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Abstract

This article considers an inverse eigenvalue problem for centrosymmetric matrices under a central principal submatrix
constraint and the corresponding optimal approximation problem. We first discuss the specified structure of centrosymmetric
matrices and their central principal submatrices. Then we give some necessary and sufficient conditions for the solvability of
the inverse eigenvalue problem, and we derive an expression for its general solution. Finally, we obtain an expression for the
solution to the corresponding optimal approximation problem. (©2017 All rights reserved.
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1. Introduction

We first introduce some notations. Let R™*™ denote the set of all n x m real matrices. Let OR™*™ be
the set of all n x n orthogonal matrices. Let AT, rank(A) and A* represent the transpose, rank and Moore-
Penrose generalized inverse of matrix A, respectively. Let I, denote the identity matrix of order n, and 0
be a zero matrix or vector of size implied by context. We use < A,B >= trace(BTA) to define the inner
product of matrices A and B in R™*™. Then R™*™ is a Hilbert inner product space. The norm of a matrix

generated by the inner product is the Frobenius norm || - ||, that is, ||[A]| = V< A, A > = (trace(ATA))z.

Definition 1.1. A real n x n matrix A = (ay;) is called a centrosymmetric matrix if its elements satisfy
the properties

aij = Qn_it1n—j+1, forl<i,j<mn.

The set of all n x n centrosymmetric matrices is denoted by CSR™*™.

Centrosymmetric matrices play an important role in areas such as the numerical solution to certain
differential equations [1], various engineering problems [5], and the study of some Markov processes [16].
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In particular, Kimura [12] studied a Markov process whose transition matrix R is an (n+1) x (n+1)
centrosymmetric matrix. The matrix R is given when o = 2 by

n—1ix i no ..
= (V) () /() vevren

In fact, symmetric Toeplitz matrices and persymmetric Hankel matrices are two useful examples of cen-
trosymmetric matrices. Good [8] pointed out that “Toeplitz matrices arise as discrete approximations
to kernels k(x,t) of integral equations when these kernels are functions of [x —t[. Similarly if a kernel
is an even function of its vector argument (x,t), that is k(x,t) = k(—x, —t), then it can be discretely
approximated by a centrosymmetric matrix.”

Several interesting results are available in the literature on centrosymmetric matrices [14, 20]. In par-
ticular, Peng et al. discussed the linear constrained problem of centrosymmetric matrices with a leading
principal submatrix constraint [14]. The problem, finding solutions of a matrix equation under a principal
submatrix constraint, comes from a practical subsystem expansion problem. Therefore, researchers have
great interest in studying a variety of problems under submatrices constraint of late years [6, 14, 17].
Because of the specified structure of centrosymmetric matrices, it is unfit for discussing centrosymmetric
matrices under their leading principal submatrices constraint, for it destroys the special symmetric of
centrosymmetric matrices. Therefore, we present a different concept, a central principal submatrix, which
was first defined in [18]. The definition is as follows.

Definition 1.2. If n —k is even, then the k-square central principal submatrix A.(k) of a given matrix
A € R™ ™ is a k-square submatrix obtained by deleting the first and last ®* rows and columns of A,
that is

Ac(k) = (0, Ty, 0)A(0, T, 0)T, 0 R**"2".

It is intuitive and obvious that a matrix of odd (even) order only has central principal submatrices of
odd (even) order.
Throughout this paper, we denote by A[k] the right-bottom k x k principal submatrix of A € R™*™,
that is
Al = (ai;)-n 11 = (0, TA(0, L)'

In particular, an inverse eigenvalue problem is as follows. Given vectors xi, ---, x; and scalars
A, -+, AL where 1 < 1 < n, construct an n x n matrix A € S such that

Ax; =N, j=1,--,1, (1.1)

where S is a subset of R™*™ with specified structures.

