On ($\alpha, p)$-convex contraction and asymptotic regularity

M. S. Khan ${ }^{\text {a }}$, Y. Mahendra Singh ${ }^{\text {b }}$, Georgeta Maniu ${ }^{\text {c }}$, Mihai Postolache ${ }^{\text {d,e,* }}$
${ }^{a}$ Department of Mathematics and Statistics, Sultan Qaboos University, P. O. Box 36, PCode 123 Al-Khod, Muscat, Sultanate of Oman, Oman.
${ }^{b}$ Department of Humanities and Basic Sciences, Manipur Institute of Technology, Takyelpat-795001, India.
${ }^{c}$ Department of Computer Science, Information Technology, Mathematics and Physics, Petroleum-Gas University of Ploieşti, Bucureşti Bvd., No. 39, 100680 Ploieşti, Romania.
${ }^{d}$ China Medical University, Taichung, Taiwan.
${ }^{e}$ University Politehnica of Bucharest, Bucharest, Romania.

Abstract

In this paper, we present the notions of (α, p)-convex contraction (resp. (α, p)-contraction) and asymptotically T^{2}-regular (resp. ($\mathrm{T}, \mathrm{T}^{2}$)-regular) sequences, and prove fixed point theorems in the setting of metric spaces.

Keywords: Approximate fixed point, fixed point, ($\alpha, p)$-convex contraction, asymptotically regular sequence, asymptotically T (resp. T^{2} and ($\mathrm{T}, \mathrm{T}^{2}$))-regular sequences.
2010 MSC: 47H10, 54H25.
(C)2018 All rights reserved.

1. Introduction and preliminaries

Let (X, d) be a metric space, and C a nonempty set of X. A mapping $T: C \rightarrow C$ is called nonexpansive if $d(T x, T y) \leqslant d(x, y)$ for all $x, y \in C$. In 2007, Goebel and Japón Pineda [8] introduced the class of mean nonexpansive mappings, an extension for the class of nonexpansive mappings. A mapping T:C $\rightarrow \mathrm{C}$ is called mean nonexpansive (or α-nonexpansive) if, for some $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with $\sum_{i=1}^{n} \alpha_{i}=1, a_{i} \geqslant 0$ for all i, and $\alpha_{1}, \alpha_{n}>0$, we have

$$
\sum_{i=1}^{n} \alpha_{i} d\left(T^{i} x, T^{i} y\right) \leqslant d(x, y)
$$

for all $x, y \in C$. Further, Goebel and Japón Pineda [8] introduced the class of (α, p)-nonexpansive

[^0]mappings. A mapping T: $C \rightarrow C$ is called (α, p)-nonexpansive, if for some $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with $\sum_{i=1}^{n} \alpha_{i}=1, \alpha_{i} \geqslant 0$ for all i, and $\alpha_{1}, \alpha_{n}>0$, and for some $p \in[1, \infty)$, we have
$$
\sum_{i=1}^{n} \alpha_{i} d^{p}\left(T^{i} x, T^{i} y\right) \leqslant d^{p}(x, y)
$$
for all $x, y \in C$. In particular, for $n=2$, the above inequality reduces to
$$
\alpha_{1} d^{p}(T x, T y)+\alpha_{2} d^{p}\left(T^{2} x, T^{2} y\right) \leqslant d^{p}(x, y)
$$
for all $x, y \in C$, we say that T is $\left(\left(\alpha_{1}, \alpha_{2}\right), p\right)$-nonexpansive.
Example 1.1. Let $X=[0, \infty) \subset \mathbb{R}$ with usual metric $d(x, y)=|x-y|$ for all $x, y \in X$. Define a translation function $T: X \rightarrow X$ by the formula $T x=x+a$ for any fixed $a>0$. Now, setting $\alpha_{1}=\alpha_{2}=\frac{1}{2}$ and $p \geqslant 1$, we have
$$
|T x-T y|^{p}+\left|T^{2} x-T^{2} y\right|^{p}=2|x-y|^{p},
$$
that is,
$$
\frac{1}{2}|T x-T y|^{p}+\frac{1}{2}|T x-T y|^{p}=|x-y|^{p} .
$$

Therefore, T is $\left(\left(\alpha_{1}, \alpha_{2}\right), p\right)$-nonexpansive mapping.
Example 1.2. Let $X=\{0,1,2\}$ with usual metric $d(x, y)=|x-y|$ for all $x, y \in X$. Define the mapping

$$
T: X \rightarrow X, \quad T x= \begin{cases}1, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Setting $\alpha=\left(\alpha_{1}, \alpha_{2}\right), \alpha_{1}, \alpha_{2}>0$ and $\alpha_{1}+\alpha_{2}=1$, for any $p \geqslant 1$, we have

$$
\alpha_{1}|T x-T y|^{p}+\alpha_{2}\left|T^{2} x-T^{2} y\right|^{p} \leqslant|x-y|^{p} .
$$

Therefore, T is $\left(\left(\alpha_{1}, \alpha_{2}\right), p\right)$-nonexpansive mapping.
In 1982, Istrăţescu [10] introduced the class of convex contraction mappings in the setting of metric space and generalized the well known Banach's contraction principle [2]. Some works have appeared recently on generalization of such class of mappings in the setting of metric, ordered metric, and cone metric, b-metric and 2-metric spaces (for example, Alghamdi et al. [1], Ghorbanian et al. [7], Miandaragh et al. [14], Miculescu and Mihail [15], Khan et al. [12], etc.).

Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping. Given $\varepsilon>0$, then $x_{0} \in X$ is said to be an ε-fixed point of T on X, whenever $\mathrm{d}\left(x_{0}, T x_{0}\right)<\varepsilon$. Note that every fixed point is ε-fixed point but the converse need not be true. We denote the set of all ε - fixed points of T for a given $\varepsilon>0$ by $F_{\varepsilon}(T)=\{x \in X \mid d(T x, x)<\varepsilon\}$ and $\operatorname{Fix}(T)$, the set of all fixed points of T.

We say that T has the approximate fixed point property (AFPP) if for all $\varepsilon>0$, there exists an ε-fixed point of T i.e., for all $\varepsilon, F_{\varepsilon}(T) \neq \emptyset$, or equivalently, $\inf _{x \in X} d(T x, x)=0$.

For details we refer to Berinde [3], Kohlenbach and Leuştean [13], Reich and Zaslavski [16], Tijs et al. [17].
Example 1.3 ([12]). If $X=[0, \infty)$, let $T: X \rightarrow X, T x=x+\frac{1}{2 x+1}$ for all $x \in X$. Setting $0<\varepsilon<\frac{1}{2}$ and taking $x_{0} \in X$ such that $x_{0}>\frac{1-\varepsilon}{2 \varepsilon}$, we obtain,

$$
\mathrm{d}\left(\mathrm{~T} x_{0}, x_{0}\right)=\left|T x_{0}-x_{0}\right|=\left|\frac{1}{2 x_{0}+1}\right|<\varepsilon .
$$

This shows that T has an ε-fixed point, so $F_{\varepsilon}(T) \neq \emptyset$. Note that T has no fixed point in X.

Definition 1.4 ([4]). A self mapping T on X is said to be asymptotically regular at a point $x \in X$ if $\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)=0$.
Definition 1.5 ([5]). A sequence $\left\{x_{n}\right\}$ in X is called an asymptotically T-regular, if $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$.
Lemma 1.6 ([3]). If (X, d) is a metric space and T is an asymptotically regular self mapping on X , that is $\mathrm{d}\left(\mathrm{T}^{\mathrm{m}} \mathrm{x}, \mathrm{T}^{\mathrm{m}+1} \mathrm{x}\right) \rightarrow 0$ for all $\mathrm{x} \in \mathrm{X}$, then T has the AFPP.

In the next section, we discuss the notions of (α, p)-convex contraction (resp. ($\alpha, p)$-contraction) and asymptotically T^{2}-regular (resp. ($\mathrm{T}, \mathrm{T}^{2}$)-regular) sequences. Further, we show with examples that the notions of asymptotically T -regular and T^{2}-regular sequences are independent to each other.

