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Abstract

This article considers an inverse eigenvalue problem for centrosymmetric matrices under a central principal submatrix
constraint and the corresponding optimal approximation problem. We first discuss the specified structure of centrosymmetric
matrices and their central principal submatrices. Then we give some necessary and sufficient conditions for the solvability of
the inverse eigenvalue problem, and we derive an expression for its general solution. Finally, we obtain an expression for the
solution to the corresponding optimal approximation problem. c©2017 All rights reserved.
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1. Introduction

We first introduce some notations. Let Rn×m denote the set of all n×m real matrices. Let ORn×n be
the set of all n×n orthogonal matrices. Let AT , rank(A) and A+ represent the transpose, rank and Moore-
Penrose generalized inverse of matrix A, respectively. Let In denote the identity matrix of order n, and 0
be a zero matrix or vector of size implied by context. We use < A,B >= trace(BTA) to define the inner
product of matrices A and B in Rn×m. Then Rn×m is a Hilbert inner product space. The norm of a matrix
generated by the inner product is the Frobenius norm ‖ · ‖, that is, ‖A‖ =

√
< A,A > = (trace(ATA))

1
2 .

Definition 1.1. A real n× n matrix A = (ai,j) is called a centrosymmetric matrix if its elements satisfy
the properties

ai,j = an−i+1,n−j+1, for 1 6 i, j 6 n.

The set of all n×n centrosymmetric matrices is denoted by CSRn×n.

Centrosymmetric matrices play an important role in areas such as the numerical solution to certain
differential equations [1], various engineering problems [5], and the study of some Markov processes [16].
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In particular, Kimura [12] studied a Markov process whose transition matrix R is an (n + 1)× (n + 1)
centrosymmetric matrix. The matrix R is given when α = 2 by

Ri+1,j+1 =

(
(n− i)α
n− j

)(
iα

j

)/(
nα

n

)
, 0 6 i, j 6 n.

In fact, symmetric Toeplitz matrices and persymmetric Hankel matrices are two useful examples of cen-
trosymmetric matrices. Good [8] pointed out that “Toeplitz matrices arise as discrete approximations
to kernels k(x, t) of integral equations when these kernels are functions of |x− t|. Similarly if a kernel
is an even function of its vector argument (x, t), that is k(x, t) = k(−x,−t), then it can be discretely
approximated by a centrosymmetric matrix.”

Several interesting results are available in the literature on centrosymmetric matrices [14, 20]. In par-
ticular, Peng et al. discussed the linear constrained problem of centrosymmetric matrices with a leading
principal submatrix constraint [14]. The problem, finding solutions of a matrix equation under a principal
submatrix constraint, comes from a practical subsystem expansion problem. Therefore, researchers have
great interest in studying a variety of problems under submatrices constraint of late years [6, 14, 17].
Because of the specified structure of centrosymmetric matrices, it is unfit for discussing centrosymmetric
matrices under their leading principal submatrices constraint, for it destroys the special symmetric of
centrosymmetric matrices. Therefore, we present a different concept, a central principal submatrix, which
was first defined in [18]. The definition is as follows.

Definition 1.2. If n− k is even, then the k-square central principal submatrix Ac(k) of a given matrix
A ∈ Rn×n is a k-square submatrix obtained by deleting the first and last n−k

2 rows and columns of A,
that is

Ac(k) = (0, Ik, 0)A(0, Ik, 0)T , 0 ∈ Rk×
n−k

2 .

It is intuitive and obvious that a matrix of odd (even) order only has central principal submatrices of
odd (even) order.

Throughout this paper, we denote by A[k] the right-bottom k× k principal submatrix of A ∈ Rn×n,
that is

A[k] = (ai,j)
n
i,j=n−k+1 = (0, Ik)A(0, Ik)T .

In particular, an inverse eigenvalue problem is as follows. Given vectors x1, · · · , xl and scalars
λ1, · · · , λl where 1 6 l < n, construct an n×n matrix A ∈ S such that

Axj = λjxj, j = 1, · · · , l, (1.1)

where S is a subset of Rn×n with specified structures.
It may arise from the design of Hopfield networks and the mass-spring system [13], in a remarkable

variety of applications such as applied mechanics and structure design [11], in the discrete analogue of the
inverse Sturm-Liouville problem [19] and in vibration design [15]. Studies of inverse eigenvalue problems
have ranged from engineering application to algebraic theorization [2–4, 10, 20]. The inverse eigenvalue
problem for centrosymmetric matrices under a central principal submatrix constraint is presented in light
of the extended matrix preserves the centrosymmetric structure, thus this problem has practical applica-
tions. Furthermore, it allows us to extend the existing solutions. However, it has not been considered yet.
In this paper, we will discuss this problem and its optimal approximation. We first discuss the special
structure of eigenvalues and eigenvectors for a real matrix in real number field.