It may arise from the design of Hopfield networks and the mass-spring system [13], in a remarkable
variety of applications such as applied mechanics and structure design [11], in the discrete analogue of the
inverse Sturm-Liouville problem [19] and in vibration design [15]. Studies of inverse eigenvalue problems
have ranged from engineering application to algebraic theorization [2—4, 10, 20]. The inverse eigenvalue
problem for centrosymmetric matrices under a central principal submatrix constraint is presented in light
of the extended matrix preserves the centrosymmetric structure, thus this problem has practical applica-
tions. Furthermore, it allows us to extend the existing solutions. However, it has not been considered yet.
In this paper, we will discuss this problem and its optimal approximation. We first discuss the special
structure of eigenvalues and eigenvectors for a real matrix in real number field.

If a real matrix A has a complex eigenvalue A; = o4 +1ix* 3; («j, Bj are real numbers, 1 < j < 1,
i = v/—1), and the associated complex eigenvector is x; = &; +1ix*m; ( &, n; are real vectors), then
Aj = o —i# Bj is also an eigenvalue of A with the associated eigenvector X; = &; —1n;, and

A&, n3) = (&, 1) (“éj Bj) : (1.2)

%



L.-J. Zhao, R. Huang, ]J. Math. Computer Sci., 17 (2017), 477-487 479

Thus, if x; is a real eigenvector associated with a real eigenvalue A; of A, then let
/\j = }\j P Xj = Xj.

If x; = & +1xmj is a complex eigenvector associated with a complex eigenvalue A; = o +1x 35 of A,
then set

7\]:(“" B’), X; = (&, nj). (1.3)

—Bj o
Hence, for given eigenvalues A;, ---, A; and the associated eigenvectors xi, ---, x1, write
X=(Xy, -+, X) € RV™, A =diag(Ay, ---, Ay) € R™X™, (1.4)

where m > 1, then (1.1) is equal to AX = XA. Therefore, the problem discussed in this paper can be
expressed as follows.

Problem 1.3. Given X € R™*™ and A € R™*™ with the form as in (1.4), Ag € CSR**¥, for k < n, find an
extended matrix A € CSR™*™ gsuch that

AX = XA, and A.(k) = Ay.
Problem 1.4. Given an estimate A € R™*™M find a matrix A* € S such that

|A” =&l = min A=Al
E€SA

where S is the solution set of Problem 1.3.

This paper is organized as follows. First, we discuss the specified properties and structure of cen-
trosymmetric matrices and their central principal submatrices. Next, we study eigenvalues and eigen-
vectors of centrosymmetric matrices, and obtain that the eigenvectors of a centrosymmetric matrix can
be expressed in a special form. After that, we convert Problem 1.3 into two inverse eigenvalue problems
of half-sized independent real matrices under themselves right-bottom principal submatrices constraint
trickily, which is a special feature of this paper. Meanwhile, this simplifies and is crucial to solve Prob-
lem 1.3. Later on, we derive the solvability conditions of Problem 1.3 and an expression for its general
solution. Finally, we prove that Problem 1.4 has a unique solution and give an expression for it.

2. The properties of centrosymmetric matrices and their central principal submatrices
Denote by e; the i-th (i=1,2,--- ,n) column of I,,, and let S;, = (en,en—_1,--- ,€1), then
Sn =S, SnSt =1,.

Lemma 2.1 ([7]). A matrix A € CSR™*™ if and only if SyAS, = A.

Let r = [5], where [3] is the maximum integer which is not greater than 7. And let
D 1<IT IT>(T12r) D _ 1 I(; \% I0r m=2r+1)
EEAS T V2\s, 0 s |
T T

It is easy verified that the above matrices D,, are orthogonal matrices.

