
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci., 17 (2017), 293–300

Research Article

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Controllability of abstract fractional differential evolution equations with
nonlocal conditions

Haiyong Qina,b, Chenghui Zhanga, Tongxing Lia,c,d,∗, Ying Chenb

aSchool of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China.
bSchool of Mathematics, Qilu Normal University, Jinan, Shandong 250013, P. R. China.
cLinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi, Shandong
276005, P. R. China.
dSchool of Informatics, Linyi University, Linyi, Shandong 276005, P. R. China.

Abstract

In this paper, the controllability of a class of fractional differential evolution equations with nonlocal conditions is investi-
gated. Sufficient conditions which guarantee the controllability of fractional differential evolution equations are obtained. The
method used is the contraction mapping principle and Krasnoselskii theorem. A fractional distributed parameter control system
is provided to illustrate the applications of our results. c©2017 All rights reserved.
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1. Introduction

Fractional calculus is an area having a long history whose infancy dates back to three hundred years.
Later on, with the development of computer technology and fractional calculus theory, fractional differ-
ential equations have numerous applications in natural sciences and engineering. For instance, fractional
differential equations with nonlocal conditions are often used for modeling various phenomena arising
in control, electrochemistry, viscoelasticity, and electromagnetics.

During the past few years, a great deal of interest in existence of solutions to various classes of
fractional differential and difference equations has been shown. We refer the reader to the papers [1–
11, 14–17] and the references cited therein. In particular, many authors investigated the existence of
mild solutions of fractional differential equations in Banach space by semigroup techniques and fixed
point theorems; see, e.g., the papers [4, 5, 7, 9–11, 14, 16, 17]. Thereinto, Shu and Wang [14] studied
the existence and uniqueness of mild solutions for a differential equation with nonlocal conditions in a
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Banach space X 
CDαt u(t) = Au(t) + f(t,u(t)) +

∫t
0
q(t− s)g(s,u(s))ds, t ∈ [0, T ],

u(0) +m(u) = u0 ∈ X, u ′(0) +n(u) = u1 ∈ X,
(1.1)

where CDαt is Caputo’s fractional derivative of order 1 < α < 2, A : D(A) ⊂ X→ X is a sectorial operator
of type (M, θ,α,µ), f,g : [0, T ]×X → X are continuous functions, and nonlocal maps m, n : X → X are
continuous. The method relies on the fixed point theorems and solution operator theorems. By introduc-
ing solution operators, the authors gave a reasonable definition of mild solutions, and they also provided
estimates on solution operators which will be needed to study the existence results. Because of the com-
plexity, the analysis of distributed parameter systems is difficult. It is well known that controllability and
observability are important for the analysis and design of distributed parameter systems. Under certain
assumptions, partial differential equations can be written to ordinary differential equations in a functional
space. More precisely, the controllability problem for distributed parameter systems can be transformed
into that of lumped parameter systems; see Sakthivel et al. [12, 13].

Inspired by the previous papers and many known results reported in [12–14], we study controllability
of a class of fractional differential evolution equations with nonlocal conditions

CDαt x(t) = Ax(t) + f

(
t, x(t),

∫t
0
h(t, s, x(s))ds

)
+Bu(t), t ∈ I = [0,b],

x(0) + g1(x) = x0 ∈ X, x ′(0) + g2(x) = x
′
0 ∈ X,

(1.2)

where CDαt is Caputo’s fractional derivative of order 1 < α < 2, A : D(A) ⊂ X→ X is a sectorial operator
of type (M, θ,α,µ), f : I×X×X→ X and h : ∆×X→ X are continuous functions, ∆ = {(t, s) ∈ I× I, 0 6
t 6 s 6 b}, nonlocal maps g1,g2 : X→ X are continuous, B : U→ X is a bounded linear operator, control
function u(·) ∈ L2(I,U), U is a Banach space, and X is a Banach space endowed with the norm ‖ · ‖.

Equation (1.2) has a more general form than equation (1.1). Nonlocal conditions x(0) + g1(x) = x0
and x ′(0) + g2(x) = x ′0 are more realistic than the local ones in treating physical problems. The problem
considered in this paper has a strong physical background; see, for instance, fractional integrodifferential
equations appeared in the study of dynamical systems when the controlled systems are described by
fractional equations.

The remainder of this paper is organized as follows. In Section 2, we present some necessary defini-
tions and lemma that will be used to prove our main results, and we also introduce a suitable definition
of mild solution of fractional evolution equation (1.2). The main results are given in Section 3. Finally, in
Section 4, an example is provided to demonstrate the effectiveness of our results.