If a real matrix A has a complex eigenvalue λj = αj + i ∗ βj (αj, βj are real numbers, 1 6 j 6 l,
i =

√
−1), and the associated complex eigenvector is xj = ξj + i ∗ ηj ( ξj, ηj are real vectors), then

λj = αj − i ∗βj is also an eigenvalue of A with the associated eigenvector xj = ξj − i ∗ ηj, and

A(ξj, ηj) = (ξj, ηj)
(
αj βj

−βj αj

)
. (1.2)
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Thus, if xj is a real eigenvector associated with a real eigenvalue λj of A, then let

Λ̃j = λj, X̃j = xj.

If xj = ξj + i ∗ ηj is a complex eigenvector associated with a complex eigenvalue λj = αj + i ∗ βj of A,
then set

Λ̃j =

(
αj βj

−βj αj

)
, X̃j = (ξj, ηj). (1.3)

Hence, for given eigenvalues λ1, · · · , λl and the associated eigenvectors x1, · · · , xl, write

X = (X̃1, · · · , X̃l) ∈ Rn×m, Λ = diag(Λ̃1, · · · , Λ̃l) ∈ Rm×m, (1.4)

where m > l, then (1.1) is equal to AX = XΛ. Therefore, the problem discussed in this paper can be
expressed as follows.

Problem 1.3. Given X ∈ Rn×m and Λ ∈ Rm×m with the form as in (1.4), A0 ∈ CSRk×k, for k < n, find an
extended matrix A ∈ CSRn×n such that

AX = XΛ, and Ac(k) = A0.

Problem 1.4. Given an estimate Ã ∈ Rn×n, find a matrix A∗ ∈ SA such that

‖A∗ − Ã‖ = min
∀A∈SA

‖A− Ã‖,

where SA is the solution set of Problem 1.3.

This paper is organized as follows. First, we discuss the specified properties and structure of cen-
trosymmetric matrices and their central principal submatrices. Next, we study eigenvalues and eigen-
vectors of centrosymmetric matrices, and obtain that the eigenvectors of a centrosymmetric matrix can
be expressed in a special form. After that, we convert Problem 1.3 into two inverse eigenvalue problems
of half-sized independent real matrices under themselves right-bottom principal submatrices constraint
trickily, which is a special feature of this paper. Meanwhile, this simplifies and is crucial to solve Prob-
lem 1.3. Later on, we derive the solvability conditions of Problem 1.3 and an expression for its general
solution. Finally, we prove that Problem 1.4 has a unique solution and give an expression for it.

2. The properties of centrosymmetric matrices and their central principal submatrices

Denote by ei the i-th (i = 1, 2, · · · ,n) column of In, and let Sn = (en, en−1, · · · , e1), then

Sn = STn, SnSTn = In.

Lemma 2.1 ([7]). A matrix A ∈ CSRn×n if and only if SnASn = A.

Let r = [n2 ], where [n2 ] is the maximum integer which is not greater than n
2 . And let

Dn =
1√
2

(
Ir Ir
Sr −Sr

)
(n = 2r), Dn =

1√
2

Ir 0 Ir
0
√

2 0
Sr 0 −Sr

 (n = 2r+ 1).

It is easy verified that the above matrices Dn are orthogonal matrices.

Lemma 2.2 ([20]). A ∈ CSR2r×2r if and only if there exist M, N ∈ Rr×r such that

A =

(
M NSr
SrN SrMSr

)
= D2r

(
M+N 0

0 M−N

)
DT

2r. (2.1)

A ∈ CSR(2r+1)×(2r+1) if and only if there exist M, N ∈ Rr×r, u, v ∈ Rr and α ∈ R such that
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A =

 M u NSr
vT α vTSr
SrN Sru SrMSr

 = D2r+1

M+N
√

2u 0√
2vT α 0
0 0 M−N

DT
2r+1. (2.2)

Furthermore, when n = 2r, let
A11 =M+N, A22 =M−N, (2.3)

and when n = 2r+ 1, set

A11 =

(
M+N

√
2u√

2vT α

)
, A22 =M−N, (2.4)

then A ∈ CSRn×n if and only if there exist A11 ∈ R(n−r)×(n−r) and A22 ∈ Rr×r, whether n is odd or even, such
that

A = Dn

(
A11 0

0 A22

)
DT

n. (2.5)

Now we give the special properties of the k-central principal submatrix of a centrosymmetric matrix,
that is the submatrix having the same symmetric properties and structure as the given centrosymmetric
matrix. Hence they have similar expressions, which is crucial to solve Problem 1.3, for it provides a
reasoned way to convert Problem 1.3 to two inverse eigenvalue problems of half-sized independent real
matrices under themselves right-bottom principal submatrices constraint. Here, we always assume that
t = [k2 ].

