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Abstract
In this paper, perturbed polynomial Moon-Rand systems are considered. The Padé approximant and analytic solution in

the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic orbits for
three dimensional nonlinear dynamical systems. In order to get real bifurcation parameters, four undetermined coefficients
are introduced including three initial values about position and the value of bifurcation parameter. By the eigenvectors of its
all eigenvalues, the value of the bifurcation parameter and three initial values about position are obtained directly. And, the
analytical expressions of the Shilnikov type homoclinic orbits are achieved and the deletion errors relative to the practical system
are given. In the end, we roughly predict when the horseshoe chaos occurs. c©2017 All rights reserved.
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1. Introduction

Bifurcations and chaos of three dimensional (3D) systems have been becoming the core research con-
tent of the complex dynamical behavior in nonlinear systems. The Padé approximant was successfully
used for the homoclinic orbit of two dimensional axisymmetric breather system by Emaci et al. [1]. The
Padé approximation was extended to generate the solutions which satisfy the boundary value of homo-
clinic and heteroclinic solutions, and then to derive the critical values of bifurcation in the corresponding
conservative, autonomous and nonautonomous systems with quadratic and cubic nonlinear oscillators,
and the system parameters of the linear and nonlinear terms were variable [2, 3]. Quasi-Padé approximant
was used to construct the homoclinic orbit for a nonlinear Schrödinger equation system by Manucharyan
and Mikhlin [6]. Analytic homoclinic orbit in the nonautonomous Duffing equation and the Van Der
Pol-Duffing equation with weakly coupled nonlinear oscillators was computed by Mikhlin [7]. Moreover,
Feng et al. constructed the homoclinic and heteroclinic orbits in general asymmetric double well and
triple well systems to improve the accuracy of the threshold for the onset of chaos [3].

In our research, the Shilnikov homoclinic and heteroclinic theorems are important analytical theorems
for chaotic motion in 3D nonlinear dynamical systems. The specific analytical expressions of the Shilnikov
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type homoclinic orbits are rarely given. Mikhlin used a quasi-Padé approximant method to construct
homoclinic orbit of the Lorenz equation [8]. Vakakis and Azeez expressed the solution in power series
such as t → ±0 and introduced global approximant to match the local solutions by means of a Padé-like
procedure [9]. According to the characteristics of the n-dimensional system, Li and Zhu constructed the
s-dimensional series expression of the stable and unstable manifolds, which formed a homoclinic orbit
near the hyperbolic singular point of the Lorenz system [5]. For [10], the bifurcate parameter value was
selected in a reasonable region at the requirement of the Shilnikov theorem, then the analytic expression
of the Shilnikov type homoclinic orbit was accomplished by the series expression of manifold. In [4], as
the global approximant were analytically expressed in a series, so they can be expanded in power series
in the neighborhood of t = 0. And, in [4], the initial conditions of the orbit satisfy x(0) = x0, y(0) = y0,
and ż(0) = 0, so, the values of bifurcation parameter and initial value x0, y0 were obtained directly.

In this paper, we study the perturbed cubic polynomial Moon-Rand system. By using the same method
we get the bifurcate parameter value which is complex number. This is not what we want to get. Here, we
present a method of how to find homoclinic orbit and bifurcation parameter which is real value in a 3D
autonomous nonlinear system, and, the homoclinic orbit is Shilnikov type homoclinic orbit. The initial
conditions of the orbit in [4] are modified as x(0) = x0, y(0) = y0, z(0) = z0. The Padé approximation
method is introduced and the analytic solution can be expanded in power series in the neighbourhood of
t = 0. Thus, the values of bifurcation parameter and initial values of x0,y0, z0 are obtained directly. The
analytical expressions of the Shilnikov type homoclinic orbit are also formed. The deletion error relative
to the practical system is achieved by programming.