2. (α, p)-convex contraction and asymptotic regularity

Let T be a self mapping on a metric space (X, d).
Definition 2.1. A self mapping T on X is said to be (α, p)-contraction, if for some $\alpha \in(0,1)$ and $p \geqslant 1$, there exists $0 \leqslant k<1$ satisfying the following inequality

$$
\begin{equation*}
\alpha d^{\mathfrak{p}}(T x, T y)+(1-\alpha) d^{p}\left(T^{2} x, T^{2} y\right) \leqslant k d^{p}(x, y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$.
Note that if we set $\alpha=\alpha_{1}, \alpha_{2}=1-\alpha$, and $k=1$ in the inequality (2.1), then T reduces to ($\left.\left(\alpha_{1}, \alpha_{2}\right), p\right)$ nonexpansive (see [8]). Further, if $p=1$ and $k<1$ (resp. $k=1$) in the inequality (2.1), then T reduces to α-contraction (resp. α-nonexpansive) with multi-index length 2 (see [9]).
Definition 2.2. A self mapping T on X is said to be (α, p)-convex contraction, if for some $\alpha \in(0,1)$ and $p \geqslant 1$, there exist $k_{i} \geqslant 0$ for all $i \in\{1,2, \ldots, 5\}$ such that $\sum_{i=1}^{i=5} k_{i}<1$ satisfying the following inequality

$$
\begin{align*}
\alpha d^{p}(T x, T y)+(1-\alpha) d^{p}\left(T^{2} x, T^{2} y\right) \leqslant & k_{1} d^{p}(x, y)+k_{2} d^{p}(x, T x) \tag{2.2}\\
& +k_{3} d^{p}\left(T x, T^{2} x\right)+k_{4} d^{p}(y, T y)+k_{5} d^{p}\left(T y, T^{2} y\right)
\end{align*}
$$

for all $x, y \in X$.
Obviously, if $k_{i}=0$ for all $i \in\{2,3,4,5\}$, then the inequality (2.2) reduces to (α, p)-contraction. We shall call α-contraction and α-convex contraction, if $p=1$ in the inequalities (2.1) and (2.2). If $\alpha=k_{1}=0$ and $p=1$ in (2.2), then it reduces to two-sided convex contraction [10].

Example 2.3. On $X=[0,1]$, consider $T: X \rightarrow X$, endowed with usual metric $d(x, y)=|x-y|$. We define $T x=\frac{1-x^{2}}{2}$, for all $x \in X$. Then, we obtain $T^{2} x=\frac{3+2 x^{2}-x^{4}}{8}$. Now, we have

$$
|T x-T y|=\frac{1}{2}\left|x^{2}-y^{2}\right|=\frac{(x+y)}{2}|x-y| \leqslant|x-y| .
$$

Also,

$$
\left|T^{2} x-T^{2} y\right|=\frac{1}{8}\left|\left(2 x^{2}-x^{4}\right)-\left(2 y^{2}-y^{4}\right)\right| \leqslant \frac{1}{4}\left|x^{2}-y^{2}\right|+\frac{1}{8}\left|x^{4}-y^{4}\right| \leqslant|x-y| .
$$

Therefore, for $\alpha=\frac{1}{2}$ and $p=1$, we obtain

$$
\alpha|T x-T y|+(1-\alpha)\left|T^{2} x-T^{2} y\right| \leqslant|x-y| .
$$

This shows that T is nonexpansive and α-nonexpansive for $p=1$.
Further, for $p=2$ and $\alpha=\frac{1}{2}$, we obtain

$$
\alpha|T x-T y|^{2}+(1-\alpha)\left|T^{2} x-T^{2} y\right|^{2} \leqslant \frac{1}{2}|x-y|^{2}+\frac{1}{8}|x-y|^{2}=\frac{5}{8}|x-y|^{2} .
$$

This shows that T is (α, p)-contraction for $p=2>1$.

In [6], Gallagher mentioned that all nonexpansive mappings are mean nonexpansive, but the converse is not true. That is, there exists a mean nonexpansive mapping which is not nonexpansive (see [6, Examples 2.3 and 2.4]). However, it may happen that a nonexpansive mapping need not necessarily be a mean nonexpansive.

Example 2.4. Let $T: X \rightarrow X$, where $X=[0,1]$ with usual metric $d(x, y)=|x-y|$. We define $T x=\frac{x^{2}}{2}$ for all $x \in X$. Setting $\alpha=\frac{1}{2}$ and $p=1$. Now, we have

$$
|T x-T y|=\frac{1}{2}\left|x^{2}-y^{2}\right| \leqslant|x-y| .
$$

Also, we have,

$$
\left|T^{2} x-T^{2} y\right|=\frac{1}{8}\left|x^{4}-y^{4}\right|=\frac{\left(x^{2}+y^{2}\right)(x+y)}{8}|x-y| \leqslant \frac{1}{2}|x-y| .
$$

Therefore,

$$
\frac{1}{2}|T x-T y|+\frac{1}{2}\left|T^{2} x-T^{2} y\right| \leqslant \frac{3}{4}|x-y|,
$$

where, $k=\frac{3}{4}, \alpha=\frac{1}{2}$. This shows that T is nonexpansive but not mean nonexpansive.
Now, we introduce the notions of asymptotically T^{2}-regular (resp. $\left(\mathrm{T}, \mathrm{T}^{2}\right)$-regular) sequences.
Definition 2.5. A sequence $\left\{x_{n}\right\}$ is called an asymptotically T^{2}-regular, if $\lim _{n \rightarrow \infty} d\left(x_{n}, T^{2} x_{n}\right)=0$.
Example 2.6. Let $X=\mathbb{R}$ endowed with usual metric $d(x, y)=|x-y|$. We define

$$
\mathrm{T}: X \rightarrow X, \quad T x= \begin{cases}1-x^{2}, & x \neq 1 \\ 2, & x=1\end{cases}
$$

Choose a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow 1$ as $n \rightarrow \infty$, except the constant sequence $x_{n}=1$. Then, $T x_{n}=\left(1-x_{n}^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore, $\lim _{n \rightarrow \infty}\left|T x_{n}-x_{n}\right|=1 \neq 0$. Also, we have $T^{2} x_{n}=T\left(T x_{n}\right)=$ $\mathrm{T}\left(1-x_{n}{ }^{2}\right)=\left[1-\left(1-x_{n}{ }^{2}\right)^{2}\right] \rightarrow 1$. Consequently, $\left|x_{n}-T^{2} x_{n}\right| \rightarrow 0$. Therefore, $\left\{x_{n}\right\}$ is asymptotically T^{2}-regular sequence but not asymptotically T -regular sequence in X .

Example 2.7. Let $T: X \rightarrow X$, where $X=\mathbb{R}$ with the usual metric $d(x, y)=|x-y|$. Define

$$
T x= \begin{cases}\frac{x^{2}}{2}, & x<2 \\ 0, & x=2, \\ 2, & x>2 .\end{cases}
$$

Consider a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow 2$ as $n \rightarrow \infty$, except the constant sequence $x_{n}=2$. Then, $T x_{n} \rightarrow 2$ as $n \rightarrow \infty$. Therefore, $\lim _{n \rightarrow \infty}\left|T x_{n}-x_{n}\right|=0$. Further, we have $T^{2} x_{n}=T\left(T x_{n}\right) \rightarrow 2$ or 0 , according as $x_{n} \rightarrow 2$ from left or right. So, $\lim _{n \rightarrow \infty} T^{2} x_{n}$ does not exist. Therefore, $\left|x_{n}-T^{2} x_{n}\right|$ does not tend to 0 as $n \rightarrow 0$. It shows that $\left\{x_{n}\right\}$ is asymptotically T-regular sequence, but not asymptotically T^{2}-regular sequence in X.

It may be observed from Examples 2.6 and 2.7, that the notions of asymptotically T-regular and T^{2} -regular sequences are independent to each other.

