
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci., 17 (2017), 288–292

Research Article

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Particle swarm optimization with opposition-based learning and near
neighbor interactions

Jin Wang

School of Information, Linyi University, Linyi 276000, China.

Abstract

Particle swarm optimization (PSO) is recently proposed as population-based stochastic algorithm, which has shown excel-
lent abilities in many optimization problems. In this paper, a hybrid PSO variant is presented to enhance its performance. The
new algorithm is called OFDR-PSO which employs opposition-based learning (OBL) and fitness-distance-ratio (FDR). In order
to verify the performance of OFDR-PSO, we test in on a set of well-known benchmark problems. Simulation results demonstrate
that our proposed approach is effective and outperforms other four compared algorithms. c©2017 All rights reserved.

Keywords: Particle swarm optimization, evolutionary computation, opposition-based learning, global optimization.
2010 MSC: 68T05, 68W25, 90C26.

1. Introduction

Particle swarm optimization (PSO) was originally introduced by Kennedy and Eberhart in 1995 [2]. It
is an evolutionary computational technique motivated by the social cooperative and competitive behavior
of bird flocking or fish schooling. In the PSO algorithm, a swarm is defined as a population of interacting
elements and a particle is a member in the swarm, representing a potential solution to the optimization
process. Each particle of the swarm adjusts search patterns according to its experience and that of the
other particles. A recent research reported that PSO has been turned out to be another powerful tool
besides other evolutionary algorithms such as genetic algorithms (GAs) [1].

Recently, several variants of PSO have been developed. To balance local exploitation and global ex-
ploration, Shi and Eberahart [7] introduced a parameter called inertia weight w for the original PSO
algorithm. The inertial weight is used to balance the global and local search abilities. A large inertia
weight is more appropriate for global search, and a small inertia weight facilitates local search. A lin-
early decreasing inertial weight over the course of search achieves good performance. The version of
PSO with inertia weight is also called standard PSO. Suganthan [8] proposed an improved PSO algo-
rithm with neighborhood operator, in which a local best particle lbest is used to replace the global best
particle. Veeramachaneni et al. [9] developed a fitness-distance-ratio (FDR) mechanism to improve the
search abilities of PSO. Liang et al. [3] proposed a comprehensive learning PSO, in which each particle

Email address: lywangj@126.com (Jin Wang)

doi:10.22436/jmcs.017.02.10

Received 2016-12-10

http://dx.doi.org/10.22436/jmcs.017.02.10

J. Wang, J. Math. Computer Sci., 17 (2017), 288–292 289

can not only learn its previous best particle’s flying experience, but also learns other particles’. Therefore,
the particle is not attracted to fly to a fixed direction. This is helpful to avoid premature convergence.
Riget [6] proposed a diversity-guided PSO, called ARPSO, which modifies the original velocity model as
follows. If the diversity of swarm is very low, then use a repulsion velocity model to repel particles. This
is helpful to increase the current diversity and improve search abilities. If the diversity of swarm is large,
then use the original velocity model which is regarded as an attraction phase. This operation is beneficial
for decreasing diversity and accelerating convergence speed.

In this paper, we present a hybrid PSO variant, namely OFDR-PSO, which employs opposition-based
learning and FDR to enhance the performance of PSO. Simulation studies on a set of benchmark problems
show that OFDR-PSO achieves better results than PSO, GA, FDR-PSO, and ARPSO.

2. Particle swarm optimization

In PSO, each individual, called particle, has a velocity and a position vector. Particles fly in the search
space according to it current position, previous best position, and the global best position. For a particle,
its velocity and position are updated according to the following equations [7]:

Vi(t+ 1) = w ∗ Vi(t) + c1 ∗ r1() ∗ (pbesti −Xi(t)) + c2 ∗ r2() ∗ (gbest −Xi(t)),
Xi(t+ 1) = Xi(t) + Vi(t+ 1), (2.1)

where Xi is the position of the ith particle, Vi is the velocity of the ith particle, pbesti and gbest are
previous best particle of the ith particle and the global best particle, respectively, the parameter w is
called inertia weight [7], r1 and r2 are two random numbers independently generated between 0 and 1,
and c1 and c2 are two acceleration factors.

3. Proposed approach

Opposition-based learning (OBL) has been proven to be an effective method to DE [5], PSO [10] and
ant colony optimization (ACO) [4] in some optimization problems. When evaluating a solution x to a
given problem, we can improve our chance of finding a better solution by simultaneously checking the
opposite solution. By doing this, the fitter one (current solution or opposite solution) can be chosen as the
current solution. In fact, according to probability theory, 50% of the times, a random solution is further
from the current solution than its opposite one [5].

Let x ∈ [a, b] be a real number. The opposite number of x∗ is defined by [5]:

x∗ = a+ b− x.