Lemma 2.3. Let A ∈ CSRn×n have the form as in (2.5). Then the k-square central principal submatrix of A can
be expressed as

Ac(k) = Dk

(
A11[k− t] 0

0 A22[t]

)
DT

k . (2.6)

Proof. When n = 2r, from (2.1) and the properties of central principal submatrices, that is, a matrix of
even order only having central principal submatrices of even order, we have k = 2t, and

Ac(k) =

(
M[t] N[t]St
StN[t] StM[t]St

)
.

Thus,

DT
kAc(k)Dk =

1√
2

(
It St
It −St

)
·
(
M[t] N[t]St
StN[t] StM[t]St

)
· 1√

2

(
It It
St −St

)
=

(
M[t] +N[t] 0

0 M[t] −N[t]

)
,

and (2.3) implies M[t] +N[t] = A11[t] and M[t] −N[t] = A22[t]. It says that the k-square central principal
submatrix of A may be expressed as

Ac(k) = Dk

(
A11[t] 0

0 A22[t]

)
DT

k . (2.7)

When n = 2r+ 1, from (2.2) and the properties of central principal submatrices, that is, a matrix of odd
order only having central principal submatrices of odd order, we have k = 2t+ 1, and

Ac(k) =

 M[t] ut N[t]St
vTt α vTt St

StN[t] Stut StM[t]St

 , ut = (0, It)u, vt = (0, It)v.

Hence,

DT
kAc(k)Dk =

1√
2

It 0 St
0
√

2 0
It 0 −St

 ·
 M[t] ut N[t]St

vTt α vTt St
StN[t] Stut StM[t]St

 · 1√
2

It 0 It
0
√

2 0
St 0 −St





L.-J. Zhao, R. Huang, J. Math. Computer Sci., 17 (2017), 477–487 481

=

M[t] +N[t]
√

2ut 0√
2vTt α 0
0 0 M[t] −N[t]

 ,

and (2.4) implies
(
M[t] +N[t]

√
2ut√

2vTt α

)
= A11[t+ 1] and M[t] −N[t] = A22[t]. It means that the k-square

central principal submatrix of A may be written as

Ac(k) = Dk

(
A11[t+ 1] 0

0 A22[t]

)
DT

k . (2.8)

Combining (2.7) and (2.8), we obtain that the k-square central principal submatrix of A has the form as in
(2.6).

It is easy to verify the following lemma from Lemma 2.3.

Lemma 2.4. Suppose that A ∈ CSRn×n has the form as in (2.5). Partition A0 ∈ CSRk×k as

A0 = Dk

(
A10 0

0 A20

)
DT

k , A10 ∈ R(k−t)×(k−t), A20 ∈ Rt×t, (2.9)

then A0 is a central principal submatrix of A if and only if A10 = A11[k− t] and A20 = A22[t].

3. Expression for the general solution to Problem 1.3

In this section, we first discuss the properties of eigenvalues and eigenvectors of a centrosymmetric
matrix, and obtain that the eigenvectors of a centrosymmetric matrix can be expressed in a special form.
Next, utilizing the special expression forms of a centrosymmetric matrix and its central principal subma-
trices, as discussed in Section 2, we convert Problem 1.3 to two inverse eigenvalue problems of half-sized
independent real matrices under themselves right-bottom principal submatrices constraint trickily, which
is a special feature of this paper. Finally, we solve Problem 1.3 completely, that is, we provide necessary
and sufficient conditions for the existence of a solution to Problem 1.3 and give an expression for the
general solution. Now, we investigate the expressions of eigenvectors of a centrosymmetric matrix in the
real number field.

Definition 3.1. Let x ∈ Rn. x is called a symmetric vector if Snx = x. x is called an anti-symmetric vector
if Snx = −x.

Given A ∈ CSRn×n, if λj(1 6 j 6 l) is a real eigenvalue of A, and xj is a real eigenvector associated
with λj, that is Axj = λjxj. Then we have, from Lemma 2.1,

ASnxj = SnAxj = λjSnxj,

thus Snxj is also an eigenvector of A associated with λj. Therefore, xj ± Snxj are eigenvectors associated
with λj, where xj + Snxj is a symmetric vector, and xj − Snxj is an anti-symmetric vector.