Definition 2.8. A sequence $\left\{x_{n}\right\}$ in X is called an asymptotically $\left(T, T^{2}\right)$-regular, if $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$ and $\lim _{n \rightarrow \infty} d\left(x_{n}, T^{2} x_{n}\right)=0$.

Obviously, if $\left\{x_{n}\right\}$ is an asymptotically $\left(T, T^{2}\right)$-regular sequence, then it satisfies both asymptotically T and T^{2}-regular conditions.

Example 2.9. Let $T: X \rightarrow X$, where $X=\mathbb{R}$ with usual metric $d(x, y)=|x-y|$. Define

$$
T x= \begin{cases}4-x, & x<2 \\ 0, & x=2 \\ \frac{x^{2}}{2}, & x>2\end{cases}
$$

Consider a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow 2$ as $n \rightarrow \infty$, except the constant sequence $x_{n}=2$. Then, $T x_{n} \rightarrow 2$ as $n \rightarrow \infty$ and $T^{2} x_{n}=T\left(T x_{n}\right) \rightarrow 2$. Therefore, $\left|x_{n}-T x_{n}\right| \rightarrow 0$ and $\left|x_{n}-T^{2} x_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. So, $\left\{x_{n}\right\}$ is both asymptotically T-regular and T^{2}-regular sequence in X. Therefore, $\left\{x_{n}\right\}$ is asymptotically $\left(T, T^{2}\right)$-regular sequence in X.
Lemma 2.10. If a sequence $\left\{x_{n}\right\}$ in X is asymptotically $\left(T, T^{2}\right)$-regular in X, then

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T^{2} x_{n}\right)=0 .
$$

Proof. By the triangle inequality, we obtain

$$
d\left(T x_{n}, T^{2} x_{n}\right) \leqslant d\left(T x_{n}, x_{n}\right)+d\left(x_{n}, T^{2} x_{n}\right) .
$$

Hence, $\mathrm{d}\left(\mathrm{T} x_{n}, \mathrm{~T}^{2} \mathrm{x}_{\mathrm{n}}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.
The converse of Lemma 2.10 is not true. In support of this, we have the following example.
Example 2.11. Let $T: X \rightarrow X$, where $X=\mathbb{R}$ with usual metric $d(x, y)=|x-y|$. We consider

$$
T x= \begin{cases}1, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Choose a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then, $T x_{n}$ and $T^{2} x_{n}$ converge to 1 as $n \rightarrow \infty$. Therefore, $\left|T x_{n}-x_{n}\right| \rightarrow 1 \neq 0$ and $\left|x_{n}-T^{2} x_{n}\right| \rightarrow 1 \neq 0$ as $n \rightarrow \infty$. It shows that $d\left(T x_{n}, T^{2} x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, but the sequence $\left\{x_{n}\right\}$ is neither asymptotically T-regular nor asymptotically T^{2}-regular in X. Therefore, the sequence $\left\{x_{n}\right\}$ is not asymptotically $\left(T, T^{2}\right)$-regular.

3. Fixed point results

Theorem 3.1. Let (X, d) be a metric space and $T: X \rightarrow X$ be a (α, p)-contraction such that $k+\alpha<1$. Then, T has the AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.

Proof. Let $x_{0} \in X$. Now, we define a sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T^{n+1} x_{0}$ for all $n \geqslant 0$. If $x_{n}=x_{n+1}$ i.e., $T^{n} x_{0}=T\left(T^{n} x_{0}\right)$ for some n, then the conclusion follows immediately. Without lost of generality, we assume that $x_{n} \neq x_{n+1}$ for all $n \geqslant 0$. Setting $v=d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)$ we have $d\left(x_{0}, T x_{0}\right) \leqslant v$ and $d\left(T x_{0}, T^{2} x_{0}\right) \leqslant v$. Taking $x=x_{0}$ and $y=T x_{0}$ in the inequality (2.1), we obtain

$$
\begin{aligned}
(1-\alpha) d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right) & \leqslant \alpha d^{p}\left(T x_{0}, T^{2} x_{0}\right)+(1-\alpha) d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right) \\
& \leqslant k d^{\mathfrak{p}}\left(x_{0}, T x_{0}\right)=k v^{\mathfrak{p}} \Rightarrow d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right) \leqslant \frac{k}{1-\alpha} v^{\mathfrak{p}} \Rightarrow d\left(T^{2} x_{0}, T^{3} x_{0}\right) \leqslant h v,
\end{aligned}
$$

where $h^{\mathfrak{p}}=\frac{k}{1-\alpha}$, and since $k+\alpha<1 \Rightarrow h^{\mathfrak{p}}<1$.
Again, taking $x=T x_{0}$ and $y=T^{2} x_{0}$ in relation (2.1), we obtain

$$
(1-\alpha) d^{p}\left(T^{3} x_{0}, T^{4} x_{0}\right) \leqslant \alpha d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right)+(1-\alpha) d^{p}\left(T^{3} x_{0}, T^{4} x_{0}\right)
$$

$$
\leqslant k d^{p}\left(T x_{0}, T^{2} x_{0}\right) \Rightarrow d^{p}\left(T^{3} x_{0}, T^{4} x_{0}\right) \leqslant h^{p} v^{p} \Rightarrow d\left(T^{3} x_{0}, T^{4} x_{0}\right) \leqslant h v .
$$

And
$(1-\alpha) d^{p}\left(T^{4} x_{0}, T^{5} x_{0}\right) \leqslant \alpha d^{p}\left(T^{3} x_{0}, T^{4} x_{0}\right)+(1-\alpha) d^{p}\left(T^{4} x_{0}, T^{5} x_{0}\right) \leqslant k d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right) \Rightarrow d\left(T^{4} x_{0}, T^{5} x_{0}\right) \leqslant h^{2} v$.
Also, we obtain

$$
d\left(T^{5} x_{0}, T^{6} x_{0}\right) \leqslant h^{2} v .
$$

Following similar arguments as in ([12, 14]), we obtain $d\left(T^{m} x_{0}, T^{m+1} x_{0}\right) \leqslant h^{l} v$, whenever $m=2 l$ or $m=2 l+1$. Therefore, $d\left(T^{m} x_{0}, T^{m+1} x_{0}\right) \rightarrow 0$ as $m \rightarrow \infty$, i.e., T is asymptotically regular at x_{0}. By Lemma $1.6, T$ has an approximate fixed point. Now, suppose that T is continuous and (X, d) is a complete metric space. In order to show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X, fix a nonzero positive integer m.
Case (i). For $m=2 l$ with $l, q \geqslant 1$, then

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{~T}^{m} x_{0}, \mathrm{~T}^{m+\mathrm{q}} x_{0}\right)= & \mathrm{d}\left(\mathrm{~T}^{2 l} x_{0}, \mathrm{~T}^{2 l+\mathrm{q}} x_{0}\right) \\
\leqslant & \mathrm{d}\left(\mathrm{~T}^{2 l} x_{0}, \mathrm{~T}^{2 l+1} x_{0}\right)+\mathrm{d}\left(\mathrm{~T}^{2 l+1} x_{0}, \mathrm{~T}^{2 l+2} x_{0}\right) \\
& +\mathrm{d}\left(\mathrm{~T}^{2 l+2} x_{0}, \mathrm{~T}^{2 l+3} x_{0}\right)+\mathrm{d}\left(\mathrm{~T}^{2 l+3} x_{0}, \mathrm{~T}^{2 l+4} x_{0}\right)+\cdots \\
& +\mathrm{d}\left(\mathrm{~T}^{2 l+q-2} x_{0}, \mathrm{~T}^{2 l+q-1} x_{0}\right)+\mathrm{d}\left(\mathrm{~T}^{2 l+q-1} x_{0}, \mathrm{~T}^{2 l+q} x_{0}\right) \\
\leqslant & h^{l} v+h^{l} v+h^{l+1} v+h^{l+1} v+\cdots \\
\leqslant & 2 h^{l}\left(1+h+h^{2}+h^{3}+\cdots\right) v \leqslant 2 h^{l} \frac{1}{(1-h)} v .
\end{aligned}
$$