Lemma 2.2 ([20]). A € CSR¥*2" if and only if there exist M, N € R™ " such that

(M ONS. )\ M+N 0 T
A‘(er STMST>_DZT< 0 M—N)Dzr' @1)

A € CSREHDx2r+1) if and only if there exist M, N € R"™ ", u, v € R" and « € R such that
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M  u NS, M+N V2u 0
A= vl o« VIS, | =D [ v2VT o 0 DJy i1 (2.2)
S:N S,u S.MS. 0 0 M-—N

Furthermore, when n = 27, let

A1 =M+N, Apy=M-N, (2.3)
and when n = 2r + 1, set
M+N V2u

An = ( ﬁvT o ) , Axn = M —N, (2~4)

then A € CSR™™ if and only if there exist Aq; € RIM—TX(M=T) angd Ay € R™%T, whether n is odd or even, such

that
A 0 T
=D D,. 2.

A n < 0 A 2 n ( 5)

Now we give the special properties of the k-central principal submatrix of a centrosymmetric matrix,

that is the submatrix having the same symmetric properties and structure as the given centrosymmetric

matrix. Hence they have similar expressions, which is crucial to solve Problem 1.3, for it provides a

reasoned way to convert Problem 1.3 to two inverse eigenvalue problems of half-sized independent real

matrices under themselves right-bottom principal submatrices constraint. Here, we always assume that
t=[5].
2

Lemma 2.3. Let A € CSR™™ have the form as in (2.5). Then the k-square central principal submatrix of A can
be expressed as

A (k) = Dy (A““S_t] A;z)[t]) Dy. (2.6)

Proof. When n = 2r, from (2.1) and the properties of central principal submatrices, that is, a matrix of
even order only having central principal submatrices of even order, we have k = 2t, and

_( MItl  NI[t]S¢
AJ”‘(aNm amma)

. 1L S\ (MH NS\ 1 (I I
DkAC“‘”“ﬁ(It —&)’(&N[ﬂ stM[t]st>'z<st —st>
MU+ NI 0
- 0 M[t] —N[t] /]’

and (2.3) implies M[t] + N[t] = Aq1[t] and M[t] — N[t] = Ap[t]. It says that the k-square central principal
submatrix of A may be expressed as

Adk%:Dk<A“H] 0 )D{. 2.7)

Thus,

0 Apxlt]

When n = 2r +1, from (2.2) and the properties of central principal submatrices, that is, a matrix of odd
order only having central principal submatrices of odd order, we have k =2t + 1, and

Ml w NIt]S¢
vI x vISt , we = (0,Iu, vi = (0, I)v.
StN[t] Stut StM[t]St

Ac (k) =
Hence,

1 It 0 St M[t] Ut N[t]St 1 It 0 It
D{ACHQDk::;T: 0 v2 0 |- x VIS, N 0 V2 0
2\, 0 -s, SN[t Sy S¢MItIS, 2\s, 0 -s;
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Mt + N[t v2u, 0
= V2v! [od 0 ,
0 0 MI[t]— N[t

and (2.4) implies <M[t]/§;TN [t \/iut> = A1t +1] and M[t] — N[t] = Ap[t]. It means that the k-square

t
central principal submatrix of A may be written as

o All [t + 1] 0 T
Ac(k) =Dy < 0 Azz[ﬂ) Dy. (2.8)

Combining (2.7) and (2.8), we obtain that the k-square central principal submatrix of A has the form as in
(2.6). O

It is easy to verify the following lemma from Lemma 2.3.

Lemma 2.4. Suppose that A € CSR™ ™ has the form as in (2.5). Partition Ag € CSR**¥ gs

Ag = Dy (A(}O AOZO) DY, Aj e RUxk=t) a0 e REX (2.9)

then Ay is a central principal submatrix of A if and only if Ajg = Aq1(k —t] and Ay = Anp[t].

3. Expression for the general solution to Problem 1.3

In this section, we first discuss the properties of eigenvalues and eigenvectors of a centrosymmetric
matrix, and obtain that the eigenvectors of a centrosymmetric matrix can be expressed in a special form.
Next, utilizing the special expression forms of a centrosymmetric matrix and its central principal subma-
trices, as discussed in Section 2, we convert Problem 1.3 to two inverse eigenvalue problems of half-sized
independent real matrices under themselves right-bottom principal submatrices constraint trickily, which
is a special feature of this paper. Finally, we solve Problem 1.3 completely, that is, we provide necessary
and sufficient conditions for the existence of a solution to Problem 1.3 and give an expression for the
general solution. Now, we investigate the expressions of eigenvectors of a centrosymmetric matrix in the
real number field.