If λj = αj + i ∗βj is a complex eigenvalue of A, xj = ξj + i ∗ ηj is an associated eigenvector, then (1.2)
and (1.3) imply AX̃j = X̃jΛ̃j. From Lemma 2.1, we obtain

ASnX̃j = SnAX̃j = SnX̃jΛ̃j,

thus
A(X̃j ± SnX̃j) = (X̃j ± SnX̃j)Λ̃j,

where the columns of X̃j + SnX̃j = (ξj + Snξj, ηj + Snηj) are symmetric vectors, and the columns of
X̃j − SnX̃j = (ξj − Snξj, ηj − Snηj) are anti-symmetric vectors.



L.-J. Zhao, R. Huang, J. Math. Computer Sci., 17 (2017), 477–487 482

According to the previous analysis, without loss of generality, we may suppose that X and Λ have the
following forms in Problem 1.3,

X =

(
Z1 Y1
SrZ1 −SrY1

)
(n = 2r), X =

 Z1 Y1√
2cT 0
SrZ1 −SrY1

 (n = 2r+ 1), (3.1)

Λ = diag(Λ1, Λ2), Λ1 ∈ Rs×s, Λ2 ∈ R(m−s)×(m−s), (3.2)

where Z1 ∈ Rr×s, Y1 ∈ Rr×(m−s), c ∈ Rs, and Λ1, Λ2 are block diagonal matrices, for the block is a square
matrix of order 1 or 2. Then DT

nX has the following form:

DT
nX =

1√
2

(
Ir Sr
Ir −Sr

)
·
(
Z1 Y1
SrZ1 −SrY1

)
=

(√
2Z1 0
0

√
2Y1

)
(n = 2r),

DT
nX =

1√
2

Ir 0 Sr
0
√

2 0
Ir 0 −Sr

 ·
 Z1 Y1√

2cT 0
SrZ1 −SrY1

 =


√

2Z1 0√
2cT 0
0

√
2Y1

 (n = 2r+ 1).

If n = 2r, let X1 = Z1, and if n = 2r+ 1, let X1 =

(
Z1
cT

)
, then for all arbitrary n, DT

nX may be written as

DT
nX =

(√
2X1 0
0

√
2Y1

)
, X1 ∈ R(n−r)×s, Y1 ∈ Rr×(m−s). (3.3)

Lemma 3.2 ([10]). Let X ∈ Rn×m and Λ ∈ Rm×m as in (1.4), then there exists a matrix A ∈ Rn×n such that
AX = XΛ if and only if XΛX+X = XΛ. Moreover, its general solution can be expressed as A = XΛX+ +G(In −
XX+), where G ∈ Rn×n is arbitrary.

Lemma 3.3 ([9]). Given Y ∈ Rk×n, X ∈ Rm×l and B ∈ Rk×l, denote

S1 ≡ {A ∈ Rn×m | f1(A) = ‖YAX−B‖ = min},

then every element in S1 has the form as

A = Y+BX+ +G− Y+YGXX+, ∀ G ∈ Rn×m. (3.4)

In particular, f1(A) = 0 has solutions in Rn×m if and only if YY+BX+X = B, and the general solution has the
same form as in (3.4).

We can obtain the following lemma easily from Lemma 3.3.

Lemma 3.4. Given X, B ∈ Rm×l, denote S2 ≡
{
A ∈ Rn×m |f2(A) = ‖AX−B‖ = min

}
, then every element in

S2 has the form as
A = BX+ +G(Im −XX+), ∀ G ∈ Rn×m. (3.5)

In particular, f2(A) = 0 has solutions in Rn×m if and only if BX+X = B, and the general solution has the same
form as in (3.5).

Theorem 3.5. Given X ∈ Rn×m as in (3.1), Λ ∈ Rm×m as in (3.2), partition DT
nX as in (3.3). Given A0 ∈

CSRk×k, partition A0 as in (2.9). Set

Z1 = (In−r −X1X
+
1 )(0, Ik−t)

T , K1 = A10 − (0, Ik−t)X1Λ1X
+
1 (0, Ik−t)

T ,

Z2 = (Ir − Y1Y
+
1 )(0, It)T , K2 = A20 − (0, It)Y1Λ2Y

+
1 (0, It)T .

