,
22 (2009), 1330–1334. 1

[5] L.-J. Chen, F.-D. Chen, Global analysis of a harvested predator-prey model incorporating a constant prey refuge, Int. J.
Biomath., 3 (2010), 205–223. 1

[6] L.-J. Chen, F.-D. Chen, L.-J. Chen, Qualitative analysis of a predator-prey model with Holling type II functional response
incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., 11 (2010), 246–252. 1

[7] F.-D. Chen, L.-J. Chen, X.-D. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal.
Real World Appl., 10 (2009), 2905–2908. 1, 5

[8] W.-L. Chen, X.-J. Gong, L. Zhao, H.-Y. Zhang, Dynamics of a nonautonomous discrete Leslie-Gower predator-prey system
with a prey refuge, (Chinese) J. Fuzhou Univ. Nat. Sci. Ed., 43 (2015), 6–10. 1

[9] F.-D. Chen, Z. Li, Y.-J. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls,
Nonlinear Anal. Real World Appl., 8 (2007), 680–687. 2.1

[10] F.-D. Chen, Y.-M. Wu, Z.-Z. Ma, Stability property for the predator-free equilibrium point of predator-prey systems with a
class of functional response and prey refuges, Discrete Dyn. Nat. Soc., 2012 (2012), 5 pages. 1

[11] R. Cressman, J. Garay, A predator-prey refuge system: evolutionary stability in ecological systems, Theor. Popul. Biol.,
76 (2009), 248–257. 1

[12] Y.-J. Huang, F.-D. Chen, L. Zhong, Stability analysis of a prey-predator model with Holling type III response function
incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672–683. 1



F. D. Chen, Q. X. Lin, X. D. Xie, Y. Xue, J. Math. Computer Sci., 17 (2017), 266–277 277

[13] L.-L. Ji, C.-Q. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant
prey refuge, Nonlinear Anal. Real World Appl., 11 (2010), 2285–2295. 1

[14] T. K. Kar, S. Misra, Influence of prey reserve in a prey-predator fishery, Nonlinear Anal., 65 (2006), 1725–1735. 1
[15] A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697–699. 1
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