Definition 3.1. Let x € R™. x is called a symmetric vector if S;;x = x. x is called an anti-symmetric vector
if Spx = —x.

Given A € CSR™ ™, if Aj(1 < j < 1) is a real eigenvalue of A, and x; is a real eigenvector associated
with Aj, that is Ax; = Ajxj. Then we have, from Lemma 2.1,

ASan == SnAXj = }\anXj,

thus S, x; is also an eigenvector of A associated with A;. Therefore, x; £ §;,x; are eigenvectors associated
with A;, where Xj + Snxj is a symmetric vector, and Xj — Snxj is an anti-symmetric vector.

If Aj = o5 +1* 35 is a complex eigenvalue of A, x; = &; +1x1;j is an associated eigenvector, then (1.2)
and (1.3) imply Aj(vj = )?]- /N\j. From Lemma 2.1, we obtain

ASnXj = SnAX; = SnXjA;,

thus N N N o

A(X5 £ S0X5) = (X5 £SnXj)A;,
where the columns of )N(j + Sn)~(j = (& + Sné&;, mj +Sanj) are symmetric vectors, and the columns of
X5 —SnXj = (& — Sn&j, nj — Snn;j) are anti-symmetric vectors.
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According to the previous analysis, without loss of generality, we may suppose that X and A have the
following forms in Problem 1.3,

7 y VA Yi
X = (S % s 1Y ) m=2r), X=[Vv2cT 0 (n=2r+1), (3.1)
T£1 rlhl Ser _SrYl
A =diag(Ay, Ap), Ay €RSXS, Ay e RIM—s)x(m=s), (3.2)

where Z; € R™5,Y; € R™X(m=s) ¢ € RS, and A4, A, are block diagonal matrices, for the block is a square
matrix of order 1 or 2. Then D] X has the following form:

1 /1 S Z Y- V2Z 0
Ty _ T . 1 1 - 1 _
DpX = V2 <IT —Sr> (Srzl —STY1) ( 0 \@Yl) (n=2r),

=

;. [T 0 Sk Z; Y, Vv2Z; 0
DTTLx:\7 0 v2 0 |-|v2T 0 =(v2c" 0 |(n=2r+1).
2\1, 0 -s, $:Z1 —S.V 0 V2V

Ifn=2rletXy=2Z;,andif n =2r+1, let X; = (le) , then for all arbitrary n, DTTlX may be written as

DIX = (@Xl \/gv ) , Xq e RnTmxs oy g grx(m=s), (3.3)
1

Lemma 3.2 ([10]). Let X € R™*™ gnd A € R™*™ gs in (1.4), then there exists a matrix A € R™*™ such that
AX = XA if and only if XAXTX = XA. Moreover, its general solution can be expressed as A = XAXT + G(I, —
XXT), where G € R™*™ is arbitrary.

Lemma 3.3 ([9]). Given Y € R**™, X € R™*! and B € R**!, denote

S1 ={A e R™*™[f1(A) = |[YAX — B|| = min},
then every element in Sy has the form as

A =Y"BX" +G—-YTYGXX", VGeR™™ (3.4)
In particular, f1(A) = 0 has solutions in R™*™ if and only if YYYBXTX = B, and the general solution has the

same form as in (3.4).

We can obtain the following lemma easily from Lemma 3.3.
Lemma 3.4. Given X, B € R™*!, denote S, = {A € R™*™ [f(A) = |AX — B|| = min }, then every element in

Sy has the form as
A =BX" +G(I,, —XX"), VGeR™™, (3.5)

In particular, f2(A) = 0 has solutions in R™*™ if and only if BXTX = B, and the general solution has the same
form as in (3.5).