(3.6)
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Problem 1.3 is solvable if and only if

X1Λ1X
+
1 X1 = X1Λ1, Y1Λ2Y

+
1 Y1 = Y1Λ2, (3.7)

K1Z
+
1 Z1 = K1, K2Z

+
2 Z2 = K2. (3.8)

Furthermore, every matrix A in the solution set SA may be written as

A = Dn

(
X1Λ1X

+
1 +G1(In−r −X1X

+
1 ) 0

0 Y1Λ2Y
+
1 +G2(Ir − Y1Y

+
1 )

)
DT

n, (3.9)

where

G1 =

(
E1

K1Z
+
1 + E2(In−r −Z1Z

+
1 )

)
, G2 =

(
F1

K2Z
+
2 + F2(Ir −Z2Z

+
2 )

)
, (3.10)

where E1 ∈ R(n−r−k+t)×(n−r), E2 ∈ R(k−t)×(n−r), F1 ∈ R(r−t)×r and F2 ∈ Rt×r are arbitrary.

Proof. By Lemmas 2.2 and 2.4, Problem 1.3 is equivalent to find A11 ∈ R(n−r)×(n−r) and A22 ∈ Rr×r such
that

A = Dn

(
A11 0

0 A22

)
DT

n,

where A11 and A22 must satisfy
A11X1 = X1Λ1, A22Y1 = Y1Λ2, (3.11)

A10 = A11[k− t] = (0, Ik−t)A11(0, Ik−t)
T ,

A20 = A22[t] = (0, It)A22(0, It)T .
(3.12)

From Lemma 3.2, (3.11) holds if and only if

X1Λ1X
+
1 X1 = X1Λ1, Y1Λ2Y

+
1 Y1 = Y1Λ2,

which means that (3.7) holds. Moreover A11 and A22 can be written as

A11 = X1Λ1X
+
1 +G1(In−r −X1X

+
1 ), A22 = Y1Λ2Y

+
1 +G2(Ir − Y1Y

+
1 ), (3.13)

where G1 ∈ R(n−r)×(n−r) and G2 ∈ Rr×r are arbitrary matrices. Substituting (3.13) into (3.12), and
noticing (3.6), the definitions of Z1, Z2, K1 and K2, then G1 and G2 satisfy

(0, Ik−t)G1Z1 = K1, (0, It)G2Z2 = K2. (3.14)

Lemma 3.3 implies that (3.14) holds if and only if

(0, Ik−t)(0, Ik−t)
+K1Z

+
1 Z1 = K1, (0, It)(0, It)+K2Z

+
2 Z2 = K2. (3.15)

We know from (0, Ik−t)
+ = (0, Ik−t)

T and (0, It)+ = (0, It)T that (0, Ik−t)(0, Ik−t)
+ = Ik−t and

(0, It)(0, It)+ = It. Hence, (3.15) is equivalent to (3.8), and G1, G2 can be expressed as

G1 = (0, Ik−t)
+K1Z

+
1 +

(
E1
E2

)
− (0, Ik−t)

+(0, Ik−t)

(
E1
E2

)
Z1Z

+
1

=

(
E1

K1Z
+
1 + E2(In−r −Z1Z

+
1 )

)
, ∀E1 ∈ R(n−r−k+t)×(n−r), ∀E2 ∈ R(k−t)×(n−r),

G2 = (0, It)+K2Z
+
2 +

(
F1
F2

)
− (0, It)+(0, It)

(
F1
F2

)
Z2Z

+
2

=

(
F1

K2Z
+
2 + F2(Ir −Z2Z

+
2 )

)
, ∀F1 ∈ R(r−t)×r, ∀F2 ∈ Rt×r.

Thus, the general solution to Problem 1.3 may be written as in (3.9).
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4. The solution to Problem 1.4

When the solution set of Problem 1.3 is nonempty, it is easy to verify that SA is a closed convex set,
therefore there exists a unique solution A∗ to Problem 1.4. Now we give the expression for A∗.

Lemma 4.1. Given X ∈ Rn×m, In −XX+ and XX+ are orthogonal projection matrices, that is

(In −XX+)2 = In −XX+ = (In −XX+)T , (XX+)2 = XX+ = (XX+)T .

Moreover, we have (In −XX+)XX+ = 0.

Lemma 4.1 can be verified easily upon computation.

Theorem 4.2. Let X ∈ Rn×m form as in (3.1). Let Λ ∈ Rm×m form as in (3.2). Given Ã ∈ Rn×n and
A0 ∈ CSRk×k, denote

DT
nÃDn =

(
Ã11 Ã12

Ã21 Ã22

)
, Ã11 ∈ R(n−r)×(n−r), Ã22 ∈ Rr×r,

and partition Ã11 and Ã22 as

Ã11 =

(
P1
P2

)
, Ã22 =

(
Q1
Q2

)
, (4.1)

where P1 ∈ R(n−r−k+t)×(n−r), P2 ∈ R(k−t)×(n−r), Q1 ∈ R(r−t)×r and Q2 ∈ Rt×r. Set

P̃2 = (P2 −K1Z
+
1 )(In−r −X1X

+
1 ), Z̃1 = (In−r −Z1Z

+
1 )(In−r −X1X

+
1 ),

Q̃2 = (Q2 −K2Z
+
2 )(Ir − Y1Y

+
1 ), Z̃2 = (Ir −Z2Z

+
2 )(Ir − Y1Y

+
1 ).

