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Abstract
Bifurcation of limit cycles and analytic center conditions for a class of systems in which the origin is a generalized nilpotent

singular point are discussed. An interesting phenomenon is that the exponent parameter n controls the singular point type of
the studied system (1.1). c©2017 All rights reserved.
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1. Introduction

In the present paper, we consider limit cycle bifurcations and analytic center conditions of the origin
for a class of generalized nilpotent systems with the form

dx
dt = y2n−1 + yn−1(a41x

4yn + a32x
3y2n + a23x

2y3n + a14xy
4n + a05y

5n),
dy
dt = −2x3 + b50x

5 + b41x
4yn + b32x

3y2n + b23x
2y3n + b14xy

4n + b05y
5n.

(1.1)

When n > 1, the origin is a total degenerate singular point. When n = 1, system (1.1) is rewritten as the
following quintic nilpotent systems

dx
dt = y+ a41x

4y+ a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5,
dy
dt = −2x3 + b50x

5 + b41x
4y+ b32x

3y2 + b23x
2y3 + b14xy

4 + b05y
5,

whose origin is a third-order nilpotent singular point.
In suitable coordinate system, an analytic ordinary differential equation with an isolated nilpotent

singularity at the origin can be written as
dx
dt = −y+X(x,y),
dy
dt = Y(x,y),
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where X(x,y) and Y(x,y) are analytic functions without constant nor linear terms defined in a certain
neighborhood of the origin.

The nilpotent center problem was theoretically solved by Moussu [15] and Sadovskii [16]. In order
to obtain the local phase portraits, Andreev [2] studied analytic systems with a nilpotent singular point
at the origin. However, Andreev’s results did not distinguish between a focus and a center. Takens [17]
provided a normal form for nilpotent center of foci. Moussu [15] found the C∞ normal form for analytic
nilpotent centers. Berthier and Moussu in [3] studied the reversibility of the nilpotent centers. Teixeira
and Yang [18] analyzed the relationship between reversibility and the center-focus problem for systems

ẋ = −y+X(x,y),
ẏ = x+ Y(x,y),

and
ẋ = y+X(x,y),
ẏ = Y(x,y).

Giné [8] developed a method which provides necessary conditions for obtaining a local analytic integral in
a neighborhood of a generalized nilpotent singular point. Garcı́a and Giné [5] gave a necessary condition
to have local analytic integrability in an analytic nilpotent center. Liu and Li [13] gave a recursive method
to calculate quasi-Lyapunov constants at the nilpotent critical point. Han and Romanovski [9] studied
analytic properties of the Poincaré return map and generalized focal values of analytic planar systems
with a nilpotent focus or center. For third-order nilpotent singular points of a planar dynamical system,
Liu et al. [14] completely solved the analytic center problem using the integrating factor method. A
method to compute focal values for degenerate critical point of switching systems was proposed in [10].
Li et al. discussed the analytic integrability of two classes of lopsided systems in [11]. In [12], an existing
method was modified for computing the focal values and period constants of switching systems associated
with elementary singular points. In [6, 7] it is proved that any analytic nilpotent center is limit of an
analytic linear type center.

Nevertheless, in practice, in spite of the efforts in the last years, given an analytic system with a
monodromic point, it is very difficult to know if it is a focus or a center, even in the case of polynomial
systems of a given degree. To understand the profound nature of this problem, see [4].

We now describe more precisely different sections of this paper. In Section 2, we give some preliminary
knowledge concerning the nilpotent critical point. In Section 3, we transfer the origin into a third-order
nilpotent singular point by a homeomorphism. Then we compute the first seven quasi-Lyapunov con-
stants and derive the sufficient and necessary conditions for the origin to be an analytic center. In the last
section, we prove that there exist five small amplitude limit cycles created from a nilpotent singular point.

2. Calculation of quasi-Lyapunov constant and criterion of analytic center

In this section we first introduce some definitions, notations and symbols in order to make it com-
pact and clear, followed by an algorithm to obtain the necessary conditions for the third-order nilpotent
singular point to be an analytic center, then we present several methods to prove the sufficiency due to
[13, 14].

In canonical coordinates the Lyapunov system with the origin as a nilpotent critical point can be
written in the form:

dx
dt = y+

∞∑
i+j=2

aijx
iyj = X(x,y),

dy
dt =

∞∑
i+j=2

bijx
iyj = Y(x,y).