Theorem 3.5. Given X € R™™ gs in (3.1), A € R™ ™ gs in (3.2), partition D] X as in (3.3). Given Ay €
CSR¥*X partition Ag as in (2.9). Set
Zy = (In—r = X1X{)(0, T_t)", Ky =A10— (0, T )Xs A1 X (0, Tey) T,

(3.6)
Zy = (L —Y1Y;)(0, 1), Ka=Axn—(0, [)Y1AY{ (0, I)T.
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Problem 1.3 is solvable if and only if

X1AX{ X1 =XiA1, 1A YD = YA, (3.7)
KlszZ1 =Ky, KZZ;Z2 = Ko. (38)
Furthermore, every matrix A in the solution set S may be written as
. Xl/\1Xi'— +G1(In_r — X1Xi'_) 0 T
A=Dn ( 0 YiA2Y]r + Go (L — V1Y) Pn (39)

where

| - Fy
zlz+)> G2 = (Kzzz+ +Fo (I, — zzz;)) ’ (3.10)

where By € RIM—r—k+t)x(n=n) g, ¢ Rik=tIx(n=r) 1) e RO=UIXT gnd F, € RYXT are arbitrary.

G = <K12 + Ea(In

Proof. By Lemmas 2.2 and 2.4, Problem 1.3 is equivalent to find A1 € R(M=m)x(n=7) and A, € R™" such

that
_ An 0 T
o 2o

where A1 and A must satisfy

AnXi =XiA1,  AxnY] =Yy, (3.11)
Ao = Anlk—t] = (0, Tet)An (0, L)', 512)
Ay = Anlt] = (0, I)An(0, 1)".
From Lemma 3.2, (3.11) holds if and only if
X1A X! X1 =X1A1, 1A Y = YA,
which means that (3.7) holds. Moreover A1 and A can be written as
A1 = XA X] + Gr(In—r — X1X{),  Azm =Y1AY] + Go(I — Y1Y]"), (3.13)

where G; € R("x("=1) and G, € R™ " are arbitrary matrices. Substituting (3.13) into (3.12), and
noticing (3.6), the definitions of Z;, Z;, K; and K;, then G; and G satisfy

(0, Ik—+)G1Z1 =Ky, (0, [t)G2Zy =K. (3.14)
Lemma 3.3 implies that (3.14) holds if and only if
(0, T—)(0, k)" KeZ{ Z1 =Ky, (0, 10)(0, Tt) T KaZy Z3 = K. (3.15)

We know from (0, Ix_¢)* = (0, Ix_¢)" and (0, I;)t = (0, I4)T that (0, Ix_¢)(0, Ix_¢)" = Ix_¢ and
(0, I4)(0, It)™ = I;. Hence, (3.15) is equivalent to (3.8), and Gj, G can be expressed as

E E
G = (0, L) T KiZ{ + (ED —(0, i) (0, Tt) (ED 2,zf

(K Zi +E (El ~z Z*))’ VE; € Rkt x(ner) gy g Ri-tx(nor),
1 2 1

F F
Ga = (0, L) "KoZy + (é) = (0, L)*(0, L) <é> 2,75

F
<KQZJr + Fo (I Zzz+)> !

Thus, the general solution to Problem 1.3 may be written as in (3.9). O

VF; € RU=UXT  yF, ¢ REXT,
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4. The solution to Problem 1.4

When the solution set of Problem 1.3 is nonempty, it is easy to verify that S is a closed convex set,
therefore there exists a unique solution A* to Problem 1.4. Now we give the expression for A*.