2. Preliminaries

We need the following basic definitions and properties from the fractional calculus.

Definition 2.1. The fractional integral of order γ with the lower limit zero for a function f is defined as

Iγf(t) =
1
Γ(γ)

∫t
0
(t− s)γ−1f(s)ds, t > 0, γ > 0,

provided that the right side is point-wise defined on [0,+∞), where Γ(·) is the gamma function.

Definition 2.2. The Caputo derivative of the order γ for a function f ∈ Cn[0,∞) is defined by

CDγf(t) =
1

Γ(n− γ)

∫t
0
(t− s)n−γ−1f(n)(s)ds = In−rf(n)(t), t > 0, n− 1 < γ < n.
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Remark 2.3. If f is an abstract function with values in X, then integrals which appear in Definitions 2.1
and 2.2 are taken in Bochner’s sense.

Definition 2.4 ([14]). Let A : D(A) ⊆ X → X be a closed linear operator. A is said to be a sectorial
operator of type (M, θ,α,µ) if there exist 0 < θ < π/2, M > 0, and µ ∈ R such that the α-resolvent of A
exists outside the sector

µ+ Sθ = {µ+ λα : λ ∈ C, |Arg(−λα)| < θ}

and
‖(λαI−A)−1‖ 6 M

|λα − µ|
, λα /∈ µ+ Sθ.

Compared with the fractional differential equation (1.1), we introduce a reasonable concept of mild
solutions for fractional evolution system (1.2) which describes a more general form. In what follows, we
use the notation (Hx)(t) =

∫t
0 h(t, s, x(s))ds, unless mentioned otherwise.

Lemma 2.5. Let A be a sectorial operator of type (M, θ,α,µ). If f satisfies a uniform Hölder condition with
exponent β ∈ (0, 1], then the mild solutions of (1.2) are fixed points of the operator equation

(Qx)(t) = Sα(t)(x0 − g1(x)) +Kα(t)(x
′
0 − g2(x)) +

∫t
0
Tα(t− s)[f(s, x(s), (Hx)(s)) +Bu(s)]ds,

where
Sα(t) =

1
2πi

∫
c

eλtλα−1R(λα,A)dλ, Kα(t) =
1

2πi

∫
c

eλtλα−2R(λα,A)dλ,

and
Tα(t) =

1
2πi

∫
c

eλtR(λα,A)dλ

with c being a suitable path such that λα /∈ µ+ Sθ for λ ∈ c.

The proof of Lemma 2.5 is similar to that of [14, Theorems 3.1 and 3.2]. For more details about sectorial
operators of type (M, θ,α,µ), one can refer to [14]. On the basis of the estimates on Sα(t), Kα(t), and
Tα(t) (see [14, Theorems 3.3 and 3.4] for details), it is not difficult to see that Sα(t), Kα(t), and Tα(t) have
the following results which will be used later.

Proposition 2.6. Operators Sα(t), Kα(t), and Tα(t) have the following properties:

(1) there exists a constant M1 > 0 such that

sup
t∈I
‖Sα(t)‖ 6M1, sup

t∈I
‖Kα(t)‖ 6M1, sup

t∈I
‖Tα(t)‖ 6M1;

(2) for all ε > 0 and t1, t2 ∈ (0,b], there exists a constant δ > 0 such that for |t1 − t2| < δ,

‖Sα(t1) − Sα(t2)‖ 6 ε, ‖Kα(t1) −Kα(t2)‖ 6 ε, ‖Tα(t1) − Tα(t2)‖ 6 ε.

Definition 2.7. System (1.2) is said to be controllable on interval [0,b] if, for every x0, y0 ∈ D(A), there
exists a control u ∈ L2(I,U) such that a mild solution x of (1.2) satisfies x(b) + g1(x) = y0.

Theorem 2.8 (Krasnoselskii theorem). Assume that D is a closed convex and nonempty subset of a Banach space
X. Let Q1 and Q2 be two operators such that

(1) Q1x1 +Q2x2 ∈ D whenever x1, x2 ∈ D;

(2) Q1 is a contraction mapping;

(3) Q2 is compact and continuous.

Then there exists a z ∈ D such that z = Q1z+Q2z.
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3. Main results

In order to demonstrate the main results, we list the following reasonable hypotheses.

(H1) For any u1,u2, v1, v2 ∈ X, there exist three functions µ1,µ2,ν1 ∈ L(I, R+) such that

‖f(t,u1, v1) − f(t,u2, v2)‖ 6 µ1(t)‖u1 − u2‖+ µ2(t)‖v1 − v2‖

and ‖h(t, s,u1) − h(t, s,u2)‖ 6 ν1(t)‖u1 − u2‖.