(2.1)

Suppose that the function y = y(x) satisfies X(x,y) = 0, y(0) = 0. Lyapunov proved (see for instance [1])
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that the origin of system (2.1) is a monodromic critical point (i.e., a center or a focus) if and only if

Y(x,y(x)) = αx2n+1 + o(x2n+1), α < 0,[
∂X
∂x + ∂Y

∂x

]
y=y(x)

= βxn + o(xn),
β2 + 4(n+ 1)α < 0,

where n is a positive integer.

Definition 2.1. Let y = f(x) = −a20x
2 + o(x2) be the unique solution of the function equation X(x, f(x)) =

0, f(0) = 0 at a neighborhood of the origin. If there are an integer m and a nonzero real number α, such
that

Y(x, f(x)) = αxm + o(xm),

we say that the origin is a high-order singular point of system (2.1) with the multiplicity m.

By using the results in [1], we attain the following conclusion.

Lemma 2.2. The origin of system (2.1) is a third-order singular point which is a saddle point or a center, if and
only if b20 = 0, (2a20 − b11)

2 + 8b30 < 0.

When the condition in Lemma 2.2 holds, we can assume that

a20 = µ, b20 = 0, b11 = 2µ, b30 = −2. (2.2)

Otherwise, by letting (2a20 − b11)
2 + 8b30 = −16λ2, 2a20 + b11 = 4λµ and making the transformation

ξ = λx, η = λy+ 1
4(2a20 − b11)λx

2, we obtain the mentioned result.
From (2.2), system (2.1) becomes the following real autonomous planar system

dx
dt = y+ µx2 +

∞∑
i+2j=3

aijx
iyj = X(x,y),

dy
dt = −2x3 + 2µxy+

∞∑
i+2j=4

bijx
iyj = Y(x,y).

(2.3)

Write that

X(x,y) = y+
∞∑
k=2

Xk(x,y), Y(x,y) =
∞∑
k=2

Yk(x,y),

where for k = 1, 2, · · · ,
Xk(x,y) =

∑
i+j=k

aijx
iyj, Yk(x,y) =

∑
i+j=k

bijx
iyj.

By using the transformation of generalized polar coordinates

x = r cos θ, y = r2 sin θ, (2.4)

system (2.3) becomes
dr
dt =

cosθ[sinθ(1−2 cos2 θ)+µ(cos2 θ+2 sin2 θ)]

1+sin2 θ
r2 + o(r2),

dθ
dt = −r

2(1+sin2 θ)(cos4 θ+sin2 θ)
+ o(r).

Thus, we have
dr

dθ
=

− cos θ[sin θ(1 − 2 cos2 θ) + µ(cos2 θ+ 2 sin2 θ)]

2(cos4 θ+ sin2 θ)
r+ o(r). (2.5)

Let

r = r̃(θ,h) =
∞∑
k=1

νk(θ)h
k,
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be a solution of (2.5) satisfying the initial condition r|θ=0 = h, where h is small and

ν1(θ) = (cos4 θ+ sin2 θ)
−1
4 exp

(
−µ

2
arctan

sin θ
cos2 θ

)
,

ν1(kπ) = 1, k = 0,±1,±2, · · · .

Because for all sufficiently small r, we have dθ/dt < 0. In a small neighborhood, we can define the
successor function of system (2.3) as follows:

∆(h) = r̃(−2π,h) − h =

∞∑
k=2

νk(−2π)hk.

We have the following result:

Lemma 2.3. For any positive integer m, ν2m+1(−2π) has the form

ν2m+1(−2π) =
m∑
k=1

ζ
(m)
k ν2k(−2π),

where ζ(m)
k is a polynomial of νj(π),νj(2π),νj(−2π), (j = 2, 3, · · · , 2m) with rational coefficients.

It is differential from the center-focus problem for the elementary critical points, we know from Lemma
2.3 that when k > 1 for the first non-zero νk(−2π),k is an even integer.

Definition 2.4.

1. For any positive integer m, ν2m(−2π) is called the m-th focal value of system (2.3) in the origin.
2. If ν2(−2π) 6= 0, then, the origin of system (2.3) is called 1-order weakened focus. In addition, if there

is an integer m > 1, such that ν2(−2π) = ν4(−2π) = · · · = ν2m−2(−2π) = 0, but ν2m(−2π) 6= 0, then
the origin is called an m-order weakened focus of system (2.3).