The rest of this paper is organized as follows. In Section 2, Shilnikov theorem and in Section 3,
eigenvalues analysis of the system are presented. In Section 4, the calculation procedures of the presented
method in this paper are introduced. The final section, i.e., Section 5, is devoted to some conclusions that
we got from the present study.

2. Shilnikov theorem

In this section, we present Shilnikov theorem. Shilnikov proved that under certain conditions a saddle-
foci homoclinic orbit in its neighborhood has a countable set of periodic trajectories, which can lead to
the formation of chaotic attractor. For chaos to occur within a three dimensional phase space, it requires
the system

dx
dt

= f(x), t ∈ R, x ∈ R3, (2.1)

where the vector field f : R3 → R3 is p-times differentiable (p > 1) with a continuous derivative (so
called Cp), and R3 stands for the real three dimensional space. We call the equilibrium point x0 ∈ R3, a
hyperbolic saddle-foci, if the eigenvalues of the 3× 3 real matrix A = Df(x0), the Jacobin derivative of f
at x0, are of the form

λ1 = r, λ2,3 = p± iq, rp < 0, q 6= 0,

where r, p, q are real. The Shilnikov theorem will be described as follows:

Theorem 2.1 (Shilnikov theorem, [10]). For Eq. (2.1), suppose that x0 is a hyperbolic saddle-foci equilibrium
point, the corresponding Jacobin matrix Df(x0) has eigenvalues λ1 = r, λ2,3 = p± iq, which satisfy r < 0, p > 0,
q 6= 0, |r| > p, and there exists a homoclinic orbit based at x0. Then, system (2.1) exhibits horseshoe chaos.

3. Eigenvalues analysis of the system

We consider a three dimensional system
ẋ = αx+ y,
ẏ = −x+αy− xz,
ż = −λz+C30x

3 +C21x
2y+C12xy

2 +C03y
3,

(3.1)

which is formally evolved from the three dimensional system
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ẋ = y,
ẏ = −x− xz,
ż = −λz+C30x

3 +C21x
2y+C12xy

2 +C03y
3,

with the primary target of promoting or eliminating chaos. Here we discuss the Jacobin matrix

A =

 α 1 0
−1 α 0
0 0 −λ


at the equilibrium point (0, 0, 0). The characteristic polynomial is

k3 + (λ− 2α)k2 + (α2 − 2αλ+ 1)k+α2λ+ λ = 0. (3.2)

By (3.2), we get
k1 = −λ, k2 = α− i, k3 = α+ i.

Based on Shilnikov theorem, we must get a negative real root and a pair of conjugate complex roots with
positive real parts. So λ > 0, α > 0.

According to Shilnikov theorem, when λ > α > 0, (3.1) may has a homoclinic orbit connecting the
equilibrium point (0, 0, 0). It is our intention to find the approximate expression of homoclinic orbit based
at x0 of the system (3.3).

In this paper, let the initial values are x0, y0, z0, α, in which α is the bifurcation parameter, other
parameters are chosen to be

λ = 5, C30 = 1, C21 = 1, C12 = 1, C03 = 1.

Thus, (3.1) turns to 
ẋ = αx+ y,
ẏ = −x+αy− xz,
ż = −5z+ x3 + x2y+ xy2 + y3.

(3.3)

The Shilnikov sense Smale horseshoe chaos is predicted to occur in a range of 5 > α > 0 in terms of the
Shilnikov theorem.