(H2) g1,g2 : X→ D(A) are continuous. For any u1,u2 ∈ X, there exist two constants N1 and N2 such that
‖g1(u1) − g1(u2)‖ 6 N1‖u1 − u2‖ and ‖g2(u1) − g2(u2)‖ 6 N2‖u1 − u2‖.

(H3) The linear operator W from L2(I,U) into X defined by Wu =
∫b

0 Tα(b − s)Bu(s)ds induces an
invertible operator W− defined on L2(I,U)/KerW, and there exists a constant K > 0 such that
‖BW−‖ 6 K.

(H4) For any k > 0, there exists a function µk ∈ L(I, R+) such that sup‖x‖6k ‖f(t, x, (Hx))‖ 6 µk(t).

Theorem 3.1. Suppose that hypotheses (H1)-(H3) hold. Then system (1.2) is controllable on I provided that

L−KN1

K
+M1Lb < 1, (3.1)

where

L = KN1 +KM1N1 +KM1N2 +KM1

(∫b
0
µ1(s)ds+

∫b
0
µ2(s)ds×

∫b
0
ν1(s)ds

)
. (3.2)

Proof. Using (H3), for an arbitrary function x(·), we define the control u and operatorQ : C(I, X)→ C(I, X)
by

u(t) =W−

[
y0 − g1(x) − Sα(b)(x0 − g1(x)) −Kα(b)(x

′
0 − g2(x)) −

∫b
0
Tα(b− s)f(s, x(s), (Hx)(s))ds

]
(t)

and

(Qx)(t) = Sα(t)(x0 − g1(x)) +Kα(t)(x
′
0 − g2(x)) +

∫t
0
Tα(t− s)[f(s, x(s), (Hx)(s)) +Bu(s)]ds,

respectively. For any x1, x2 ∈ C(I, X), by (H1)–(H3) and (3.2), we get

‖Bu1(t) −Bu2(t)‖ 6
∥∥∥BW−

[
y0 − g1(x1) − Sα(b)(x0 − g1(x1))

−Kα(b)(x
′
0 − g2(x1)) −

∫b
0
Tα(b− s)f(s, x1(s), (Hx1)(s))ds

]
(t)

−BW−
[
y0 − g1(x2) − Sα(b)(x0 − g1(x2))

−Kα(b)(x
′
0 − g2(x2)) −

∫b
0
Tα(b− s)f(s, x2(s), (Hx2)(s))ds

]
(t)
∥∥∥

6 K‖g1(x1) − g1(x2)‖+KM1‖g1(x1) − g1(x2)‖+KM1‖g2(x1) − g2(x2)‖

+KM1

∫b
0
µ1(s)‖x1 − x2‖ds+KM1

∫b
0
µ2(s)‖(Hx1)(s) − (Hx2)(s)‖ds

6 (KN1 +KM1N1 +KM1N2)‖x1 − x2‖

+KM1

(∫b
0
µ1(s)ds+

∫b
0
µ2(s)ds×

∫b
0
ν1(s)ds

)
‖x1 − x2‖

6 L‖x1 − x2‖
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and

‖(Qx1)(t) − (Qx2)(t)‖

6

∥∥∥∥Sα(t)(x0 − g1(x1)) +Kα(t)(x
′
0 − g2(x1)) +

∫t
0
Tα(t− s)[f(s, x1(s), (Hx1)(s)) +Bu1(s)]ds

−Sα(t)(x0 − g1(x2)) −Kα(t)(x
′
0 − g2(x2)) −

∫t
0
Tα(t− s)[f(s, x2(s), (Hx2)(s)) +Bu2(s)]ds

∥∥∥∥
6

(
L−KN1

K
+M1Lb

)
‖x1 − x2‖.

By virtue of (3.1), the operator Q is a contraction mapping, and so Q has a fixed point. It follows from
(H3) that the fixed point is a mild solution of control problem (1.2) and x(b) + g1(x) = y0. Therefore,
system (1.2) is controllable on I.

Theorem 3.2. Let hypotheses (H2)–(H4) be satisfied and suppose that

M1(N1 +N2) < 1 (3.3)

and
M1

(
‖x0‖+ ‖x ′0‖+N1r+ ‖g1(0)‖+N2r+ ‖g2(0)‖

)
+ bM1K

(
‖y0‖+N1r+ ‖g1(0)‖+M1‖x0‖+M1N1r+M1‖g1(0)‖+M1‖x ′0‖

+M1N2r+M1‖g2(0)‖+M1

∫b
0
µr(s)ds

)
< r

(3.4)

for some constant r > 0. Then system (1.2) is controllable on I.