3. If for all positive integers m, we have ν2m(−2π) = 0, then the origin of system (2.3) is called a center.

We give the following key results, which define the quasi-Lyapunov constants and provide a way of
computing them.

Theorem 2.5. For system (2.3), one can construct successively a formal series

M(x,y) = y2 +

∞∑
k+j=3

ckjx
kyj, (2.6)

such that
∂

∂x

(
X

Ms+1

)
+
∂

∂y

(
Y

Ms+1

)
=

1
Ms+2

∞∑
m=1

(2m− 4s− 1)λmx2m+4,

i.e., (
∂X

∂x
+
∂Y

∂y

)
M− (s+ 1)

(
∂M

∂x
X+

∂M

∂y
Y

)
=

∞∑
m=1

λm(2m− 4s− 1)x2m+4, (2.7)

where s is a given positive integer,
c30 = 0, c40 = 1, (2.8)

and
{ν2m(−2π)} ∼ {σmλm},

with

σm =
1
2

∫ 2π

0

(1 + sin2 θ) cos2m+4 θ

(cos4 θ+ sin2 θ)2
ν2m−1

1 (θ)dθ > 0.
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We see from (2.6) and (2.8) that when (2.4) holds, M = y2 + x4 + o(r4).

Definition 2.6. For system (2.3), λm is called the m-th quasi-Lyapunov constant of the origin.

Theorem 2.7. For any positive integer s and a given number sequence

{c0β}, β > 3,

one can construct successively the terms with the coefficients cαβ satisfying α 6= 0 of the formal series

M(x,y) = y2 +

∞∑
α+β=3

cαβx
αyβ =

∞∑
k=2

Mk(x,y), (2.9)

such that
∂

∂x

(
X

Ms+1

)
+
∂

∂y

(
Y

Ms+1

)
=

1
Ms+2

∞∑
m=5

ωm(s,µ)xm, (2.10)

where for all k, Mk(x,y) is a k-homogeneous polynomial of x,y and sµ = 0.

Now, (2.10) can be written by(
∂X

∂x
+
∂Y

∂y

)
M− (s+ 1)

(
∂M

∂x
X+

∂M

∂y
Y

)
=

∞∑
m=3

ωm(s,µ)xm. (2.11)

It is easy to see that (2.11) is linear with respect to the function M, so that we can easily find the following
recursive formulae for the calculation of cαβ and ωm(s,µ).

Theorem 2.8. For α > 1,α+β > 3 in (2.9) and (2.10), cαβ can be uniquely determined by the recursive formula

cαβ =
1

(s+ 1)α
(Aα−1,β+1 +Bα−1,β+1).

For m > 1, ωm(s,µ) can be uniquely determined by the recursive formula

ωm(s,µ) = Am,0 +Bm,0,

where

Aαβ =
α+β−1∑
k+j=2

[k− (s+ 1)(α− k+ 1)]akjcα−k+1,β−j,

Bαβ =
α+β−1∑
k+j=2

[j− (s+ 1)(β− j+ 1)]bkjcα−k,β−j+1.
(2.12)

Notice that in (2.12), we set
c00 = c10 = c01 = 0,
c20 = c11 = 0, c02 = 1,
cαβ = 0, if α < 0 or β < 0.

We see from Theorem 2.8 that, by choosing {cαβ}, such that

ω2k+1(s,µ) = 0, k = 1, 2, · · · , (2.13)

we can obtain a solution group of {cαβ} of (2.13), thus, we have

λm =
ω2m+4(s,µ)
2m− 4s− 1

.

Clearly, the recursive formulae presented by Theorem 2.8 is linear with respect to all cαβ. Accordingly,
it is convenient to realize the computations of quasi-Lyapunov constants by using computer algebraic
system like Mathematica.
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Theorem 2.9. If µ 6= 0, the origin of system (2.3) is not an analytic center.

Theorem 2.10. The origin of system (2.3) is an analytic center if and only if there exists an analytic first integral
F(x,y) in the neighborhood of the origin, which is the power series

F(x,y) = x4 + y2 +

∞∑
k+2j=5

Ckjx
kyj.