Case (ii). Similarly, for $m=2 l+1$ with $l, q \geqslant 1$, we obtain

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{~T}^{\mathrm{m}} x_{0}, \mathrm{~T}^{m+\mathrm{q}} x_{0}\right)= & \mathrm{d}\left(\mathrm{~T}^{2 l+1} x_{0}, \mathrm{~T}^{2 l+q+1} x_{0}\right) \\
\leqslant & \mathrm{d}\left(\mathrm{~T}^{2 l+1} x_{0}, \mathrm{~T}^{2 l+2} x_{0}\right)+\mathrm{d}\left(\mathrm{~T}^{2 l+2} x_{0}, \mathrm{~T}^{2 l+3} x_{0}\right) \\
& +\mathrm{d}\left(\mathrm{~T}^{2 l+3} x_{0}, \mathrm{~T}^{2 l+4} x_{0}\right)+\mathrm{d}\left(\mathrm{~T}^{2 l+4} x_{0}, \mathrm{~T}^{2 l+5} x_{0}\right)+\cdots \\
& +\mathrm{d}\left(\mathrm{~T}^{2 l+q-1} x_{0}, \mathrm{~T}^{2 l+\mathrm{q}} \mathrm{x}_{0}\right)+\mathrm{d}\left(\mathrm{~T}^{2 l+\mathrm{q}} x_{0}, \mathrm{~T}^{2 l+q+1} x_{0}\right) \\
\leqslant & h^{\mathrm{l}} v+h^{h+1} v+h^{l+1} v+h^{l+2} v+\cdots \\
\leqslant & 2 h^{l}\left(1++h+h^{2}+h^{3}+\cdots\right) v \leqslant 2 h^{l} \frac{1}{(1-h)} v .
\end{aligned}
$$

Taking $l \rightarrow \infty$ in all cases, since $h<1$, we obtain, $d\left(T^{m} x_{0}, T^{n} x_{0}\right) \rightarrow 0$. Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since, X is complete, there exists a point $z \in X$ such that $x_{n}=T^{n} x_{0} \rightarrow z \in X$ as $n \rightarrow \infty$. This shows that z is a fixed point of T. Now, we prove that T has a unique fixed point in X. Let $z^{*} \in X$ be another fixed point of T. Using (2.1) for $x=z$ and $y=z^{*}$, we obtain

$$
\alpha \mathrm{d}^{\mathrm{p}}\left(\mathrm{~T} z, \mathrm{~T} z^{*}\right)+(1-\alpha) \mathrm{d}^{\mathrm{p}}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} z^{*}\right) \leqslant k \mathrm{~d}^{\mathrm{p}}\left(z, z^{*}\right) \Rightarrow(1-\mathrm{k}) \mathrm{d}^{\mathrm{p}}\left(z, z^{*}\right) \leqslant 0
$$

leading to $\mathrm{d}\left(z, z^{*}\right)=0$, a contradiction. Hence, T has a unique fixed point in X.
We have the following example for the validity of Theorem 3.1.
Example 3.2. Let $T: X \rightarrow X$, where $X=[0,1]$ with usual metric $d(x, y)=|x-y|$. Define $T x=\frac{1-x^{2}}{2}$ for all $x \in X$. Setting $\alpha=\frac{1}{6}$ and $p=2$, we obtain

$$
\alpha|T x-T y|^{2}+(1-\alpha)\left|T^{2} x-T^{2} y\right|^{2} \leqslant \alpha|x-y|^{2}+\frac{(1-\alpha)}{2}|x-y|^{2}=\frac{(1+\alpha)}{2}|x-y|^{2}=\frac{7}{12}|x-y|^{2} .
$$

This shows that T is (α, p)-contraction with $\alpha+k=\frac{3}{4}<1$. Moreover, $x=-1+\sqrt{2}$ is the unique fixed point of T in X .

Theorem 3.3. Let (X, d) be a metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a (α, p)-convex contraction such that $\left(\sum_{i=1}^{5} \mathrm{k}_{\mathrm{i}}\right)+$ $\alpha<1$. Then, T has the AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.
Proof. We define a sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T^{n+1} x_{0}$ for all $n \geqslant 0$ and continue the same arguments as in Theorem 3.1, setting $v=d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)$. Now, using (2.2) for $x=x_{0}$ and $y=T x_{0}$, we obtain

$$
\begin{aligned}
(1-\alpha) d^{\mathfrak{p}}\left(T^{2} x_{0}, T^{3} x_{0}\right) & \leqslant+\alpha d^{\mathfrak{p}}\left(T x_{0}, T^{2} x_{0}\right)+(1-\alpha) d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right) \\
& \leqslant\left(k_{1}+k_{2}\right) d^{\mathfrak{p}}\left(x_{0}, T x_{0}\right)+\left(k_{3}+k_{4}\right) d^{p}\left(T x_{0}, T^{2} x_{0}+k_{5} d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right)\right. \\
& \leqslant\left(k_{1}+k_{2}+k_{3}+k_{4}\right) v^{\mathfrak{p}}+k_{5} d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right) .
\end{aligned}
$$

Therefore,

$$
d^{p}\left(T^{2} x_{0}, T^{3} x_{0}\right) \leqslant \frac{k_{1}+k_{2}+k_{3}+k_{4}}{1-\alpha-k_{5}} v^{p}=h^{p} v^{p} \Rightarrow d\left(T^{2} x_{0}, T^{3} x_{0}\right) \leqslant h v
$$

for $h^{p}=\left(\frac{k_{1}+k_{2}+k_{3}+k_{4}}{1-\alpha-k_{5}}\right) ;$ moreover, since $\left(\sum_{j=1}^{5} k_{j}\right)+\alpha<1 \Rightarrow h^{p}<1$.
Similarly, one can obtain

$$
d\left(T^{3} x_{0}, T^{4} x_{0}\right) \leqslant h v, \quad \text { and } \quad d\left(T^{4} x_{0}, T^{5} x_{0}\right) \leqslant h^{2} v, \quad \text { and } \quad d\left(T^{5} x_{0}, T^{6} x_{0}\right) \leqslant h^{2} v .
$$

Following similar arguments as in Theorem 3.1, we obtain $d\left(T^{m} \chi_{0}, T^{m+1} \chi_{0}\right) \rightarrow 0$ as $m \rightarrow \infty$, i.e., T is asymptotically regular at x_{0}. By Lemma $1.4, \mathrm{~T}$ has AFPP. Further, by assuming the continuity of T and the completeness of X, the existence of a fixed point z can be proved, using similar arguments as in Theorem 3.1.

Now, we show that T has a unique fixed point in X. Let $z^{*} \in X$ be another fixed point of T. Using (2.2) for $x=z$ and $y=z^{*}$, we obtain

$$
\begin{aligned}
\alpha \mathrm{d}^{\mathrm{p}}\left(\mathrm{~T} z, \mathrm{~T} z^{*}\right)+(1-\alpha) \mathrm{d}^{\mathrm{p}}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} z^{*}\right) \leqslant & \mathrm{k}_{1} \mathrm{~d}^{\mathrm{p}}\left(z, z^{*}\right)+\mathrm{k}_{2} \mathrm{~d}^{\mathrm{p}}(z, \mathrm{~T} z)+\mathrm{k}_{3} \mathrm{~d}^{\mathrm{p}}\left(\mathrm{~T} z, \mathrm{~T}^{2} z\right) \\
& +\mathrm{k}_{4} \mathrm{~d}^{\mathrm{p}}\left(z^{*}, \mathrm{~T} z^{*}\right)+\mathrm{k}_{5} \mathrm{~d}^{\mathrm{p}}\left(\mathrm{~T} z^{*}, \mathrm{~T}^{2} z^{*}\right) \Rightarrow\left(1-\mathrm{k}_{1}\right) \mathrm{d}^{\mathrm{p}}\left(z, z^{*}\right) \leqslant 0,
\end{aligned}
$$

which gives $d\left(z, z^{*}\right)=0$, a contradiction and hence, T has a unique fixed point in X.
One can verify the validity of Theorem 3.3 with Example 3.2 taking with $\alpha=\frac{1}{6}, \mathrm{k}_{1}=\frac{7}{12}, \mathrm{k}_{2}=\mathrm{k}_{3}=$ $k_{4}=k_{5}=0$, and $p=2$.