Proof. Set Br = {x ∈ X : ‖x‖ 6 r}. For x ∈ Br, define the operator Q = Q1 +Q2, where

(Q1x)(t) = Sα(t)(x0 − g1(x)) +Kα(t)(x
′
0 − g2(x))

and

(Q2x)(t) =

∫t
0
Tα(t− s)[f(s, x(s), (Hx)(s)) +Bu(s)]ds.

Then

‖(Q1x)(t)‖ 6M1‖x0 − g1(x)‖+M1‖x ′0 − g2(x)‖ 6M1(‖x0‖+ ‖x ′0‖+N1r+ ‖g1(0)‖+N2r+ ‖g2(0)‖)

and
‖(Q2y)(t)‖ 6M1

∫t
0

∥∥∥∥f(s,y(s), ∫s
0
h(s, τ,y(τ))dτ

)∥∥∥∥ds+M1

∫t
0
‖Bu(s)‖ds

6M1

∫t
0
µr(s)ds+M1

∫t
0
‖Bu(s)‖ds

6M1

∫b
0
µr(s)ds+ bM1K

(
‖y0‖+N1r+ ‖g1(0)‖+M1‖x0‖+M1N1r+M1‖g1(0)‖

+M1‖x ′0‖+M1N2r+M1‖g2(0)‖+M1

∫b
0
µr(s)ds

)
.

(3.5)

Using (3.4), we deduce that ‖(Q1x)(t) + (Q2y)(t)‖ 6 r. That is, for any x,y ∈ Br, Q1x+Q2y ∈ Br. Next,
for any x,y ∈ Br, we have

‖(Q1x)(t) − (Q1y)(t)‖ 6 ‖Sα(t)(x0 − g1(x)) +Kα(t)(x
′
0 − g2(x)) − Sα(t)(x0 − g1(y)) −Kα(t)(x

′
0 − g2(y))‖

6M1‖g1(y) − g1(x)‖+M1‖g2(y) − g2(x)‖
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6M1‖g1(y) − g1(x)‖+M1‖g2(y) − g2(x)‖
6M1N1‖y− x‖+M1N2‖y− x‖
=M1(N1 +N2)‖y− x‖.

It follows from (3.3) that Q1 is a contraction mapping.
Let {xn}

∞
n=1 be a sequence in Br, x ∈ Br, and xn → x (n → ∞). Noting that f is continuous on

I×X×X, we get
f(s, xn(s), (Hxn)(s))→ f(s, x(s), (Hx)(s)), n→∞. (3.6)

For all t ∈ [0,b], we obtain

‖(Q2xn)(t) − (Q2x)(t)‖ 6
∥∥∥∥∫t

0
Tα(t− s)[f(s, xn(s), (Hxn)(s))ds+Bun(s)]ds

−

∫t
0
Tα(t− s)[f(s, x(s), (Hx)(s))ds+Bu(s)]ds

∥∥∥∥ .

Define u as in Theorem 3.1. Then

‖(Bun)(t) − (Bu)(t)‖ 6
∥∥∥BW−

[
y0 − g1(xn) − Sα(b)(x0 − g1(xn)) −Kα(b)(x

′
0 − g2(xn))

−

∫b
0
Tα(b)f(s, xn(s), (Hxn)(s))ds

]
(t)

−BW−
[
y0 − g1(x) − Sα(b)(x0 − g1(x)) −Kα(b)(x

′
0 − g2(x))

−

∫b
0
Tα(b)f(s, x(s), (Hx)(s))ds

]
(t)
∥∥∥

6 K‖g1(x) − g1(xn)‖+K‖Sα(b)g1(x) − Sα(b)g1(xn)‖
+K‖Kα(b)g2(x) −Kα(b)g2(xn)‖

+K

∫b
0
Tα(b− s)‖f(s, x(s), (Hx)(s)) − f(s, xn(s), (Hxn)(s))‖ds

6 KN1‖xn − x‖+KM1N1‖xn − x‖+KM1N2‖xn − x‖

+KM1

∫b
0
‖f(s, x(s), (Hx)(s)) − f(s, xn(s), (Hxn)(s))‖ds.

By (3.6) and the Lebesgue dominated convergence theorem, it is easy to see that

‖(Q2xn)(t) − (Q2x)(t)‖ → 0, n→∞.