(4.2)

If Problem 1.3 is solvable, then Problem 1.4 has a unique solution A∗, which can be written as

A∗ = Dn

(
X1Λ1X

+
1 + G̃1 0
0 Y1Λ2Y

+
1 + G̃2

)
DT

n, (4.3)

where G̃1 =

(
P1(In−r −X1X

+
1 )

K1Z
+
1 (In−r −X1X

+
1 ) + P̃2Z̃

+
1 Z̃1

)
, and G̃2 =

(
Q1(Ir − Y1Y

+
1 )

K2Z
+
2 (Ir − Y1Y

+
1 ) + Q̃2Z̃

+
2 Z̃2

)
.

Proof. Suppose that A is an arbitrary solution to Problem 1.3, then by (3.9), we have

∥∥∥A− Ã
∥∥∥2

=

∥∥∥∥Dn

(
X1Λ1X

+
1 +G1(In−r −X1X

+
1 ) 0

0 Y1Λ2Y
+
1 +G2(Ir − Y1Y

+
1 )

)
DT

n − Ã

∥∥∥∥2

=
∥∥∥X1Λ1X

+
1 +G1(In−r −X1X

+
1 ) − Ã11

∥∥∥2
+
∥∥∥Ã12

∥∥∥2

+
∥∥∥Ã21

∥∥∥2
+
∥∥∥Y1Λ2Y

+
1 +G2(Ir − Y1Y

+
1 ) − Ã22

∥∥∥2
.

Hence
∥∥∥A− Ã

∥∥∥ = min
A∈SA

is equivalent to

∥∥∥G1(In−r −X1X
+
1 ) − (Ã11 −X1Λ1X

+
1 )
∥∥∥ = min

G1∈R(n−r)×(n−r)
, (4.4)

∥∥∥G2(Ir − Y1Y
+
1 ) − (Ã22 − Y1Λ2Y

+
1 )
∥∥∥ = min

G2∈Rr×r
. (4.5)
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Utilizing (3.10), (4.1), (4.2), and noticing Lemma 4.1, we get∥∥∥G1(In−r −X1X
+
1 ) − (Ã11 −X1Λ1X

+
1 )
∥∥∥2

=
∥∥∥[G1(In−r −X1X

+
1 ) − (Ã11 −X1Λ1X

+
1 )
]
(In−r −X1X

+
1 )
∥∥∥2

+
∥∥∥[G1(In−r −X1X

+
1 ) − (Ã11 −X1Λ1X

+
1 )
]
X1X

+
1

∥∥∥2

=
∥∥∥G1(In−r −X1X

+
1 ) − Ã11(In−r −X1X

+
1 )
∥∥∥2

+
∥∥∥Ã11X1X

+
1 −X1Λ1X

+
1

∥∥∥2

=

∥∥∥∥( E1
K1Z

+
1 + E2(In−r −Z1Z

+
1 )

)
(In−r −X1X

+
1 ) −

(
P1
P2

)
(In−r −X1X

+
1 )

∥∥∥∥2

+
∥∥∥Ã11X1X

+
1 −X1Λ1X

+
1

∥∥∥2

=
∥∥E1(In−r −X1X

+
1 ) − P1(In−r −X1X

+
1 )
∥∥2

+
∥∥∥E2Z̃1 − P̃2

∥∥∥2
+
∥∥∥Ã11X1X

+
1 −X1Λ1X

+
1

∥∥∥2
.

Hence (4.4) is equivalent to∥∥E1(In−r −X1X
+
1 ) − P1(In−r −X1X

+
1 )
∥∥ = min,

∥∥∥E2Z̃1 − P̃2

∥∥∥ = min . (4.6)

We know from Lemma 3.4 that (4.6) holds, which implies that (4.4) holds, if and only if

E1 = P1(In−r −X1X
+
1 ) + Ẽ1X1X

+
1 , E2 = P̃2Z̃

+
1 + Ẽ2(In−r − Z̃1Z̃

+
1 ),

where Ẽ1 ∈ R(n−r−k+t)×(n−r) and Ẽ2 ∈ R(k−t)×(n−r) are arbitrary matrices.
We can prove in a similar way that (4.5) holds if and only if

F1 = Q1(Ir − Y1Y
+
1 ) + F̃1Y1Y

+
1 ,

F2 = Q̃2Z̃
+
2 + F̃2(Ir − Z̃2Z̃

+
2 ),

where F̃1 ∈ R(r−t)×r and F̃2 ∈ Rt×r are arbitrary matrices.
Substituting E1, E2 and F1, F2 into (3.10), we get that the unique solution to Problem 1.4 can be

expressed as in (4.3) as desired.