Theorem 3.4. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a (α, p)-contraction such that $0 \leqslant k<\alpha$ or $\mathrm{k}+\alpha<1$. If T is asymptotically regular at some point x_{0} in X , then there exists a unique fixed point of T .
Proof. Let T be an asymptotically regular mapping at $x_{0} \in X$. Consider a sequence $\left\{T^{n} x_{0}\right\}$ in X and for any two non zero positive integers $m, n \geqslant 1$ such that $m>n$, let us analyze the following two situations:
Case(i). When $0 \leqslant k<\alpha$. Using the inequality (2.1), we obtain

$$
\begin{aligned}
\alpha d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) & \leqslant \alpha d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right)+(1-\alpha) d^{p}\left(T^{m+1} x_{0}, T^{n+1} x_{0}\right) \\
& \leqslant k d^{p}\left(T^{m-1} x_{0}, T^{n-1} x_{0}\right) \leqslant k\left[d\left(T^{m-1} x_{0}, T^{m} x_{0}\right)+d\left(T^{m} x_{0}, T^{n} x_{0}\right)+d\left(T^{n} x_{0}, T^{n-1} x_{0}\right)\right]^{p} .
\end{aligned}
$$

Taking $n, m \rightarrow \infty$ and using the asymptotically regularity of T at x_{0}, the above inequality gives

$$
\alpha \lim _{n \rightarrow \infty} d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant k \lim _{n \rightarrow \infty} d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right),
$$

that is,

$$
(\alpha-k) \lim _{n \rightarrow \infty} d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant 0 .
$$

Since $0 \leqslant k<\alpha$, it follows $\lim _{n \rightarrow \infty} d\left(T^{m} \chi_{0}, T^{n} \chi_{0}\right)=0$.

Case(ii). When $0<k+\alpha<1$. Using the inequality (2.1), we obtain

$$
\begin{aligned}
&(1-\alpha) d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant \\
&<d^{p}\left(T^{m-1} x_{0}, T^{n-1} x_{0}\right)+(1-\alpha) d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) \\
& \leqslant k d^{p}\left(T^{m-2} x_{0}, T^{n-2} x_{0}\right) \\
& \leqslant k\left[d\left(T^{m-2} x_{0}, T^{m} x_{0}\right)+d\left(T^{m} x_{0}, T^{n} x_{0}\right)+d\left(T^{n} x_{0}, T^{n-2} x_{0}\right)\right]^{p} \\
& \leqslant k\left[d\left(T^{m-2} x_{0}, T^{m-1} x_{0}\right)+d\left(T^{m-1} x_{0}, T^{m} x_{0}\right)\right. \\
&\left.+d\left(T^{m} x_{0}, T^{n} x_{0}\right)+d\left(T^{n} x_{0}, T^{n-1} x_{0}\right)+d\left(T^{n-1} x_{0}, T^{n-2} \chi_{0}\right)\right]^{p} .
\end{aligned}
$$

Taking $n, m \rightarrow \infty$, we find

$$
(1-\alpha) \lim _{n \rightarrow \infty} d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant k \lim _{n \rightarrow \infty} d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) \Rightarrow(1-\alpha-k) \lim _{n \rightarrow \infty} d^{p}\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant 0
$$

Therefore, $\lim _{n \rightarrow \infty} d\left(T^{m} x_{0}, T^{n} x_{0}\right)=0$ as $0<k+\alpha<1$. Consequently, $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence in X. Since X is complete, it follows $T^{n} x_{0} \rightarrow z$ as $n \rightarrow \infty$ for some $z \in X$. Now, we show that $T z=z$, i.e., z is a fixed point of T. For this, using again the inequality (2.1), we find

$$
\alpha d^{p}\left(T z, T^{n} x_{0}\right) \leqslant \alpha d^{p}\left(T z, T^{n} x_{0}\right)+(1-\alpha) d^{p}\left(T^{2} z, T^{n+1} \chi_{0}\right) \leqslant k d^{p}\left(z, T^{n-1} x_{0}\right)
$$

As $n \rightarrow \infty$, we obtain

$$
\alpha \mathrm{d}^{\mathrm{p}}(\mathrm{~T} z, z) \leqslant 0
$$

which leads to $d(T z, z)=0$, that is $T z=z$. Therefore, z is a fixed point of T. The uniqueness of the fixed point follows immediately as in Theorem 3.1.

Example 3.5. Let $T: X \rightarrow X$, where $X=[0,1]$ with usual metric $d(x, y)=|x-y|$. Define $T x=\frac{1+x}{2}$ for all $x \in X$. For any arbitrary $x_{0} \in X$, we have $T x_{0}=\frac{1+x_{0}}{2}$ and $T^{n} x_{0}=\frac{2^{n}-1+x_{0}}{2^{n}}$, where T^{n} denotes the $n^{\text {th }}$ iterate of T. Also, we have

$$
\lim _{n \rightarrow \infty} d\left(T^{n} x_{0}, T^{n+1} x_{0}\right)=\lim _{n \rightarrow \infty}\left|\frac{2^{n}-1+x_{0}}{2^{n}}-\frac{2^{n+1}-1+x_{0}}{2^{n+1}}\right|=0
$$

This shows that T is asymptotically regular at all points in X. Obviously, $\left\{T^{n} \chi_{0}\right\}$ is a sequence in X such that $T^{n} x_{0} \rightarrow 1 \in X$ as $n \rightarrow \infty$. Taking $\alpha=\frac{1}{3}, k=\frac{1}{8}$, and $p=2$, then T is (α, p)-contraction for all $x, y \in X$ such that $k<\alpha$ or $k+\alpha<1$. Thus, all the conditions of Theorem 3.4 are satisfied and hence, 1 is the unique fixed point of T.

Theorem 3.6. Let (X, d) be a complete metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a α-contraction such that $\mathrm{k}<\alpha$. If there exists an asymptotically T-regular sequence in X , then T has a unique fixed point.

Proof. Let $\left\{x_{n}\right\}$ be an asymptotically T-regular sequence in X. Then, for any two non zero positive integers m, n such that $m>n$, we obtain

$$
\begin{aligned}
\alpha d\left(x_{m}, x_{n}\right) & \leqslant \alpha\left[d\left(x_{m}, T x_{m}\right)+d\left(T x_{m}, T x_{n}\right)+d\left(T x_{n}, x_{n}\right)\right] \\
& =\alpha\left[d\left(x_{m}, T x_{m}\right)+d\left(T x_{n}, x_{n}\right)\right]+\alpha d\left(T x_{m}, T x_{n}\right) \\
& \leqslant \alpha\left[d\left(x_{m}, T x_{m}\right)+d\left(T x_{n}, x_{n}\right)\right]+\alpha d\left(T x_{m}, T x_{n}\right)+(1-\alpha) d\left(T^{2} x_{m}, T^{2} x_{n}\right) \\
& \leqslant \alpha\left[d\left(x_{m}, T x_{m}\right)+d\left(T x_{n}, x_{n}\right)\right]+\operatorname{kd}\left(x_{m}, x_{n}\right)
\end{aligned}
$$

that is,

$$
d\left(x_{m}, x_{n}\right) \leqslant \frac{\alpha}{\alpha-k}\left[d\left(x_{m}, T x_{m}\right)+d\left(T x_{n}, x_{n}\right)\right] .
$$

Taking $n, m \rightarrow \infty$ and using the fact that the sequence $\left\{x_{n}\right\}$ is asymptotically T-regular, we obtain

$$
\lim _{n \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0
$$

This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists a point $z \in X$ such that $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$.