Theorem 2.11. If the origin of system (2.3) is a nilpotent center, and system (2.3) is symmetric with respect to the
origin, namely,

X(−x,−y) = −X(x,y),
Y(−x,−y) = −Y(x,y),

then the origin of system (2.3) is an analytic center.

Theorem 2.12. If system (2.3) is symmetric with respect to the the x-axis, then the origin of system (2.3) is an
analytic center.

Consider the system
dx
dt = δx+ y+

∞∑
k+j=2

akj(γ)x
kyj,

dy
dt = 2δy+

∞∑
k+j=2

bkj(γ)x
kyj,

(2.14)

where γ = {γ1,γ2, · · · ,γm−1} is (m− 1)-dimensional parameter vector. Let γ0 = {γ
(0)
1 ,γ(0)

2 , · · · ,γ(0)
m−1} be

a point at the parameter space. Suppose that for ‖γ− γ0‖ � 1, the functions of the right hand of system
(2.14) are power series of x,y with a non-zero convergence radius and have continuous partial derivatives
with respect to γ. In addition,

a20(γ) ≡ µ, b20(γ) ≡ 0, b11(γ) ≡ 2µ, b30(γ) ≡ −2.

For an integer k, let ν2k(−2π,γ) be the k-order focal value of the origin of system (2.14)δ=0.

Theorem 2.13. If for γ = γ0, the origin of system (2.14)δ=0 is an m-order weak focus, and the Jacobian

∂(ν2,ν4, · · · ,ν2m−2)

∂(γ1,γ2, · · · ,γm−1)

∣∣∣
γ=γ0

6= 0,

then there exist two positive number δ∗ and γ∗, such that for 0 < |δ| < δ∗, 0 < ‖γ− γ0‖ < γ∗, in a neighborhood
of the origin, system (2.14) has at most m limit cycles which enclose the origin (an elementary node) O(0, 0). In
addition, under the above conditions, there exist γ̃, δ̃, such that when γ = γ̃, δ = δ̃, there exist exactlym limit cycles
of (2.14) in a small neighborhood of the origin.

3. Quasi-Lyapunov constants and analytic center conditions

In this section we will derive the analytic center conditions for the origin of system (1.1).
Performing the transformation

x1 = x, y1 =
1√
n
yn, dt1 =

√
nyn−1dt,

and still using (x,y, t) to represent (x1,y1, t1), system (1.1) becomes

dx
dt = y+ a41x

4y+
√
na32x

3y2 +na23x
2y3 +n

3
2a14xy

4 +n2a05y
5,

dy
dt = −2x3 + b50x

5 +
√
nb41x

4y+nb32x
3y2 +n

3
2b23x

2y3 +n2b14xy
4 +n

5
2b05y

5.
(3.1)

Now we start the preparation of computing quasi-Lyapunov constants at the origin of system (3.1).
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Lemma 3.1. Assume that s is a natural number. We can derive a power series (2.6) for system (3.1) under which
(2.7) is satisfied, where

c0,0 = 0, c1,0 = 0, c0,1 = 0, c2,0 = 0, c1,1 = 0, c0,2 = 1,

in addition, for any natural numbers α,β, cα,β is given by the following recursive formula

cα,β = (−b50(1 + s)(2 +β)c−6+α,2+β + b41
√
n(1 − (1 + s)(1 +β))c−5+α,1+β

+a41(4 − (1 + s)(−4 +α))c−4+α,β + b32n(2 − (1 + s)β)c−4+α,β
+2(1 + s)(2 +β)c−4+α,2+β + a32

√
n(3 − (1 + s)(−3 +α))c−3+α,−1+β

+b23n
3
2 (3 − (1 + s)(−1 +β))c−3+α,−1+β + a23n(2 − (1 + s)(−2 +α))c−2+α,−2+β

+b14n
2(4 − (1 + s)(−2 +β))c−2+α,−2+β + a14n

3
2 (1 − (1 + s)(−1 +α))c−1+α,−3+β

+b05n
5
2 (5 − (1 + s)(−3 +β))c−1+α,−3+β − a05n

2(1 + s)αcα,−4+β)/(s+ 1)/α,

and, for any natural number m, ωm is given by the following recursive formula

ωm =− b50(1 + s)c−5+m,1 + b41
√
nc−4+m,0 + b32n(3 + s)c−3+m,−1

+ a41(4 − (−3 +m)(1 + s))c−3+m,−1 + 2(1 + s)c−3+m,1

+ b23n
3
2 (3 + 2(1 + s))c−2+m,−2 + a32

√
n(3 − (−2 +m)(1 + s))c−2+m,−2

+ b14n
2(4 + 3(1 + s))c−1+m,−3 + a23n(2 − (−1 +m)(1 + s))c−1+m,−3

+ b05n
5
2 (5 + 4(1 + s))cm,−4 + a14n

3
2 (1 −m(1 + s))cm,−4 − a05(1 +m)n2(1 + s)c1+m,−5.