Algorithm 4.3.

(1) Input X ∈ Rn×m as in (3.1), Λ ∈ Rm×m as in (3.2), Ã ∈ Rn×n and A0 ∈ CSRk×k.

(2) Partition A0 as in (2.9) to get A10 and A20.

(3) Obtain X1 and Y1 according to (3.3).

(4) Follow (3.6) to calculate Z1, Z2, K1 and K2.

(5) If (3.7) and (3.8) hold, then continue; otherwise stop.

(6) According to Theorem 4.2 calculate Ã11, Ã22, P1, Q1, P̃2, Z̃1, Q̃2, Z̃2 and A∗.

Exemple 4.4. Assume n = 10, k = 4, m = 4. Given

Λ =


−2.7645 0 0 0

0 0.8744 0 0
0 0 −2.8382 0
0 0 0 −1.3716

 , A0 =


−1.65 0.55 0.55 0.25
0.35 −0.6 −0.2 0.45
0.45 −0.2 −0.6 0.35
0.25 0.55 0.55 −1.65

 ,
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X =



−0.1371 0.2076 −0.2167 0.1560
−0.1338 0.4773 −0.0028 0.4014
0.0780 0.1427 0.4728 0.0788
−0.5429 0.0952 −0.4434 0.3097
0.4030 0.4469 −0.1812 −0.4609
0.4030 0.4469 0.1812 0.4609
−0.5429 0.0952 0.4434 −0.3097
0.0780 0.1427 −0.4728 −0.0788
−0.1338 0.4773 0.0028 −0.4014
−0.1371 0.2076 0.2167 −0.1560


,

Ã =



1.7643 −0.6475 0.7996 −1.4946 −1.0485 0.2050 −0.2997 0.3591 1.1636 0.1017
0.9457 0.8022 −0.4446 −0.7732 1.3888 −0.5330 0.2510 −0.9312 −0.0488 −0.5711
−0.2314 −0.1201 0.1656 1.1546 0.4174 −0.3023 −0.3856 1.5166 −0.1959 0.4041
−0.0590 −0.2892 1.2945 −1.5725 0.6320 0.5720 0.3005 0.0652 −0.1688 −0.8455
−0.5931 1.8189 −0.5775 0.4104 −0.5819 −0.1916 0.5068 −0.8231 0.1822 0.6014
0.5694 0.2275 −0.8018 0.4816 −0.1903 −0.5641 0.4142 −0.5604 1.8448 −0.6054
−0.7796 −0.1209 0.0171 0.2933 0.5531 0.6233 −1.6293 1.2396 −0.2793 −0.1009
0.4152 −0.1291 1.5941 −0.3157 −0.3990 0.4602 1.1340 0.1692 −0.1511 −0.1840
−0.6168 −0.0053 −0.9043 0.2626 −0.5033 1.3451 −0.7673 −0.4762 0.8445 0.9005
0.1522 1.1798 0.3175 −0.2727 0.2888 −1.0087 −1.4385 0.7949 −0.5679 1.7742


,

then we can obtain the best approximate solution A∗ to Problem 1.4 by Algorithm 4.3, where

A∗ =



1.7418 −0.6746 0.7747 −1.4808 −1.0768 0.1823 −0.2974 0.3248 1.1168 0.1012
0.8863 0.7497 −0.4751 −0.7970 1.2891 −0.5704 0.2258 −0.9470 −0.1194 −0.6331
−0.2421 −0.2142 0.1429 1.1080 0.4041 −0.4036 −0.3916 1.5472 −0.2300 0.3731
−0.0915 −0.3337 1.2344 −1.6500 0.5500 0.5500 0.2500 0.0143 −0.2126 −0.8356
−0.6369 1.7404 −0.5895 0.3500 −0.6000 −0.2000 0.4500 −0.8821 0.1326 0.5793
0.5793 0.1326 −0.8821 0.4500 −0.2000 −0.6000 0.3500 −0.5895 1.7404 −0.6369
−0.8356 −0.2126 0.0143 0.2500 0.5500 0.5500 −1.6500 1.2344 −0.3337 −0.0915
0.3731 −0.2300 1.5472 −0.3916 −0.4036 0.4041 1.1080 0.1429 −0.2142 −0.2421
−0.6331 −0.1194 −0.9470 0.2258 −0.5704 1.2891 −0.7970 −0.4751 0.7497 0.8863
0.1012 1.1168 0.3248 −0.2974 0.1823 −1.0768 −1.4808 0.7747 −0.6746 1.7418


.