Lemma 4.1. Given X € R™*™  I,, — XX and XX are orthogonal projection matrices, that is
(In = XXT)P? = I, = XX = (In = XXH) T, (XXF)2=xxXT = (Xx")".
Moreover, we have (I, — XXT)XXT = 0.
Lemma 4.1 can be verified easily upon computation.
Theorem 4.2. Let X € R™ ™ form as in (3.1). Let A € R™ ™ form as in (3.2). Given A € R gnd
Ag € CSR¥*k denote

D:—‘LRDTL _ (%11 %12) , Kll c R(nfr)x(nfr)’ K22 e R™*T,
21 22

Aui = (E;), R = (g;), (@1

where P; € RIM—T—k+1)x , Py e Rk ), Q1 € RU=UXT gnd Q, € RYXT, Set

and partition KH and /’i22 as

Py = (Pa—KiZ ) (Inr = XiX{), Z1 = (In—v — Z1Z] ) (In—r — X1X{"),

5 N (4.2)
Q= (Q—KeZH) (I, —1Y{),  Zo=(Ir — ZoZ5 ) (I — 1Y}

If Problem 1.3 is solvable, then Problem 1.4 has a unique solution A*, which can be written as

XA X + Gy 0 -
A*=D 1 ~ , 4.3
" ( 0 YiAY] +Gy) T *3)

G, — PiIn—r —XiX{) 5 Qi(L —V1Yy)
where G1= {1 74 (L, — XX )+ PoZ+ 21 ) ™ O = (k28 (1, =Y + aZ4 22 )
1 1 1 2 1 2

Proof. Suppose that A is an arbitrary solution to Problem 1.3, then by (3.9), we have

1% XA XT + Gy (In—r —X1X{) 0 T X
HA_AH _HD“< 0 YiA2Y] + Go(Lr — V1Y) Pn—A

2

2 o~ 2
:Hxl/\lxi'_+Gl(1n7r_X1XT)_A11H +HA12H

~ 2 ~ 2
n HAZlH + HYlf\sz +Go(Iy — ViY]) — A22H .

Hence HA AH = min is equivalent to
AESA

|G1(Inr = XaX{) = (An =X AX)|| = min (4.4)
GleR(nfr]x(nfr)

HGZ(Ir—YlYfr) —_ (7\22—Y1/\2Y1+)H — min . (4.5)
GoERTXT
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Utilizing (3.10), (4.1), (4.2), and noticing Lemma 4.1, we get
HGl(Infr —X1X{) = (An — X1 A X)) HZ
= H [Gl(ln—r — X1 X{) — (A — Xl/\le)} (In—v — Xle)Hz
#[[[G1(0nms = XaX0) = (R —Xa A i ||
= HGl(In—r —XiX{) = Ap(In—r — X1X1+)H2 + H/N\nxler — XA XT HZ
B H (Klzl+ + EZ(IEi_r — zlzl+)> (In—r =X - (E;) (n—r =X1X7)

~ 2
[ Anxaxt x|

2

) -~ 2 g~ 2
= B (e = XaXF) = Py (T — X X)) |+ HE221 _ PzH + HAuxle _ X1A1X1+H .
Hence (4.4) is equivalent to
[E1(Tn—v —XaX{) = Py (In_r — X X{")|| = min, HE221 - ﬁZH — min. (4.6)

We know from Lemma 3.4 that (4.6) holds, which implies that (4.4) holds, if and only if

By = Pi(Inor — XiX{) + E1X0X{, B2 = PaZf + Ea(lnr — Z1Z),

where E; € R0V r—k+t)x(n=1) and E, € R X(=7) are arbitrary matrices.
We can prove in a similar way that (4.5) holds if and only if

Fi=Qu(l =Y +FiviYy,
Fo = QuZy +Fally — Z,Z3),
where Fl e RU—YxT and Fz € R™ " are arbitrary matrices.
Substituting E;, E; and F;, F, into (3.10), we get that the unique solution to Problem 1.4 can be

expressed as in (4.3) as desired.
O

Algorithm 4.3.
(1) Input X € R™™ as in (3.1), A € R™*™ as in (3.2), A € R™*™ and Ay € CSRF*X,
(2) Partition Ag as in (2.9) to get Ajp and Ax.
(3) Obtain X; and Y7 according to (3.3).
(4) Follow (3.6) to calculate Z;, Z;, K; and K.
(5) If (3.7) and (3.8) hold, then continue; otherwise stop.