4. Finding analytic homoclinic solution

Since the calculation process is complicated and time-consuming in many systems when using the
invariant manifold theorem to calculate the stable and unstable manifold equation, series expressions of
the stable and unstable manifolds at a hyperbolic saddle-focus point are introduced by taking the 1D
manifold and 2D manifold into consideration in calculation. The 1D manifold in (3.3) can be expressed as

x[+](t) =

n∑
k=0

ake
kk1t, y[+](t) =

n∑
k=0

bke
kk1t, z[+](t) =

n∑
k=0

cke
kk1t, (t→ +∞), (4.1)

where ak, bk, and ck are undetermined coefficients.
Similarly, the 2D manifold in (3.3) can be expressed as

x[−](t) =

n∑
k=0

n−k∑
j=0

ak,je
kk2t+jk3t, y[−](t) =

n∑
k=0

n−k∑
j=0

bk,je
kk2t+jk3t,

z[−](t) =

n∑
k=0

n−k∑
j=0

ck,je
kk2t+jk3t, (t→ −∞),

(4.2)
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where ak,j,bk,j, and ck,j are undetermined coefficients as before.
Here, analytic solutions in the neighborhood of the initial value are considered to eliminate the disjoint

problem between 1D and 2D manifold expressions in traditional algorithms. The relations between 1D
and 2D manifold expressions are strengthened. Since the homoclinic solution is analytic in the neighbor-
hood of t = 0, the solution in power series as t→ ±0 can be expressed as follows

x[0](t) =
∑
k=0

x
[0]
k t

k, y[0](t) =
∑
k=0

x
[0]
k t

k, z[0](t) =
∑
k=0

x
[0]
k t

k, (t→ ±∞). (4.3)

Substituting (4.3) into (3.3) and matching coefficients of respective powers of t, we obtain the recursive
expressions represented by constant coefficients of series as follows

x
[0]
k+1 =

1
k+ 1

[αx
[0]
k + y

[0]
k ],

y
[0]
k+1 =

1
k+ 1

[−x
[0]
k +αy

[0]
k −

k∑
j=0

x
[0]
j z

[0]
k−j],

z
[0]
k+1 =

1
k+ 1

[−5z[0]k +

k∑
j=0

k−j∑
h=0

x
[0]
j x

[0]
h x

[0]
k−j−h +

k∑
j=0

k−j∑
h=0

x
[0]
j x

[0]
h y

[0]
k−j−h

+

k∑
j=0

k−j∑
h=0

x
[0]
j y

[0]
h y

[0]
k−j−h +

k∑
j=0

k−j∑
h=0

y
[0]
j y

[0]
h y

[0]
k−j−h].

(4.4)

Since system (3.3) is autonomous, the initial conditions of the orbit can arbitrarily be at the point
where x(0) = x0 = a, y(0) = y0 = b, z(0) = z0 = c. Then,

x
[0]
0 = x0 = a, y[0]0 = y0 = b, z[0]0 = z0 = c,

where x0, y0, z0 are undetermined initial values. As t → ±0, the positive and negative approximants
x[+](t) and x[−](t) are expanded in power series and equated to the corresponding local homoclinic
expansion x[0](t), that is x[±](t) ≈ x[0](t). Then we can get

x[+](t) =

n∑
k=0

ake
kk1t = a0 + a1e

k1t + a2e
2k1t + · · ·+ anenk1t ≈ x[0]0 + x

[0]
1 t+ x

[0]
2 t

2 + · · · .

Matching the coefficients of respective powers of t, the coefficients a1, · · · , an are evaluated in terms
of x[0]i as follows

a1
a2
. . .
an

 =


1 1 . . . 1
k1 2k1 . . . nk1
. . . . . . . . .
kn−1

1 (2k1)
n−1 . . . (nk1)

n−1


−1

×


x
[0]
0

1!x[0]1
. . .

(n− 1)!x[0]n−1

 . (4.5)

Similarly, the 2D manifold equation is obtained as

x[−](t) =

n∑
k=0

n−k∑
j=0

ak,je
kk2t+jk3t

= a0,0 + a1,0e
k2t + a2,0e

2k2t + · · ·+ an,0e
nk2t + a0,1e

k3t + a0,2e
2k3t + · · ·+ a0,ne

nk3t

+ a1,1e
k2t+k3t + a1,2e

k2t+2k3t + · · ·+ a1,n−1e
k2t+(n−1)k3t

+ a2,1e
2k2t+k3t + · · ·+ an−1,1e

(n−1)k2t+k3t + · · · ≈ x[0]0 + x
[0]
1 t+ x

[0]
2 t

2 + · · · .
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The above equation can be simplified into

a1,0
a2,0

...
an,0
a0,1
a0,2

...
a0,n
a1,1
a1,2

...
a1,n−1
a2,1

...
an−1,1


s×1

=
[
A B C

]−1
s×s
×


x
[0]
0

1!x[0]1
. . .