Exemple 4.5. Assume n = 10, k = 4, m = 5. Let A0 be the same matrix as in Example 4.4, and

Λ =


−2.7645 0 0 0 0

0 0.8744 0 0 0
0 0 1.6888 0.6148 0
0 0 −0.6148 −1.6888 0
0 0 0 0 −1.3716

 , X =



−0.1371 0.2076 −0.5872 0.0000 0.1560
−0.1338 0.4773 −0.1075 0.1681 0.4014
0.0780 0.1427 0.1565 −0.0217 0.0788
−0.5429 0.0952 −0.0595 −0.0017 0.3097
0.4030 0.4469 0.2920 0.0398 −0.4609
0.4030 0.4469 −0.2920 −0.0398 0.4609
−0.5429 0.0952 0.0595 0.0017 −0.3097
0.0780 0.1427 −0.1565 0.0217 −0.0788
−0.1338 0.4773 0.1075 −0.1681 −0.4014
−0.1371 0.2076 0.5872 0 −0.1560


,

Ã =



1.7572 −0.6165 0.7680 −1.4552 −1.0340 0.2842 −0.2699 0.3469 1.1695 0.1680
0.9292 0.8229 −0.4083 −0.7349 1.3295 −0.5869 0.2496 −0.9913 −0.0295 −0.5985
−0.2080 −0.1178 0.1257 1.1170 0.4950 −0.3811 −0.3742 1.5829 −0.1819 0.4022
−0.0967 −0.2652 1.2886 −1.5969 0.6194 0.5654 0.3233 0.0686 −0.1478 −0.8397
−0.5574 1.7665 −0.5080 0.4134 −0.5793 −0.1971 0.4617 −0.8733 0.1796 0.6497
0.6399 0.1528 −0.8700 0.4514 −0.1445 −0.5991 0.4246 −0.5031 1.7963 −0.6141
−0.7955 −0.1045 0.0073 0.2970 0.6379 0.6096 −1.5690 1.2184 −0.2075 −0.0875
0.4401 −0.1320 1.5767 −0.3114 −0.3442 0.4609 1.1745 0.1300 −0.1784 −0.2107
−0.6448 −0.0139 −0.9915 0.2114 −0.5248 1.3919 −0.7663 −0.4589 0.8001 0.8508
0.1809 1.2439 0.3729 −0.2557 0.2895 −1.0266 −1.4416 0.7236 −0.5593 1.7545


.
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In this case, Z̃2 = 0, thus we can simplify G̃2 =

(
Q1(Ir − Y1Y

+
1 )

K2Z
+
2 (Ir − Y1Y

+
1 ) + Q̃2Z̃

+
2 Z̃2

)
in Theorem 4.2 to G̃2 =(

Q1
K2Z

+
2

)
(Ir − Y1Y

+
1 ), and the unique solution A∗ to Problem 1.4 is

A∗ =



1.7162 −0.6778 0.7252 −1.4836 −1.1027 0.2208 −0.2919 0.3335 1.1176 0.1318
0.8660 0.7810 −0.4566 −0.7759 1.3222 −0.6060 0.2012 −0.9996 −0.1181 −0.6573
−0.2321 −0.2322 0.1201 1.0968 0.4102 −0.3935 −0.3691 1.5516 −0.2269 0.3700
−0.1327 −0.3110 1.2116 −1.6500 0.5500 0.5500 0.2500 0.0116 −0.2110 −0.8327
−0.5930 1.7138 −0.5619 0.3500 −0.6000 −0.2000 0.4500 −0.8619 0.1138 0.6070
0.6070 0.1138 −0.8619 0.4500 −0.2000 −0.6000 0.3500 −0.5619 1.7138 −0.5930
−0.8327 −0.2110 0.0116 0.2500 0.5500 0.5500 −1.6500 1.2116 −0.3110 −0.1327
0.3700 −0.2269 1.5516 −0.3691 −0.3935 0.4102 1.0968 0.1201 −0.2322 −0.2321
−0.6573 −0.1181 −0.9996 0.2012 −0.6060 1.3222 −0.7759 −0.4566 0.7810 0.8660
0.1318 1.1176 0.3335 −0.2919 0.2208 −1.1027 −1.4836 0.7252 −0.6778 1.7162


.
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