Let X = (x1, x2, . . . , xD) be a point in D-dimensional space, where x1, x2, . . . , xD ∈ R and xj ∈ [aj,bj],
∀j ∈ {1, 2, . . .,D}. The opposite point X∗ = (x∗1 , x∗2 , . . ., x∗D) is defined by [10]:

x∗j = aj + bj − xj.

In order to control the step size of opposition, the calculation of opposition is based on a dynamic interval
boundaries [aj(t), bj(t)], the opposition is computed as:

OPij = aj(t) + bj(t) − Pij, (3.1)
aj(t) = min

(
xij(t)

)
,bj(t) = max

(
xij(t)

)
, (3.2)

where i = 1, 2, . . ., ps, j = 1, 2, . . .,D, Pij is the jth element of the ith individual in the population, OPij

is the opposite individual of Pij, [aj(t), bj(t)] are the boundaries of the jth dimension in current search
space, respectively.

J. Wang, J. Math. Computer Sci., 17 (2017), 288–292 290

It has been pointed in [9] that the particle positions in PSO oscillate in damped sinusoidal waves until
they converge to points between their previous best positions and the global best positions discovered by
all particles so far. If these best particles are trapped, particles will quickly converge to the local optima.
To improve this case, the literature [9] explored an alternative in which each particle is influenced by
several other particles, not just moving towards or away from the best position discovered so far. A new
velocity updating model, called Fitness-Distance-Ration (FDR), is proposed as follows, in which particles
are not always attracted by their previous best particles and the global best particle [9].

Vi(t+ 1) = w ∗ Vi(t) +ψ1 ∗ (pbesti −Xi(t)) +ψ2 ∗ (gbest −Xi(t)) +ψ3 ∗ (nbest −Xi(t)), (3.3)

where the parameter ψ1, ψ2 and ψ3 are weight factors, and the particle nbest is called neighborhood best
particle, which is chosen by maximizing the following expression [9]:

FDR(i, j,h) =
Fitness(Xi) − Fitness(pbesth)∣∣∣pbesthj −Xij

∣∣∣ , (3.4)

where h = 1, 2, . . ., ps and |·| denotes the absolute value.
In this paper, we combine opposition-based learning and FDR to enhance the performance of PSO.

The main steps of our approach are described in Algorithm 3.1, where rand(0,1) is a random value in
[0,1], po is the opposite rate, Pi is the ith particle in current population, OPi is the opposite particle of Pi,
P is the current population, OP is the opposite current population, gen is the number of generations, and
MAX GEN is the maximum number of generations.

Algorithm 3.1 (OFDR-PSO).
Begin
while gen < MAX GEN do

if rand(0,1)< po then
update intervals according to (3.2);

for i = 1 to ps do
generate opposite particle OPi according to (3.1);
calculate the fitness value of particle OPi;
end for
select ps fittest particles from P and OP as new P;

end if
else
for i = 1 to ps do

choose nbest according to (3.4);
update the velocity of particle Pi according to (3.3);
update the position of particle Pi according to (2.1);
calculate the fitness value of particle Pi;
if the fitness value of Pi is better than pbesti then

replace pbesti with Pi;
if Pi is better than gbest then

replace gbest with Pi;
end if

end if
end for
gen++;
end while
end.

J. Wang, J. Math. Computer Sci., 17 (2017), 288–292 291

4. Experimental studies

To compare the performance of OFDR-PSO and FDR-PSO, we use the same test problems considered
in [9]. All the problems are to be minimized in this paper. The dimensions of the test problems are 20.
All the benchmarks have global minima at the origin. The detailed descriptions of the test problems are
presented as follows.

f1: DE Jong’s function 1

f1(x) =
∑D

i=1
x2
i,

where −5.12 6 xi 6 5.12.

f2: Axis parallel hyper-ellipsoid

f2(x) =
∑D

i=1
i · x2

i,

where −5.12 6 xi 6 5.12.

f3: Rotated hyper-ellipsoid

f3(x) =
∑D

i=1

(∑i

j=1
xj

)2

,

where −65.536 6 xi 6 65.536.

f4: Rosenbrock’s Valley (banana function)

f4(x) =
∑D

i=1

[
100(xi+1 − x

2
i)

2 + (1 − x2
i)

2,
]

where −2.048 6 xi 6 2.048.

f5: Griewangk’s function

f5(x) =
1

4000

∑D

i=1
x2
i −Π

D
i=1 cos(

xi√
i
) + 1,

where −600 6 xi 6 600.

f6: DE Jong’s function 1

f6(x) =
∑D

i=1
|xi|

i+1,

where −1 6 xi 6 1.

In this paper, we compare OFDR-PSO with standard PSO and FDR-PSO. The population size and maxi-
mum number of generations are set to 10 and 1000, respectively. For OFDR-PSO, the opposite probability
is set to 0.3. For other parameter settings, please refer to [9]. All experiments have been run 30 times.