Now, we show that $\mathrm{T} z=z$, i.e., z is a fixed point of T .

$$
\begin{aligned}
\alpha \mathrm{d}\left(\mathrm{~T} z, x_{n}\right) & \leqslant \alpha\left[\mathrm{d}\left(\mathrm{~T} z, T x_{n}\right)+\mathrm{d}\left(\mathrm{~T} x_{n}, x_{n}\right)\right] \\
& \leqslant \alpha \mathrm{d}\left(\mathrm{~T} z, T x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} x_{n}\right)+\alpha \mathrm{d}\left(\mathrm{~T} x_{n}, x_{n}\right) \leqslant \operatorname{kd}\left(z, x_{n}\right)+\alpha \mathrm{d}\left(\mathrm{~T} x_{n}, x_{n}\right) .
\end{aligned}
$$

As $n \rightarrow \infty$ and since $\left\{x_{n}\right\}$ is asymptotically T-regular, we obtain

$$
\alpha \mathrm{d}(\mathrm{~T} z, z) \leqslant 0
$$

leading to $\mathrm{T} z=z$. Therefore, z is a fixed point of T . The uniqueness of the fixed point follows immediately.

Example 3.7. Let $T: X \rightarrow X$, where $X=[0,1]$ with usual metric $d(x, y)=|x-y|$. Define $T x=\frac{x}{3}$ for all $x \in X$. Consider a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow 0$, then $T x_{n} \rightarrow 0$, i.e., $\left|x_{n}-T x_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. So, $\left\{x_{n}\right\}$ is asymptotically T-regular in X. Setting $\alpha=\frac{1}{2}, k=\frac{2}{9}$, then T is α-contraction for all $x, y \in X$ such that $k<\alpha$. Thus, all the conditions of Theorem 3.6 are satisfied and hence, 0 is the unique fixed point of T.

Theorem 3.8. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a α-contraction such that $k+\alpha<1$. If there exists an asymptotically T^{2}-regular sequence in X , then T has a unique fixed point.
Proof. Let $\left\{x_{n}\right\}$ be an asymptotically T^{2}-regular sequence in X. Then, for any two non zero positive integers m, n such that $m>n$, we obtain

$$
\begin{aligned}
(1-\alpha) d\left(x_{m}, x_{n}\right) & \leqslant(1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{m}, T^{2} x_{n}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right] \\
& =(1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right]+(1-\alpha) d\left(T^{2} x_{m}, T^{2} x_{n}\right) \\
& \leqslant(1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right]+\alpha d\left(T x_{m}, T x_{n}\right)+(1-\alpha) d\left(T^{2} x_{m}, T^{2} x_{n}\right) \\
& \leqslant(1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right]+k d\left(x_{m}, x_{n}\right),
\end{aligned}
$$

that is,

$$
d\left(x_{m}, x_{n}\right) \leqslant \frac{1-\alpha}{1-\alpha-k}\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right] .
$$

Since $\left\{x_{n}\right\}$ is asymptotically T^{2}-regular sequence, by taking $n, m \rightarrow \infty$, we obtain

$$
\lim _{n \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0,
$$

which proves that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since, X is complete, there exists a point $z \in X$ such that $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$.

In order to show that z is a fixed point of T in X, we make several steps.

First, we show that $\mathrm{T}^{2} z=z$. Using inequality (2.1), we obtain

$$
\begin{aligned}
(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, x_{n}\right) & \leqslant(1-\alpha)\left[\mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} x_{n}\right)+\mathrm{d}\left(\mathrm{~T}^{2} x_{n}, x_{n}\right)\right] \\
& \leqslant \alpha d\left(\mathrm{~T} z, \mathrm{~T} x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} x_{n}, x_{n}\right) \\
& \leqslant k d\left(z, x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} x_{n}, x_{n}\right) .
\end{aligned}
$$

Taking $n \rightarrow \infty$, and using the asymptotically T^{2}-regularity of the sequence $\left\{x_{n}\right\}$, we obtain

$$
(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, z\right) \leqslant 0,
$$

which gives $\mathrm{T}^{2} z=z$. Therefore, one can obtain inductively that $\mathrm{T}^{2 \mathrm{n}} z=z$ and $\mathrm{T}^{2 \mathrm{n}+1} z=\mathrm{T} z$ for $\mathrm{n} \geqslant 1$.
We show that $\mathrm{T} z=z$, i.e., z is a fixed point of T.
Using the inequality(2.1), we obtain

$$
(1-\alpha) \mathrm{d}(z, \mathrm{~T} z)=(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{3} z\right) \leqslant \alpha \mathrm{d}\left(\mathrm{~T} z, \mathrm{~T}^{2} z\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{3} z\right) \leqslant \mathrm{kd}(z, \mathrm{~T} z)
$$

that is,

$$
(1-\alpha-k) d(z, T z) \leqslant 0
$$

a contradiction, if $\mathrm{T} z \neq z$. Therefore, z is a fixed point of T . Using the inequality (2.1), one can obtain the uniqueness of fixed point.

Example 3.9. Let $T: X \rightarrow X$, where $X=\{0,1,2\}$ and $A=\{0,1\} \subset X$ with usual metric $d(x, y)=|x-y|$. Define

$$
T x= \begin{cases}1, & x \notin A, \\ 0, & x \in A .\end{cases}
$$

Consider a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow 0$, then $T x_{n} \rightarrow 1$ and $T^{2} x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Consequently, $\left|x_{n}-T^{2} x_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. So, $\left\{x_{n}\right\}$ is asymptotically T^{2}-regular in X. Setting $\alpha=k=\frac{1}{3}$, then T is α-contraction for all $x, y \in X$ such that $k+\alpha<1$. Thus, all the conditions of Theorem 3.8 are satisfied and hence, 0 is the unique fixed point of T.

The following Theorems 3.10 and 3.12 are motivated by Theorems 3.1 and 3.4 of Khan and Jhade [11].
Theorem 3.10. Let (X, d) be a complete metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an α-convex contraction such that $0<$ $k_{1}+\alpha<1$ and $\mu, h<1$, where $\mu=\max \left\{\frac{k_{3}}{\alpha-k_{2}-k_{3}}, \frac{k_{5}}{\alpha-k_{4}-k_{5}}\right\}$ and $h=\max \left\{\frac{k_{2}+k_{3}}{1-\alpha-k_{3}}, \frac{k_{4}+k_{5}}{1-\alpha-k_{5}}\right\}$. If there exists an asymptotically $\left(\mathrm{T}, \mathrm{T}^{2}\right)$-regular sequence in X , then T has a unique fixed point.

Proof. Let $\left\{x_{n}\right\}$ be an asymptotically $\left(T, T^{2}\right)$-regular sequence in X. Then, for any non zero positive integers m, n such that $m>n$, we obtain

$$
\begin{aligned}
(1-\alpha) d\left(x_{m}, x_{n}\right) \leqslant & (1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{m}, T^{2} x_{n}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right] \\
= & (1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right]+(1-\alpha) d\left(T^{2} x_{m}, T^{2} x_{n}\right) \\
\leqslant & (1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right]+\alpha d\left(T x_{m}, T x_{n}\right)+(1-\alpha) d\left(T^{2} x_{m}, T^{2} x_{n}\right) \\
\leqslant & (1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right] \\
& +k_{1} d\left(x_{m}, x_{n}\right)+k_{2} d\left(x_{m}, T x_{m}\right)+k_{3} d\left(T x_{m}, T^{2} x_{m}\right)+k_{4} d\left(x_{n}, T x_{n}\right)+k_{5} d\left(T x_{n}, T^{2} x_{n}\right),
\end{aligned}
$$

that is,

$$
\begin{aligned}
\left(1-\alpha-k_{1}\right) d\left(x_{m}, x_{n}\right) \leqslant & (1-\alpha)\left[d\left(x_{m}, T^{2} x_{m}\right)+d\left(T^{2} x_{n}, x_{n}\right)\right] \\
& +k_{2} d\left(x_{m}, T x_{m}\right)+k_{3} d\left(T x_{m}, T^{2} x_{m}\right)+k_{4} d\left(x_{n}, T x_{n}\right)+k_{5} d\left(T x_{n}, T^{2} x_{n}\right) .
\end{aligned}
$$