(s− 1)!x[0]s−1


s×1

, (4.6)

where s = n(n+3)
2 ,

A =


1 1 . . . 1
k2 2k2 . . . nk2
. . . . . . . . .
ks−1

2 (2k2)
s−1 . . . (nk2)

s−1


s×n

, B =


1 1 . . . 1
k3 2k3 . . . nk3
. . . . . . . . .
ks−1

3 (2k3)
s−1 . . . (nk)s−1


s×n

,

C=


1 1 . . . . . . . . . . . . 1

k2 + k3 k2 + 2k3 . . . k2 + (n− 1)k3 2k2 + k3 . . . (n− 1)k2 + k3
. . . . . . . . . . . . . . . . . . . . .

(k2 + k3)
s−1 (k2 + 2k3)

s−1 . . . (k2 + (n− 1)k3)
s−1 (2k2 + k3)

s−1 . . . ((n− 1)k2 + k3)
s−1


s×n(n−1)

2

.

Similarly,


b1
b2
...
bn

 ,


c1
c2
...
cn

 ,



b1,0
b2,0

...
bn,0
b0,1
b0,2

...
b0,n
b1,1
b1,2

...
b1,n−1
b2,1

...
bn−1,1


s×1

,



c1,0
c2,0

...
cn,0
c0,1
c0,2

...
c0,n
c1,1
c1,2

...
c1,n−1
c2,1

...
cn−1,1


s×1

are evaluated in terms of y[0]i , z[0]i .

Here, a0, b0, c0 and a0,0, b0,0, c0,0 are the component values of system at the singular point, namely
zero [10]. And, approximant with superscript + (−) are termed positive (negative) approximant and are
valid only for positive (negative) values of t. The order of the exponents appearing in the positive and
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negative approximants are identical to those of the asymptotic expansions in (4.1) and (4.2) for t > 0 and
t < 0, respectively.

Because k1, k2, k3 are eigenvalues of linear part of system, so bringing (4.1) and (4.2) back to the
original equation, we can easily obtain

(a1, b1, c1) = µ1(ν1,1, ν1,2, ν1,3), µ1 ∈ [−µ1m, µ1m], (4.7)

and
(a1,0, b1,0, c1,0) = µ2(ν2,1, ν2,2, ν2,3), µ2 ∈ [−µ2m, µ2m], (4.8)

(a0,1, b0,1, c0,1) = µ3(ν3,1, ν3,2, ν3,3), µ3 ∈ [−µ3m, µ3m], (4.9)

where µ1m, µ2m, µ3m are the maximum constants to keep series expressions (4.1) and (4.2) convergent,
(ν1,1, ν1,2, ν1,3) is the eigenvector of eigenvalue k1, (ν2,1, ν2,2, ν2,3) is the eigenvector of eigenvalue k2,
and (ν3,1, ν3,2, ν3,3) is the eigenvector of eigenvalue k3 ([5]).

Considering (4.7), (4.8), and (4.9), it is easy to verify that (4.8) is equivalent to (4.9), so we only need
(4.7) and (4.8), or (4.7) and (4.9) are true. Moreover, we know that if one of ν1,1, ν1,2, ν1,3, ν2,1, ν2,2, ν2,3,
ν3,1, ν3,2, ν3,3 is zero, then, we must get one of a1, b1, c1, a1,0, b1,0, c1,0, a0,1, b0,1, c0,1 is zero. So without
loss of generality, linear part of general 3D autonomous system is λ1 0 0

0 α −w
0 w α

 ,

where λ1 ∈ R, λ2 = α+ iw, λ3 = α− iw, α ∈ R, w ∈ R.
Now, again we consider the system

ẋ = αx+ y,
ẏ = −x+αy− xz,
ż = −5z+ x3 + x2y+ xy2 + y3.