Applying Lemma 3.1 and computing with Mathematica, we have:

Theorem 3.2. The first seven quasi-Lyapunov constants at the origin of system (3.1) are as follows:

λ1 = 0,
λ2 ∼ 1

5
√
nb41,

λ3 ∼ 2
7
√
n(a32 +nb23),

λ4 ∼ 4
15n

3
2 (a14 + 5nb05),

λ5 ∼ 4
77n

3
2b23(2a41 +nb32),

(3.2)

and, either
λ6 ∼ 8

39n
5
2b05(2a41 +nb32),

λ7 ∼ 16
33n

7
2b05(a23 + 2nb14),

(3.3)

for b23 = 0, or
λ6 ∼ 8

117n
5
2b23(a23 + 2nb14),

λ7 ∼ 0,
(3.4)

for 2a41 + nb32 = 0,b23 6= 0. In the above expression of λk, it is assumed that λ1 = λ2 = · · · = λk−1 = 0,k =
2, 3, 4, 5, 6, 7.

An immediate consequence of Theorem 3.2 is as follows.

Theorem 3.3. The first seven quasi-Lypaunov constants at the origin of system (3.1) vanish if and only if the
coefficients satisfy one of the following two sets of conditions:

b41 = a32 = a14 = b23 = b05 = 0, (3.5)

b41 = a32 +nb23 = a14 + 5nb05 = 2a41 +nb32 = a23 + 2nb14 = 0. (3.6)
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Proof. Notice expressions (3.2) and (3.3), from the vanishing of the first seven quasi-Lyapunov constants,
it follows one of the following conditions:

b41 = a32 = a14 = b23 = b05 = 0,

b41 = a32 = b23 = a14 + 5nb05 = 2a41 +nb32 = a23 + 2nb14 = 0. (3.7)

Analogously, notice expressions (3.2) and (3.4), from the vanishing of the first seven quasi-Lyapunov
constants, it follows one of the following conditions:

b41 = a32 +nb23 = a14 + 5nb05 = 2a41 +nb32 = a23 + 2nb14 = 0, b23 6= 0. (3.8)

Conditions (3.7) and (3.8) can be explicitly united as condition (3.6). Therefore, the claim is proved.

The next result assures the analytic center conditions.

Theorem 3.4. System (3.1) has an analytic center at the origin if and only if condition (3.5) or (3.6) is satisfied.

Proof. When condition (3.5) holds, system (3.1) is transformed into

dx
dt = y(1 + a41x

4 +na23x
2y2 +n2a05y

4),
dy
dt = x(−2x2 + b50x

4 +nb32x
2y2 +n2b14y

4),

whose vector field is symmetric with respect to the origin.
When condition (3.6) is satisfied, system (3.1) is transformed into

dx
dt = 1

2y(2 −nb32x
4 − 2n

3
2b23x

3y− 4n2b14x
2y2 − 10n

5
2b05xy

3 + 2n2a05y
4),

dy
dt = −2x3 + b50x

5 +nb32x
3y2 +n

3
2b23x

2y3 +n2b14xy
4 +n

5
2b05y

5,

which is Hamiltonian and has an analytic first integral defined in the neighborhood of the nilpotent center

F1(x,y) = x4 + y2 −
1
3
b50x

6 −
1
2
nb32x

4y2 −
2
3
n

3
2b23x

3y3 −n2b14x
2y4 − 2n

5
2b05xy

5 +
1
3
n2a05y

6.

Therefore, the theorem follows.