Since, $\left\{x_{n}\right\}$ is asymptotically $\left(T, T^{2}\right)$-regular sequence. Letting $n, m \rightarrow \infty$ and using Lemma 2.10 , we obtain $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since, X is complete, there exists a point $z \in X$ such that $x_{n} \rightarrow z \in X$ as $n \rightarrow \infty$. Now, we show that z is a fixed point of T in X. For this, first we show that $\mathrm{T}^{2} z=z$. Using inequality (2.1), we obtain

$$
\begin{aligned}
(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, x_{n}\right) \leqslant & (1-\alpha)\left[\mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} x_{n}\right)+\mathrm{d}\left(\mathrm{~T}^{2} x_{n}, x_{n}\right)\right] \\
\leqslant & {\left[\alpha \mathrm{d}\left(\mathrm{~T} z, T x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} x_{n}\right)\right]+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} x_{n}, x_{n}\right) } \\
\leqslant & k_{1} \mathrm{~d}\left(z, x_{n}\right)+k_{2} \mathrm{~d}(z, T z)+k_{3} \mathrm{~d}\left(T z, \mathrm{~T}^{2} z\right) \\
& +k_{4} \mathrm{~d}\left(x_{n}, T x_{n}\right)+k_{5} \mathrm{~d}\left(T x_{n}, T^{2} x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} x_{n}, x_{n}\right) \\
\leqslant & k_{1} \mathrm{~d}\left(z, x_{n}\right)+k_{2} \mathrm{~d}(z, T z)+k_{3}\left[d\left(T z, x_{n}\right)+\mathrm{d}\left(\mathrm{~T}^{2} z, x_{n}\right)\right] \\
& +k_{4} d\left(x_{n}, T x_{n}\right)+k_{5} d\left(T x_{n}, T^{2} x_{n}\right)+(1-\alpha) d\left(T^{2} x_{n}, x_{n}\right),
\end{aligned}
$$

that is,

$$
\begin{aligned}
\left(1-\alpha-k_{3}\right) \mathrm{d}\left(\mathrm{~T}^{2} z, x_{n}\right) \leqslant & k_{1} \mathrm{~d}\left(z, x_{n}\right)+\mathrm{k}_{2} \mathrm{~d}(z, \mathrm{~T} z)+\mathrm{k}_{3} \mathrm{~d}\left(\mathrm{~T} z, x_{n}\right) \\
& +\mathrm{k}_{4} \mathrm{~d}\left(x_{n}, T x_{n}\right)+\mathrm{k}_{5} \mathrm{~d}\left(T x_{n}, T^{2} x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} x_{n}, x_{n}\right) .
\end{aligned}
$$

Taking $n \rightarrow \infty$ and using Lemma 2.10, we obtain

$$
\left(1-\alpha-k_{3}\right) d\left(T^{2} z, z\right) \leqslant\left(k_{2}+k_{3}\right) d(z, T z),
$$

that is,

$$
\mathrm{d}\left(\mathrm{~T}^{2} z, z\right) \leqslant \frac{\mathrm{k}_{2}+\mathrm{k}_{3}}{1-\alpha-\mathrm{k}_{3}} \mathrm{~d}(\mathrm{~T} z, z) .
$$

Similarly, by symmetry of the α-convex contraction, one can obtain

$$
\mathrm{d}\left(\mathrm{~T}^{2} z, z\right) \leqslant \frac{\mathrm{k}_{4}+\mathrm{k}_{5}}{1-\alpha-\mathrm{k}_{5}} \mathrm{~d}(\mathrm{~T} z, z) .
$$

Since, $h=\max \left\{\frac{k_{2}+k_{3}}{1-\alpha-k_{3}}, \frac{k_{4}+k_{5}}{1-\alpha-k_{5}}\right\}<1$. This shows that $d\left(T^{2} z, z\right) \leqslant h d(T z, z)$.
Now, we show that $T z=z$, i.e., z is a fixed point of T.

$$
\begin{aligned}
\alpha \mathrm{d}\left(\mathrm{~T} z, x_{n}\right) \leqslant & \alpha\left[\mathrm{d}\left(\mathrm{~T} z, T x_{n}\right)+\mathrm{d}\left(T x_{n}, x_{n}\right)\right]+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} x_{n}\right) \\
= & \alpha \mathrm{d}\left(\mathrm{~T} z, T x_{n}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} x_{n}\right)+\alpha \mathrm{d}\left(\mathrm{~T} x_{n}, x_{n}\right) \\
\leqslant & k_{1} \mathrm{~d}\left(z, x_{n}\right)+k_{2} \mathrm{~d}(z, T z)+k_{3} \mathrm{~d}\left(\mathrm{~T} z, \mathrm{~T}^{2} z\right) \\
& +k_{4} \mathrm{~d}\left(x_{n}, T x_{n}\right)+k_{5} \mathrm{~d}\left(T x_{n}, \mathrm{~T}^{2} x_{n}\right)+\alpha \mathrm{d}\left(T x_{n}, x_{n}\right) \\
\leqslant & k_{1} \mathrm{~d}\left(z, x_{n}\right)+k_{2} \mathrm{~d}(z, T z)+k_{3} \mathrm{~d}(T z, z) \\
& +k_{3} \mathrm{~d}\left(\mathrm{~T}^{2} z, z\right)+k_{4} d\left(x_{n}, T x_{n}\right)+k_{5} \mathrm{~d}\left(T x_{n}, \mathrm{~T}^{2} x_{n}\right)+\alpha \mathrm{d}\left(T x_{n}, x_{n}\right) .
\end{aligned}
$$

As $n \rightarrow \infty$, we obtain

$$
\alpha \mathrm{d}(\mathrm{~T} z, z) \leqslant\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right) \mathrm{d}(\mathrm{~T} z, z)+\mathrm{k}_{3} \mathrm{~d}\left(\mathrm{~T}^{2} z, z\right),
$$

that is,

$$
\mathrm{d}(\mathrm{~T} z, z) \leqslant \frac{\mathrm{k}_{3}}{\alpha-\mathrm{k}_{2}-\mathrm{k}_{3}} \mathrm{~d}\left(\mathrm{~T}^{2} z, z\right) .
$$

Similarly, based on the symmetry of α-convex contractions, one can prove

$$
\mathrm{d}(\mathrm{~T} z, z) \leqslant \frac{\mathrm{k}_{5}}{\alpha-\mathrm{k}_{4}-\mathrm{k}_{5}} \mathrm{~d}\left(\mathrm{~T}^{2} z, z\right) .
$$

Since $\mu=\max \left\{\frac{k_{3}}{\alpha-k_{2}-k_{3}}, \frac{k_{5}}{\alpha-k_{4}-k_{5}}\right\}<1$, we find

$$
\mathrm{d}(\mathrm{~T} z, z) \leqslant \mu \mathrm{d}\left(\mathrm{~T}^{2} z, z\right) \leqslant h \mu \mathrm{~d}(\mathrm{~T} z, z),
$$

that is,

$$
(1-h \mu) d(T z, z) \leqslant 0
$$

leading to $d(T z, z)=0$ as $h \mu<1$. Therefore, z is a fixed point of T. For uniqueness, let $z^{*} \in X$ be another fixed point of T. Using (2.1) for $x=z$ and $y=z^{*}$, we obtain

$$
\alpha \mathrm{d}\left(\mathrm{~T} z, \mathrm{~T} z^{*}\right)+(1-\alpha) \mathrm{d}\left(\mathrm{~T}^{2} z, \mathrm{~T}^{2} z^{*}\right) \leqslant \mathrm{k}_{1} \mathrm{~d}\left(z, z^{*}\right)+\mathrm{k}_{2} \mathrm{~d}(z, \mathrm{~T} z)+\mathrm{k}_{3} \mathrm{~d}\left(\mathrm{~T} z, \mathrm{~T}^{2} z\right)+\mathrm{k}_{4} \mathrm{~d}\left(z^{*}, \mathrm{~T} z^{*}\right)+\mathrm{k}_{5} \mathrm{~d}\left(\mathrm{~T} z^{*}, \mathrm{~T}^{2} z^{*}\right),
$$