Taking the third-order approximant of (4.1), the powers are k1-th, 2k1-th and 3k1-th for the 1D equation,
taking the second-order approximant of Eq. (4.2), the powers are k2-th , 2k2-th, k3-th, 2k3-th, k2 + k3-th
for the 2D equation. And, the selected initial conditions of the orbit can arbitrarily be at the point where
x(0) = x0 = a, y(0) = y0 = b, z(0) = z0 = c.

Using (4.4), computing by programming we can easily get



x
[0]
0

x
[0]
1

x
[0]
2

x
[0]
3

x
[0]
4


,



y
[0]
0

y
[0]
1

y
[0]
2

y
[0]
3

y
[0]
4


,



z
[0]
0

z
[0]
1

z
[0]
2

z
[0]
3

z
[0]
4


. Then, by

(4.5) and (4.6), we can immediately get


a1
a2
a3

 ,


b1
b2
b3

 ,


c1
c2
c3

 ,


a1,0
a2,0
a0,1
a0,2
a1,1

 ,


b1,0
b2,0
b0,1
b0,2
b1,1

,


c1,0
c2,0
c0,1
c0,2
c1,1

.

Moreover, we also know they are all functions of a, b, c, α. So, if we want to get 1D and 2D manifold
expressions, we must determine a, b, c, α. Next, making full use of the eigenvector (νi,1, νi,2, νi,3) of
eigenvalue ki, we can get a simultaneous equation. By computing, the Jacobian matrices of the system
(3.3) have eigenvalue k1 = −5 corresponding to eigenvector (0, 0, 1), eigenvalue k2 = −i+α corresponding
to eigenvector (1,−i, 0), eigenvalue k3 = i +α corresponding to eigenvector (1, i, 0).
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Using conclusion (4.7) and (4.8), we easily get a simultaneous equation
a1 = 0,
b1 = 0,
Re(c1,0) = 0,
Im(c1,0) = 0,

(4.10)

meanwhile,
a1,0

b1,0
= i (4.11)

also must be satisfied as soon as possible, where a1, b1, a1,0, b1,0, c1,0 are functions of a, b, c, α.

From (4.10) and (4.11), we can directly obtain the values of a, b, c, α. Then,


a1
a2
a3

,


b1
b2
b3

,


c1
c2
c3

,


a1,0
a2,0
a0,1
a0,2
a1,1

,


b1,0
b2,0
b0,1
b0,2
b1,1

,


c1,0
c2,0
c0,1
c0,2
c1,1

 are known. Because the coefficients include complex number,

the homoclinic solution in positive and negative directions can be written in the following form

x[+](t) = a1e
k1t + a2e

2k1t + a3e
3k1t,

y[+](t) = b1e
k1t + b2e

2k1t + b3e
3k1t,

z[+](t) = c1e
k1t + c2e

2k1t + c3e
3k1t,

x[−](t) = Re(a1,0e
k2t + a2,0e

2k2t + a0,1e
k3t + a0,2e

2k3t + a1,1e
k2t+k3t),

y[−](t) = Re(b1,0e
k2t + b2,0e

2k2t + b0,1e
k3t + b0,2e

2k3t + b1,1e
k2t+k3t),

z[−](t) = Re(c1,0e
k2t + c2,0e

2k2t + c0,1e
k3t + c0,2e

2k3t + c1,1e
k2t+k3t).

The above calculation of homoclinic orbit can be achieved by programming. That is the analytic
homoclinic solution can be obtained.