Thus we conclude that Q2 is continuous. In order to present the compactness of Q2, we prove that
{(Q2x)(t) : x ∈ Br} is relatively compact for all t ∈ I and uniformly bounded, respectively. It follows from
(3.5) that ‖(Q2x)(t)‖ 6 C, where C is a constant. For 0 < t1 < t2 6 b, we obtain

‖(Q2x)(t1) − (Q2x)(t2)‖ =
∥∥∥∥∫t2

0
Tα(t1 − s)[f(s, x(s), (Hx)(s)) +Bu(s)]ds

+

∫t1

t2

Tα(t1 − s)[f(s, x(s), (Hx)(s)) +Bu(s)]ds

−

∫t2

0
Tα(t2 − s)[f(s, x(s), (Hx)(s)) +Bu(s)]ds

∥∥∥∥
6
∫t2

0
‖Tα(t1 − s) − Tα(t2 − s)‖‖f(s, x(s), (Hx)(s)) +Bu(s)‖ds
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+

∫t1

t2

‖Tα(t1 − s)‖‖f(s, x(s), (Hx)(s)) +Bu(s)‖ds

6 I1 + I2,

where

I1 =

∫t2

0
‖Tα(t1 − s) − Tα(t2 − s)‖‖f(s, x(s), (Hx)(s)) +Bu(s)‖ds

and

I2 =

∫t1

t2

‖Tα(t1 − s)‖‖f(s, x(s), (Hx)(s)) +Bu(s)‖ds.

Noting that the continuity of the function t 7→ ‖Tα(t)‖ for t ∈ (0,b], we have limt2→t1 Ii = 0. Hence, by
the Arzelà–Ascoli theorem, Q2 is compact. Then Definition 2.7 and Theorem 2.8 allow us to conclude that
(1.2) is controllable on I.

4. Example

In order to demonstrate applications of our main results obtained in Section 3, we consider the fol-
lowing fractional order distributed parameter control system

∂αu(t, x)
∂tα

=
∂2u(t, x)
∂x2 + f

(
t,u(t, x),

∫t
0
h(t, s,u(s, x))ds

)
+Bµ(t, x),

u(t, 0) = u(t,π) = 0, u ′(t, 0) = u ′(t,π) = 0,

u(t, 0) +
k∑
i=1

aiu(ti, x) = u0(x), u ′(t, 0) + c1u(t1, x) = u1(x),

(4.1)

where t ∈ I = [0,b], ti ∈ (0,b), i = 1, 2, . . . , k, x ∈ [0,π], 1 < α < 2, and B : U → X is a bounded linear
operator. Let X = L2([0,π]) and define the operator A : D(A) ⊆ X→ X by

A(u) =
∂2u

∂x2 , D(A) =

{
u ∈ X,

∂u

∂x
,
∂2u

∂x2 ∈ X

}
.

Obviously, A is densely defined in X and is the infinitesimal generator of a resolvent family {Tα(t)}t>0 on
X. For u, v ∈ C(I, X), define

f(t,u,Hu) =
|u(t, x)|

(6 + et)(1 + |u(t, x)|)
+

1
10 + et

∫t
0

e2s

2
√

2 + |u(s, x)|
ds,

f(t, v,Hv) =
|v(t, x)|

(6 + et)(1 + |v(t, x)|)
+

1
10 + et

∫t
0

e2s

2
√

2 + |v(s, x)|
ds,

g1(u)(x) =

k∑
i=1

aiu(ti, x), and g2(u)(x) = c1u(t1, x).

Then we conclude that fractional integrodifferential equation (1.2) serves as an abstract formulation of
fractional distributed parameter control system (4.1),

‖f(t,u,Hu) − f(t, v,Hv)‖ 6 1
6 + et

∥∥∥∥ |u(t, x)|
1 + |u(t, x)|

−
|v(t, x)|

1 + |v(t, x)|

∥∥∥∥
+

1
10 + et

∥∥∥∥∫t
0

e2s

2
√

2 + |u(s, x)|
ds−

∫t
0

e2s

2
√

2 + |v(s, x)|
ds

∥∥∥∥
6

1
6
‖u− v‖+ 1

10
‖Hu−Hv‖,
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and

‖h(t, s,u) − h(t, s, v)‖ 6 e2t
∥∥∥∥ 1

2
√

2 + |u(t, x)|
−

1
2
√

2 + |v(t, x)|

∥∥∥∥ 6
e2t

8
‖u− v‖ 6 e2b

8
‖u− v‖.

Hence, we can choose µ1(t) = 1/6, µ2(t) = 1/10, ν1(t) = e2b/8, N1 =
∑k
i=1 ai, and N2 = c1. Assume

now that (H3) holds. With the choices of b, K, and M1, inequality (3.1) can be satisfied. Therefore, by
Theorem 3.1, system (1.2) is controllable on I, and thus fractional distributed parameter control system
(4.1) is controllable on I.
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