As a matter of fact, when condition (3.5) holds, system (1.1) goes over to

dx
dt = y2n−1(1 + a41x

4 + a23x
2y2n + a05y

4n),
dy
dt = x(−2x2 + b50x

4 + b32x
2y2n + b14y

4n),

whose vector field is symmetric with respect to the origin.
When condition (3.6) holds, system (1.1) goes over to

dx
dt = 1

2y
2n−1(2 −nb32x

4 − 2nb23x
3yn − 4nb14x

2y2n − 10nb05xy
3n + 2a05y

4n),
dy
dt = −2x3 + b50x

5 + b32x
3y2n + b23x

2y3n + b14xy
4n + b05y

5n,
(3.9)

which is Hamiltonian. Going back through the change of variables we find that, in a neighborhood of the
origin, the analytic function

F2(x,y) = x4 +
1
n
y2n −

1
3
b50x

6 −
1
2
b32x

4y2n −
2
3
b23x

3y3n − b14x
2y4n − 2b05xy

5n +
1

3n
a05y

6n,

is a first integral of system (3.9).
Thus, we obtain the following:

Corollary 3.5. System (1.1) has an analytic center at the origin if and only if condition (3.5) or (3.6) is satisfied.
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4. Limit cycle bifurcation

In this section, we shall establish the condition under which O(0, 0) is at most a seven-order weak
focus. Additionally, we will prove the perturbed system of (3.1) can produce five limit cycles enclosing an
elementary node at the origin.

It follows from λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = 0, λ7 6= 0 that

Theorem 4.1. The origin of system (3.1) is a seven-order weak focus if and only if

b41 = a32 = b23 = 0, a14 = −5nb05, a41 = −
n

2
b32, b05(a23 + 2nb14) 6= 0. (4.1)

Consider the perturbed system of (3.1)

dx
dt = δ(ε)x+ y+ a41(ε)x

4y+
√
na32(ε)x

3y2 +na23x
2y3 +n

3
2a14(ε)xy

4 +n2a05y
5,

dy
dt = 2δ(ε)y− 2x3 + b50x

5 +
√
nb41(ε)x

4y+nb32x
3y2 +n

3
2b23x

2y3 +n2b14xy
4 +n

5
2b05y

5.
(4.2)

In order to get five limit cycles, we only need to show that, when condition (4.1) holds, the Jacobian
of (λ2, λ3, λ4, λ6) with respect to (b41,a32,a14,a41) does not vanish. An easy computation shows that

∂(λ2, λ3, λ4, λ6)

∂(b41,a32,a14,a41)

∣∣∣
(4.1)

=
128

20475
n5b05 6= 0.

The above discussions indicate the following.

Theorem 4.2. If the origin of system (3.1), (1.1) is a weak focus of order seven, for 0 < δ � 1, making a small
perturbation to the coefficient group (b41,a32,a14,a41), then for system (4.2), in a small neighborhood of the origin,
there exist exactly five small amplitude limit cycles enclosing the origin O(0, 0), which is an elementary node.

Example 4.3. Take

δ(ε) = −ε56, b41(ε) = ε
30, a32(ε) = −ε20,

a14(ε) = −5nc05sign(c05) + ε
12, a41(ε) = −1

2nc32sign(c32) − ε
2,

b05 = c05sign(c05), b32 = c32sign(c32), a23 = c23sign(c23), b14 = c14sign(c14), b23 = 0,

where c05, c32, c23, c14 are arbitrary nonzero real constants.
Taking into account expressions (3.2) and (3.3), straightforward computations give the first seven

quasi-Lyapunov constants at the origin of system (4.2):

λ1 = o(ε42),
λ2 ∼ 1

5
√
nε30 + o(ε30),

λ3 ∼ −2
7
√
nε20 + o(ε20),

λ4 ∼ 4
15n

3
2 ε12 + o(ε12),

λ5 ∼ o(ε6),
λ6 ∼ −16

39n
5
2 c05sign(c05)ε

2 + o(ε2),
λ7 ∼ 16

33n
7
2 c05sign(c05)(c23sign(c23) + 2nc14sign(c14)) + o(1).

Then, for 0 < ε � 1, system (4.2) has five limit cycles Γk : r = r̃(θ,hk(ε)) in a small neighborhood of the
origin, where hk(ε) = O(εk), k = 2, 3, 4, 6, 7.
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[7] H. Giacomini, J. Giné, J. Llibre, Corrigendum to: “The problem of distinguishing between a center and a focus for nilpotent

and degenerate analytic systems”, J. Differential Equations, 232 (2007), 702. 1
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