Solving equation (4.10)-(4.11) by MATLAB, we get some values of a, b, c, α. As the Shilnikov sense
Smale horseshoe chaos is predicted to occur in a range of 5 > α > 0, so we have
(1).

a = 0.000000000000001,
b = −0.000000000000023,
c = 0.000000000000000,
α = 0.279079600447614,

a1
a2
a3

 =


−2.771961941202775× 10−15

6.271831842450346× 10−15

−2.499869901247553× 10−15

 ,


b1
b2
b3

 =


−7.071703786216559× 10−14

7.169219264330171× 10−14

−2.397515478113609× 10−14

 ,


c1
c2
c3

 =


−2.676214696157709× 10−42

4.186429392315434× 10−42

−1.510214696157717× 10−42

 ,
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a1,0
a2,0
a0,1
a0,2
a1,1

 =


−1.713682144486563× 10−15 − 7.362315823177537× 10−15i
3.715338502258792× 10−16 + 4.623761973321532× 10−16i
−1.713682144486563× 10−15 + 7.362315823177537× 10−15i
3.715338502258792× 10−16 − 4.623761973321532× 10−16i

3.684296588521366× 10−15

 ,


b1,0
b2,0
b0,1
b0,2
b1,1

 =


−4.107317993814730× 10−15 + 4.318473674050183× 10−15i
−1.381097237208684× 10−16 − 4.503096154769760× 10−16i
−4.107317993814730× 10−15 − 4.318473674050183× 10−15i
−1.381097237208684× 10−16 + 4.503096154769760× 10−16i

−1.450914456492880× 10−14

 ,


c1,0
c2,0
c0,1
c0,2
c1,1

 =


−5.547570401811642× 10−41 − 1.989647415734912× 10−41i
1.325916367551282× 10−41 + 7.496684227115509× 10−43i
−5.547570401811642× 10−41 + 1.989647415734912× 10−41i
1.325916367551282× 10−41 − 7.496684227115509× 10−43i

8.443308068520719× 10−41

 ,

x[+](t) = (−2.771961941202775× 10−15)e−5t + (6.271831842450346× 10−15)e−5t×2

+ (−2.499869901247553× 10−15)e−5t×3,
(4.12)

y[+](t) = (−7.071703786216559× 10−14)e−5t + (7.169219264330171× 10−14)e−5t×2

+ (−2.397515478113609× 10−14)e−5t×3,
(4.13)

z[+](t) = (−2.676214696157709× 10−42)e−5t + (4.186429392315434× 10−42)e−5t×2

+ (−1.510214696157717× 10−42)e−5t×3,
(4.14)

where (4.12), (4.13), and (4.14) are one dimensional invariant manifold. And

x[−](t) = Re((−1.713682144486563× 10−15 − 7.362315823177537× 10−15i)e(0.279079600447614−1.000000000000000i)t

+ (3.715338502258792× 10−16 + 4.623761973321532× 10−16i)e(0.558159200895228−2.000000000000000i)t

+ (−1.713682144486563× 10−15 + 7.362315823177537× 10−15i)e(0.279079600447614+1.000000000000000i)t

+ (3.715338502258792× 10−16 − 4.623761973321532× 10−16i)e(0.558159200895228+2.000000000000000i)t

+ (3.684296588521366× 10−15)e0.558159200895228t),

y[−](t) = Re((−4.107317993814730× 10−15 + 4.318473674050183× 10−15i)e(0.279079600447614−1.000000000000000i)t

+ (−1.381097237208684× 10−16 − 4.503096154769760× 10−16i)e(0.558159200895228−2.000000000000000i)t

+ (−4.107317993814730× 10−15 − 4.318473674050183× 10−15i)e(0.279079600447614+1.000000000000000i)t

+ (−1.381097237208684× 10−16 + 4.503096154769760× 10−16i)e(0.558159200895228+2.000000000000000i)t

