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Abstract 

In this article, we present a new algorithm for solving Semi-Infinite Linear Programming (SILP) 
problems based on an artificial neural network concept. First the local reduction method for solving 
the SILP problems is introduced. Based on the local reduction method, the Karush-Kuhn-Tucker 
(KKT) conditions and gradient method are used to convert the SILP problem to an unconstrained 
optimization problem; then, a neural network model is constructed to solve it. Numerical example 
has been employed to indicate the accuracy of the new method.  
 
Keywords: Semi-Infinite linear programming; Neural network; Local reduction method; KKT 
conditions. 
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   1.   Introduction. 

 In programming modeling of real phenomenon, we frequently face to the continuous parameters 

such as time, space, weight and so on. Since usually the number of variables or constraints in such 

models is infinite, these problems are pertained to the semi-infinite programming category.  
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A Semi-Infinite Linear Programming (SILP) problem is a linear optimization problem with a finite 

number of variables and an infinite number of constraints. Like [4], the primal form of a SILP 

problem can be formulated mathematically as: 

 

 
where  is the index set  maps T onto  and 

 is a scalar function on T. If , be a countably infinite set, then the SILP problem is 
called countable. Also, if T is taken as a continuous subset of , the problem is called continuous 
semi-infinite linear program. It is also proved in [4] that the natural dual of (P) is: 

 

 

 
where  is the set of all positive Radon measures on T. In absence of the duality gap (see [4]), 
different methods are available to solve the primal and the dual form of the SILP problems. Among 
them, we mention to Local Reduction and Discretization methods ([4]), Three-Phase approach 
([2]), Primal and Dual Exchange methods ([11]), Perturbation technique ([16]) and Directions 
method ([7]).  
Regarding the successfulness and effectiveness applications of the neural network in different 
branch of science, especially in optimization, one possible and very promising approach to real-
time optimization is to apply artificial neural networks. Hopfield and Tank ([5] and [14]) first 
proposed a neural network for solving linear programming problems. Kennedy and Chua [6] 
proposed a neural network for solving nonlinear programming problems, which employs both 
gradient method and penalty function method and its equilibrium points correspond to 
approximate optimal solution only. Applying the gradient method and switched-capacitor 
technology, Rodriguez-Vazquez et al. [12] proposed a class of neural networks for solving 
optimization problems, in which their design does not require the calculation of a penalty 
parameter. Using gradient and projection methods [9], Bouzerdoum and Pattison [1] presented a 
neural network for solving quadratic optimization problems with bounded variables only. Based on 
dual and projection methods ([8], [10]) Xia and Xia et al. [17]-[21] presented several neural 
networks for solving linear and quadratic programming problems with nonunique solutions, which 
are proved to be globally convergent to exact solution. 
        Prevalent and conventional methods are gradient methods which involves constructing an 
appropriate computational energy function for the optimization problem and designing a neural 
network model which performs some form of gradient descent on that function. The gradient 
methods have an advantage in neural network models that may be defined directly using the 
derivative of the energy function. But its shortcoming is that the convergence is not guaranteed, 
especially in the case of unbounded solution sets. Therefore, a rigorous analysis of a resulting 
network must be considered [19], [3]. In [17], [18], [20] and [21], some globally convergent neural 
networks with non gradient methods are presented. Xia and Wong in [22] presented a globally 
convergent neural network that can solve problems with bounded and unbounded solution sets. 
However, there is no deterministic procedure to be used directly to construct neural networks for 
solving SILP problems. We thus feel that it is important to investigate deterministic methods such 
that designed neural networks are convergent and can solve SILP problems. 
       To solve the SILP problems, we propose in this paper, a general methodology for designing 
convergent neural network as an alternative to the existing solution method. It is based on local 
reduction method; where the numerical result shows the efficacy of the proposed method.   
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2. Modeling of Neural Network 
 
According to [22], to formulate an optimization problem in term of neural network, there exist two 
types of methods. One approach which commonly used in developing an optimization neural 
network is to convert the constrained optimization problem into an associated unconstrained 
optimization problem, and then, designing a neural network that solves the resulted unconstrained 
problem with gradient methods. The other approach is to construct a set of differential equation 
such that their equilibrium points correspond to the desired solution, and then, finding an 
appropriate Lyapunov function such that all trajectories of the system converge to some 
equilibrium points [17], [18], [20] and [21]. By combining the above two types of methods, Xia and 
Wong in [22] propose a more general method. That is, a neural network is constructed by using the 
below procedure: 

 
Step 1: Suppose the continuous function  , be the objective function and  be the 
unknown vector dimension in unconstrained minimization problem, such that its minima 
corresponds to the exact or approximate solution to the main problem; here,   is the set of 
admissible region’s points.  
 
Step 2: Construct a continuous vector valued function  such that satisfies the 
following two conditions:  

1) If   is a minimizer of , then ; 

2) ,  

where  satisfies the local Lipschitz conditions [15],  and fixed. 
 
Step 3: Let the neural network model for solving the corresponding programming problem be 
represented by the following dynamic system: 

 
 

                                                                              (1) 

 

where , and  which is to scale the convergence rate of (1). 
 