(6) According to Theorem 4.2 calculate Ku, Aa, P1, Q1, P,, Zl, Qz, Z, and A*.
Exemple 4.4. Assume n =10, k =4, m = 4. Given

—2.7645 0 0 0 —-1.65 055 055 0.25
A 0 0.8744 0 0 A — 035 —-0.6 —02 045
o 0 0 —2.8382 0 07 045 —02 —06 035 |’

0 0 0 —1.3716 025 055 055 -1.65
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—0.1371 0.2076 —0.2167 0.1560
—0.1338 0.4773 —0.0028 0.4014
0.0780 0.1427 0.4728 0.0788
—0.5429 0.0952 —0.4434 0.3097
X — 0.4030 0.4469 —-0.1812 —0.4609
0.4030 0.4469 0.1812 0.4609 |’
—0.5429 0.0952 04434 —0.3097
0.0780 0.1427 —0.4728 —0.0788
—0.1338 0.4773 0.0028 —0.4014
—0.1371 0.2076 0.2167 —0.1560
1.7643 —0.6475 0.7996 —1.4946 —1.0485 0.2050 —0.2997 0.3591 1.1636 0.1017
0.9457 0.8022 —0.4446 —0.7732 1.3888 —0.5330 0.2510 —-0.9312 —-0.0488 —0.5711
—0.2314 —0.1201 0.1656 1.1546 0.4174 —0.3023 —0.3856 1.5166 —0.1959 0.4041
—0.0590 —0.2892 1.2945 —1.5725 0.6320 0.5720 0.3005 0.0652 —0.1688 —0.8455
A —0.5931 18189 —-05775 04104 —05819 —-0.1916 0.5068 —0.8231 0.1822 0.6014
0.5694 0.2275 —0.8018 0.4816 —0.1903 —-0.5641 04142 —05604 1.8448 —0.6054 |~
—0.7796 —0.1209 0.0171 0.2933 0.5531 0.6233 —1.6293 1.2396 —0.2793 —0.1009
0.4152 —0.1291 1.5941 —-0.3157 —0.3990 0.4602 1.1340 0.1692 —0.1511 —0.1840
—0.6168 —0.0053 —0.9043 0.2626 —0.5033 1.3451 —0.7673 —0.4762 0.8445 0.9005
0.1522 1.1798 03175 —0.2727 0.2888 —1.0087 —1.4385 0.7949 —0.5679 1.7742
then we can obtain the best approximate solution A* to Problem 1.4 by Algorithm 4.3, where
1.7418 —0.6746 0.7747 —1.4808 —1.0768 0.1823 —0.2974 0.3248 1.1168 0.1012
0.8863 0.7497 —0.4751 —0.7970 1.2891 —0.5704 0.2258 —0.9470 —0.1194 —0.6331
—0.2421 —0.2142 0.1429 1.1080 0.4041 —0.4036 —0.3916 1.5472 —0.2300 0.3731
—0.0915 —-0.3337 1.2344 —1.6500 0.5500 0.5500 0.2500 0.0143 —0.2126 —0.8356
AF — —0.6369 1.7404 —0.5895 0.3500 —0.6000 —0.2000 0.4500 —0.8821 0.1326 0.5793
0.5793 0.1326 —0.8821 0.4500 —0.2000 —0.6000 0.3500 —0.5895 1.7404 —0.6369
—0.8356 —0.2126 0.0143 0.2500 0.5500 0.5500 —1.6500 1.2344 —0.3337 —0.0915
0.3731 —0.2300 15472 —0.3916 —0.4036 0.4041 1.1080 0.1429 —0.2142 —-0.2421
—0.6331 —0.1194 —-0.9470 0.2258 —0.5704 1.2891 —0.7970 —-0.4751 0.7497 0.8863
0.1012 1.1168 0.3248 —0.2974 0.1823 —1.0768 —1.4808 0.7747 —0.6746 1.7418
Exemple 4.5. Assume n =10, k =4, m = 5. Let A be the same matrix as in Example 4.4, and
—0.1371 0.2076 —0.5872  0.0000 0.1560
—0.1338 0.4773 —0.1075 0.1681 0.4014
0.0780 0.1427 0.1565 —0.0217 0.0788
_2'3645 0.8(;44 8 8 8 —0.5429 0.0952 —0.0595 —-0.0017 0.3097
A 0 0 1.6388 0.6148 0 X — 0.4030 0.4469 0.2920 0.0398 —0.4609
0 0 06148 —1.6888 0 ! 0.4030 0.4469 —0.2920 —0.0398 0.4609 |~
0 0 0 0 13716 —0.5429 0.0952 0.0595 0.0017 —0.3097
0.0780 0.1427 —-0.1565 0.0217 —0.0788
—0.1338 0.4773 0.1075 —0.1681 —0.4014
—0.1371 0.2076 0.5872 0 —0.1560
1.7572 —0.6165 0.7680 —1.4552 —1.0340 0.2842 —0.2699 0.3469 1.1695 0.1680
0.9292 0.8229 —0.4083 —0.7349 1.3295 —0.5869 0.2496 —0.9913 —0.0295 —0.5985
—0.2080 —0.1178 0.1257 1.1170 0.4950 —0.3811 —0.3742 1.5829 —0.1819 0.4022
—0.0967 —0.2652 1.2886 —1.5969 0.6194 0.5654 0.3233 0.0686 —0.1478 —0.8397
A —0.5574 17665 —0.5080 04134 —-05793 —-0.1971 04617 —0.8733 0.1796 0.6497
0.6399 0.1528 —0.8700 0.4514 —0.1445 —-0.5991 04246 —05031 1.7963 —0.6141
—0.7955 —0.1045 0.0073 0.2970 0.6379 0.6096 —1.5690 1.2184 —0.2075 —0.0875
0.4401 —-0.1320 15767 —0.3114 —0.3442 0.4609 1.1745 0.1300 —0.1784 —0.2107
—0.6448 —0.0139 —-0.9915 0.2114 —0.5248 1.3919 —0.7663 —0.4589 0.8001 0.8508
0.1809 1.2439 0.3729 —0.2557 0.2895 —1.0266 —1.4416 0.7236 —0.5593 1.7545
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In this case, Zz = 0, thus we can simplify éz = <