Table 1 shows the computational results achieved by PSO, FDR-PSO1, FDR-PSO2, and OFDR-PSO,
where FDR-PSO1 and FDR-PSO2 are two variants of FDR-PSO proposed in [9]. Results of PSO, FDR-
PSO1 and FDR-PSO2 are taken from Table 1 in [9]. The best results among the four algorithms are shown
in bold.

From the results in Table 1, it can be seen that OFDR-PSO outperforms other three algorithms on four
problems, while FDR-PSO2 achieves better results on the rest two problems. OFDR-PSO significantly
improves the results on two problems, Rosenbrock’s and Griewangk’s. On these problems, only OFDR-
PSO could obtain promising results, while other algorithms fall into local minima.

Table 2 presents the comparison of PSO, GA, ARPSO [6], FDR-PSO, and OFDR-PSO on two problems.
Results of PSO, GA, ARPSO, and FDR-PSO are taken from Table 2 in [9]. As seen, for D = 10 and D =
20, OFDR-PSO outperforms PSO, GA and FDR-PSO on the two problems. Especially for Rosenbrock’s
problem, only OFDR-PSO can achieve reasonable solutions, while other four algorithms are trapped in
local optima. The above comparisons demonstrate that combining OBL and FDR method can effectively
improve the performance of PSO and FDR-PSO.

J. Wang, J. Math. Computer Sci., 17 (2017), 288–292 292

Table 1: Results achieved by PSO, FDR-PSO1, FDR-PSO2, and OFDR-PSO
Test Problems PSO FDR-PSO1 FDR-PSO2 OFDR-PSO

De Jong’s 2.39e-02 2.70e-03 1.00e-03 5.92e-05
Rosenbrock’s 6.83 6.08 8.29 2.32e-02

Axis Parallel Hyper-Ellipsoid 1.25e-01 2.30e-02 3.50e-03 5.54e-01
Rotated Hyper-Ellipsoid 5.59e+01 2.06e+01 1.51e+03 1.89e+01

Griewangk’s 5.01 3.69 2.17 8.07e-03
Sum of Powers 1.80e-07 7.32e-11 3.30e-12 4.73e-06

Table 2: Comparison of PSO, GA, ARPSO, FDR-PSO, and OFDR-PSO on two problems
Test Problems D MAX GEN Griewangk’s Rosenbrock’s

PSO 20 2000 1.74e-02 11.2
GA 20 2000 1.71e-02 1.70e+02

ARPSO 20 2000 2.50e-02 2.34
FDR-PSO 20 2000 3.00e-03 1.72

OFDR-PSO 20 2000 1.20e-03 3.13e-04
PSO 10 1000 8.98e-02 43.05
GA 10 1000 2.83e+02 1.10e+02

FDR-PSO 10 1000 1.48e-02 9.44
OFDR-PSO 10 1000 1.50e-03 3.61e-05

5. Conclusions

In this paper, we combine opposition-based learning and FDR method to enhance the performance of
PSO and FDR-PSO. Experimental verifications on a set of benchmark problems show that our approach
outperforms other compared algorithms. The hybridization strategy could effectively improve the perfor-
mance of PSO and FDR-PSO. The values of po may affect on the performance of OFDR-PSO. This will be
investigated in our future work.

References

[1] R. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm optimization, The 7th Annual Conference
on Evolutionary Programming, San Diego, (1998). 1

[2] J. Kennedy, R. C. Eberhart, Particle swarm optimization, IEEE Int. Conference Neural Networks, Perth, Australia.
(1995). 1

[3] J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimiza-
tion of multimodal functions, IEEE Trans. Evol. Comput., 10 (2006), 281–295. 1

[4] A. R. Malisia, H. Tizhoosh, Applying opposition-based ideas to the ant colony system, Proc. IEEE Swarm Intelligence
Symposium, (2007), 79–87. 3

[5] S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama, Opposition-based differential evolution, IEEE Trans. Evol. Comput.,
12 (2008), 64–79. 3

[6] J. Riget, J. S. Vesterstom, A diversity-guided particle swarm optimizer-the ALPSO, Dept. Comput. Sci. Univ. Aarhus,
Aarhus, Denmark, (2002). 1, 4

[7] Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, Proc. Conference Evol. Comput., IEEE Press, Piscataway,
(1998), 69–73. 1, 2, 2

[8] P. N. Suganthan, Particle swarm optimizer with neighbourhood operator, IEEE Congress Evol. Comput., (1999), 1958–
1962. 1

[9] K. Veeramachaneni, T. Peram, C. Mohan, L. A. Osadciw, Optimization using particle swarms with near neighbor
interactions, Proc. Genetic Evol. Comput. Conference (GECCO), Berlin, (2003), 110–121. 1, 3, 3, 4, 4

[10] H. Wang, H. Li, Y. Liu, C. H. Li, S. Y. Zeng, Opposition-based particle swarm algorithm with Cauchy mutation, Proc.
Conference Evol. Comput., (2007), 4750–4756. 3

	Introduction
	Particle swarm optimization
	Proposed approach
	Experimental studies
	Conclusions