Step 4: Based on the systems (1), design the neural network architecture for solving the main 
problem. 
 
       In the aforementioned method, the first step is to establish a computational energy function 
such that the lowest energy state corresponds to the desired solution. Toward this, the basic 
approach is to transform the constrained problem (P) to an unconstrained problem, for which we 
need to find some nonlinear inequalities and equations through the saddle point theorem, the 
Kuhn-Tucker conditions, projection theorem or some equivalent results concerning optimal 
solution to (P). The second step is to establish the relation between equilibrium points of the 
system (1) and the lowest energy state, to ensure that the network trajectory globally converges to 
stable equilibrium. Next coming theorem states this convergence; its proof can be found in [22]. 

 
Theorem 2.1: Any neural network derived from the proposed method is Lyapunov stable and globally 
convergent to an exact or approximate solution to programming problem. 
Now we have the preliminary necessary information for designing effective neural network models 
to solve the Semi infinite linear programming problem (P).  
 
3. Neural Network Model Based on the Local Reduction Method 
 
Assume that all coefficients of belong to  with 

, where J is a finite set and .  
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Also suppose that the gradients of the active constraints defining T are linearly independent at 
every , and, finally, T is bounded and the Slater constraint qualification holds [4]; the 
function ’s can be considered as elements of a countable base of , such as polynomials.  

       According to the theorem (7-1 of [4]),  is the optimal point of (P) if and only if x is a feasible 
point and c is a non-negative linear combination of n vectors of  (Carathéodory lemma 
for cone), say , , where  In other 
word, A necessary and sufficient condition for x to be an optimal solution of (P), is the existence of  

 and   such that: 

                                                                                                                                                     (2) 
 

                                                                                                   (3) 
and     

                                                                                                                                                   (4)  
Obviously, taking into account (3), (4) can be replaced by the following:  is a global minimizer of 

this implies, by the classical KKT Theorem, the existence of unique non-

negative Scalars  such that 

 

 

                                                                                                                 (5) 
and the complementarity conditions   

                                                                                                                    (6) 
Therefore the existence of a solution , for the 

nonlinear system {(2); (3); (5); (6)} is a necessary condition for x to be an optimal solution of (P). 
These simultaneous equations can be solved by using the Newton or quasi-Newton methods. 
Therefore the convergence of the local reduction method is as the same as the Newton or quasi-
Newton methods [13]. Indeed, for using these methods to solve the SILP problem, it is necessary to 
choose the initial point near the optimal solution [4]. Also, we remind that feasibility is the stopping 
condition of this method such as the other methods of solving SILP problems. 
 The necessary and sufficient condition for  to be the optimal solution of (P), is that there exist the 
variables  such that the following conditions are 
satisfied: 

 

 

 

 

 
Goberna in [4] has proved that the solutions of the above simultaneous equations  
are indeed the values of , where  

 is the dual optimal solution corresponding to (P). Thus, the objective function of dual problem 
(D) can be converted from integral to a summation as follow: 

 
So, we define a new minimization problem where its objective function is the difference between 
the values of primal and dual objective functions: 
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we redefine the above problem as: 

 

 

 

 

 

 
Where 

                                         

                                              

                                               

                                                 

                                      

                                                                                     
By using the penalty method, constrained optimization problem is converted to an unconstrained 
one as follow: 

 
where s is the penalty parameter. We remind that the two last terms of the right hand side are 
applied to guarantee that   and . Now, the gradient method can be employed to convert 
the solution of above minimization problem to the solution of the following ordinary differential 
equations system: 

 (7) 
where u  ,  and  was introduced in (1); here  and  are the negative 
components of K and Y respectively. 
The convergence and stability of the above model that is known as Chau and Kennedy neural 
network model, is proved by the following theorem in [22]. 
 
Theorem 3.1: Assume that the functions W, L, H, G and F are twice continuously differentiable, then 
the proposed neural network is Lyapunov stable and at least locally convergent to the optimal solution 

of (P). Moreover, if the function E is convex on , the convergence will be global.   
 
Example 3.1. Consider the following problem from Goberna [4]: 

 

 
 
The dual problem can be shown as:              
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We have solved this problem by using the proposed method. Simultaneous equations have been 
solved based on the Euler method and by using MATLAB 7.6.  
 
The step length and number of iteration have been considered as 0.0001 and 1000 respectively. 
The obtained solution was  and  in  where the accurate 
solution of the problem is  and  in . 
 

4. Conclusion 
 
        Based on the KKT optimality conditions for the primal problem, a model of neural network is 
achieved to solve SILP problems. In this model, the problem is converted to a nonlinear 
optimization problem, and then it is solved by the Chau and Kennedy neural network model. 
According to this model, the obtained solution is approximately convergent to the optimal solution. 
In comparison to the known solution methods of SILP problems like cutting plane algorithms, 
primal and dual exchange methods and etc, this approach has much simpler structure and friendly 
users. Therefore, it causes to have less algorithm complexity and less time consuming. Moreover, 
the numerical result shows the effectiveness of the proposed method.                                                                                                                                                                                                                     
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