Q
(13 ) 0

Qi(L —Y1Y{")

< -~ ~ )inTh 4210 Gy =
Kzz;(lr—vlvf)Jerz;zz) t Hheorem .2 10 &2

—Y1Y;"), and the unique solution A* to Problem 1.4 is

1.7162 —0.6778 0.7252 —1.4836 —1.1027 0.2208 —0.2919 0.3335 11176  0.1318

0.8660  0.7810 —0.4566 —0.7759 1.3222 —-0.6060 0.2012 —0.9996 —0.1181 —0.6573
—0.2321 —-0.2322 0.1201  1.0968 04102 —-0.3935 -0.3691 1.5516 —0.2269 0.3700
—-0.1327 —-0.3110 1.2116 —1.6500 0.5500 0.5500  0.2500  0.0116 —0.2110 -0.8327
—0.5930 1.7138 —0.5619 0.3500 —0.6000 —0.2000 0.4500 —0.8619 0.1138  0.6070

AT = 0.6070  0.1138 —-0.8619 0.4500 —0.2000 —-0.6000 0.3500 —0.5619 1.7138 —0.5930
—0.8327 —0.2110 0.0116  0.2500  0.5500  0.5500 —1.6500 1.2116 —0.3110 -0.1327
03700 —-0.2269 15516 —0.3691 —0.3935 0.4102 1.0968 0.1201 —0.2322 —0.2321
—0.6573 —0.1181 —0.9996 02012 —-0.6060 13222 —0.7759 —0.4566 0.7810  0.8660
0.1318 1.1176 03335 —0.2919 0.2208 —1.1027 —1.4836 0.7252 —0.6778 1.7162
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