+ (−1.450914456492880× 10−14)e0.558159200895228t),

z[−](t) = Re((−5.547570401811642× 10−41 − 1.989647415734912× 10−41i)e(0.279079600447614−1.000000000000000i)t

+ (1.325916367551282× 10−41 + 7.496684227115509× 10−43i)e(0.558159200895228−2.000000000000000i)t

+ (−5.547570401811642× 10−41 + 1.989647415734912× 10−41i)e(0.279079600447614+1.000000000000000i)t

+ (1.325916367551282× 10−41 − 7.496684227115509× 10−43i)e(0.558159200895228+2.000000000000000i)t

+ (8.443308068520719× 10−41)e0.558159200895228t).

Above equations are two dimensional invariant manifold.
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This moment, the 3D phase diagram is shown in Figure 1 and the time series of trajectories x(t), y(t),
and z(t) are shown in Figure 2. Then, by bringing α = 0.279079600447614 back to the practical sys-
tem (3.3), we calculate the deletion error is 0.017096611495099 with least squares and the deletion error
generated by (x0, y0, z0). When α = 0.279079600447614, analysis reveals that the maximum Lyapunov ex-
ponent (l1 = 0.280875) is greater than zero, then it meets the exponential requirement for chaotic attractor.

−5

0

5

10

15

x 10
−15

−3

−2

−1

0

1

x 10
−14

−2

0

2

4

6

8

x 10
−41

xy

z

Figure 1: The 3D phase diagram of the model.
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Figure 2: Time series of the trajectories of the model: (a) x(t), (b) y(t), and (c) z(t).

(2).

a = −0.000000000000001,
b = 0.000000000000015,
c = 0.000000000000000,
α = 0.128629219182314,

a1
a2
a3

 =


7.501249025340232× 10−16

−3.013112726986300× 10−15

1.262987824452266× 10−15

 ,
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b1
b2
b3

 =


4.563572917579219× 10−14

−4.597851452281091× 10−14

1.534278534701872× 10−14

 ,


c1
c2
c3

 =


7.177796569898546× 10−43

−1.119159313979713× 10−42

4.013796569898567× 10−43

 ,


a1,0
a2,0
a0,1
a0,2
a1,1

 =


3.904148455119211× 10−16 + 4.533912565983060× 10−15i
−1.028534829823685× 10−16 − 3.186109474304711× 10−16i
3.904148455119211× 10−16 − 4.533912565983060× 10−15i
−1.028534829823685× 10−16 + 3.186109474304711× 10−16i

−1.575122725059106× 10−15

 ,


b1,0
b2,0
b0,1
b0,2
b1,1

 =


2.827844737584515× 10−15 − 1.106610813994100× 10−15i
−5.004118701902976× 10−17 + 1.366377793786894× 10−16i
2.827844737584515× 10−15 + 1.106610813994100× 10−15i
−5.004118701902976× 10−17 − 1.366377793786894× 10−16i

9.444392898869032× 10−15

 ,


c1,0
c2,0
c0,1
c0,2
c1,1

 =


1.376061727611506× 10−41 + 4.310032277211528× 10−42i
−3.101060515260080× 10−42 − 8.745074107590937× 10−43i
1.376061727611506× 10−41 − 4.310032277211528× 10−42i
−3.101060515260080× 10−42 + 8.745074107590937× 10−43i

−2.131911352170996× 10−41

 ,

x[+](t) = (7.501249025340232× 10−16)e−5t + (−3.013112726986300× 10−15)e−5t×2

+ (1.262987824452266× 10−15)e−5t×3,
(4.15)

y[+](t) = (4.563572917579219× 10−14)e−5t + (−4.597851452281091× 10−14)e−5t×2

+ (1.534278534701872× 10−14)e−5t×3,
(4.16)

z[+](t) = (7.177796569898546× 10−43)e−5t + (−1.119159313979713× 10−42)e−5t×2

+ (4.013796569898567× 10−43)e−5t×3,
(4.17)

where (4.15), (4.16), and (4.17) are the one dimensional invariant manifold. And

x[−](t) = Re((3.904148455119211× 10−16 + 4.533912565983060× 10−15i)e(0.128629219182314−1.000000000000000i)t

+ (−1.028534829823685× 10−16 − 3.186109474304711× 10 − 16i)e(0.257258438364628−2.000000000000000i)t

+ (3.904148455119211× 10−16 − 4.533912565983060× 10−15i)e(0.128629219182314+1.000000000000000i)t

+ (−1.028534829823685× 10−16 + 3.186109474304711× 10−16i)e(0.257258438364628+2.000000000000000i)t

+ (−1.575122725059106× 10−15)e0.257258438364628t),

y[−](t) = Re((2.827844737584515× 10−15 − 1.106610813994100× 10−15i)e(0.128629219182314−1.000000000000000i)t

+ (−5.004118701902976× 10−17 + 1.366377793786894× 10−16i)e(0.257258438364628−2.000000000000000i)t

+ (2.827844737584515× 10−15 + 1.106610813994100× 10−15i)e(0.128629219182314+1.000000000000000i)t

+ (−5.004118701902976× 10−17 − 1.366377793786894× 10−16i)e(0.257258438364628+2.000000000000000i)t

+ (9.444392898869032× 10−15)e0.257258438364628t),

z[−](t) = Re((1.376061727611506× 10−41 + 4.310032277211528× 10−42i)e(0.128629219182314−1.000000000000000i)t
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+ (−3.101060515260080× 10−42 − 8.745074107590937× 10−43i)e(0.257258438364628−2.000000000000000i)t

+ (1.376061727611506× 10−41 − 4.310032277211528× 10−42i)e(0.128629219182314+1.000000000000000i)t

+ (−3.101060515260080× 10−42 + 8.745074107590937× 10−43i)e(0.257258438364628+2.000000000000000i)t

+ (−2.131911352170996× 10−41)e0.257258438364628t).

Above equations are the two dimensional invariant manifold.
This moment, the 3D phase diagram is shown in Figure 3 and the time series of trajectories x(t), y(t),

and z(t) are shown in Figure 4. Then, by bringing α = 0.128629219182314 back to the practical system (3.3)
we calculate the deletion error is 0.046683594397385 with least squares and the deletion error generated
by (x0, y0, z0). When α = 0.128629219182314, analysis reveals that the maximum Lyapunov exponent
(l1 = 0.12) is greater than zero, then it meets the exponential requirement for chaotic attractor.
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Figure 3: The 3D phase diagram of the model.
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Figure 4: Time series of the trajectories of the model: (a) x(t), (b) y(t), and (c) z(t).

From Figure 1 and Figure 3, we can see that the focus becomes more and more weak as α → 0. It is
easy to prove this conclusion from a mathematical point of view.

When α ≈ 0.279079600447614 or α ≈ 0.128629219182314, the above two expressions are close to
homoclinic orbit of the system (3.3) very much. Moreover, according to continuity of solution for initial
value and parameter, we know when α ≈ 0.279079600447614 or α ≈ 0.128629219182314, the system
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is likely to exist the homoclinic orbit. Then, by the Shilnikov theorem, the system is likely to exhibit
horseshoe chaos.

5. Conclusion

In this article, the homoclinic orbit of the system is constructed by the series expression of the stable
and unstable manifold and power series expansion in the neighborhood of t = 0. The Shilnikov sense
chaotic motion is predicted by the Shilnikov theorem. In this paper, we just find an orbit approximates
the homoclinic orbit. If we want to get the practical homoclinic orbit precisely, we have more works to do
and more challenges to face.

The strategy presented in this paper is generally applied and accepted. Hence, it would be possible
to apply the presented method to research other 3D systems with more complicated nonlinearity, which
will be a topic for the further study.
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