that is,

$$
\left(1-k_{1}\right) \mathrm{d}\left(z, z^{*}\right) \leqslant 0,
$$

which in turn gives $\mathrm{d}\left(z, z^{*}\right)=0$ and hence, T has a unique fixed point in X.
Example 3.11. Let $T: X \rightarrow X$, where $X=[0,1]$. Define $T x=\frac{1+x}{4}$ for all $x \in X$. Consider a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$. Consequently, $T x_{n}, T^{2} x_{n} \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$. Therefore, the sequence $\left\{x_{n}\right\}$ is asymptotically $\left(T, T^{2}\right)$-regular in X. Setting $\alpha=\frac{1}{2}, k_{1}=\frac{5}{32}, k_{2}=k_{3}=k_{4}=k_{5}=0$, then T is α-convex contraction such that $k_{1}+\alpha<1, \mu=0<1$ and $h=0<1$. Thus, all the conditions of Theorem 3.10 are satisfied and hence, $\frac{1}{3}$ is the unique fixed point of T .

Theorem 3.12. Let (X, d) be a complete metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a α-convex contraction such that $\mathrm{k}_{1}<\alpha$ or, $0<k_{1}+\alpha<1$ and $\mu, h<1$, where $\mu=\max \left\{\frac{k_{3}}{\alpha-k_{2}-k_{3}}, \frac{k_{5}}{\alpha-k_{4}-k_{5}}\right\}$ and $h=\max \left\{\frac{k_{2}+k_{3}}{1-\alpha-k_{3}}, \frac{k_{4}+k_{5}}{1-\alpha-k_{5}}\right\}$. If T is asymptotically regular at some point x_{0} in X , then there exists a unique fixed point of T .

Proof. Let T be an asymptotically regular mapping at $x_{0} \in X$. Consider a sequence $\left\{T^{n} \chi_{0}\right\}$ and for any two non zero positive integers $m, n \geqslant 1$ such that $m>n$.

We analyze the following cases.
Case (i). When $k_{1}<\alpha$. We obtain

$$
\begin{aligned}
\alpha \mathrm{d}\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant & \alpha d\left(T^{m} x_{0}, T^{n} x_{0}\right)+(1-\alpha) d\left(T^{m+1} x_{0}, T^{n+1} x_{0}\right) \\
\leqslant & k_{1} d\left(T^{m-1} x_{0}, T^{n-1} x_{0}\right)+k_{2} d\left(T^{m-1} x_{0}, T^{m} x_{0}\right) \\
& +k_{3} d\left(T^{m} x_{0}, T^{m+1} x_{0}\right)+k_{4} d\left(T^{n-1} x_{0}, T^{n} x_{0}\right)+k_{5} d\left(T^{n} x_{0}, T^{n+1} x_{0}\right) \\
\leqslant & k_{1}\left[d\left(T^{m-1} x_{0}, T^{m} x_{0}\right)+d\left(T^{m} x_{0}, T^{n} x_{0}\right)\right. \\
& \left.+d\left(T^{n} x_{0}, T^{n-1} x_{0}\right)\right]+k_{2} d\left(T^{m-1} x_{0}, T^{m} x_{0}\right) \\
& +k_{3} d\left(T^{m} x_{0}, T^{m+1} x_{0}\right)+k_{4} d\left(T^{n-1} x_{0}, T^{n} x_{0}\right)+k_{5} d\left(T^{n} x_{0}, T^{n+1} x_{0}\right),
\end{aligned}
$$

that is,

$$
\begin{aligned}
\left(\alpha-k_{1}\right) d\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant & \left(k_{1}+k_{2}\right) d\left(T^{m-1} x_{0}, T^{m} x_{0}\right) \\
& +\left(k_{1}+k_{4}\right) d\left(T^{n-1} x_{0}, T^{n} x_{0}\right)+k_{3} d\left(T^{m} x_{0}, T^{m+1} x_{0}\right)+k_{5} d\left(T^{n} x_{0}, T^{n+1} x_{0}\right)
\end{aligned}
$$

Taking $n, m \rightarrow \infty$ and using the asymptotically regularity of T at x_{0}, we obtain

$$
\lim _{n \rightarrow \infty} d\left(T^{m} x_{0}, T^{n} x_{0}\right)=0
$$

Case (ii). When $0<k_{1}+\alpha<1$, we obtain

$$
\begin{aligned}
(1-\alpha) d\left(T^{m} x_{0}, T^{n} x_{0}\right) \leqslant & \alpha d\left(T^{m-1} x_{0}, T^{n-1} x_{0}\right)+(1-\alpha) d\left(T^{m} m x_{0}, T^{n} x_{0}\right) \\
\leqslant & k_{1} d\left(T^{m-2} x_{0}, T^{n-2} x_{0}\right)+k_{2} d\left(T^{m-2} x_{0}, T^{m-1} x_{0}\right) \\
& +k_{3} d\left(T^{m-1} x_{0}, T^{m} x_{0}\right)+k_{4} d\left(T^{n-2} x_{0}, T^{n-1} x_{0}\right)+k_{5} d\left(T^{n-1} x_{0}, T^{n} x_{0}\right) \\
\leqslant & k_{1}\left[d\left(T^{m-2} x_{0}, T^{m-1} x_{0}\right)+d\left(T^{m-1} x_{0}, T^{m} x_{0}\right)\right. \\
& +d\left(T^{m} x_{0}, T^{n} x_{0}\right)+d\left(T^{n} x_{0}, T^{n-1} x_{0}\right) \\
& \left.+d\left(T^{m-1} x_{0}, T^{n-2} x_{0}\right)\right]+k_{2} d\left(T^{m-1} x_{0}, T^{m} x_{0}\right) \\
& +k_{3} d\left(T^{m} x_{0}, T^{m+1} x_{0}\right)+k_{4} d\left(T^{n-1} x_{0}, T^{n} x_{0}\right)+k_{5} d\left(T^{n} x_{0}, T^{n+1} x_{0}\right) .
\end{aligned}
$$

Taking $n, m \rightarrow \infty$, we obtain

$$
\left(1-\alpha-k_{1}\right) \lim _{n \rightarrow \infty} d\left(T^{m+1} x_{0}, T^{n+1} x_{0}\right) \leqslant 0
$$

which gives $\lim _{n \rightarrow \infty} d\left(T^{m+1} x_{0}, T^{n+1} x_{0}\right)=0$.
In both cases it follows that $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence in X. Since X is complete, so $T^{n} x_{0} \rightarrow z$ as $n \rightarrow \infty$ for some $z \in X$. Thus, by following the same argument as in Theorem 3.10, one can obtain the unique fixed point of T.

One can check the validity of Theorem 3.12 with Example 3.5 setting with $\alpha=\frac{2}{5}, \mathrm{k}_{1}=\frac{7}{20}, \mathrm{k}_{2}=\mathrm{k}_{3}=$ $k_{4}=k_{5}=0$, and $p=1$.

Corollary 3.13. Let (X, d) be a metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a two-sided convex contraction mapping. Then, T has AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.

References

[1] M. A. Alghamdi, S. H. Alnafei, S. Radenović, N. Shahzad, Fixed point theorems for convex contraction mappings on cone metric spaces, Math. Comput. Modelling, 54 (2011), 2020-2026. 1
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. 1
[3] M. Berinde, Approximate fixed point theorems, Stud. Univ. Babeş-Bolyai Math., 51 (2006), 11-25. 1, 1.6
[4] F. E. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571-575. 1.4
[5] H. W. Engl, Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers, Nonlinear Anal., 1 (1977), 459-501. 1.5
[6] T. M. Gallagher, Fixed point results for a new mapping related to mean nonexpansive mappings, Adv. Oper. Theory, 2 (2017), 1-16. 2
[7] V. Ghorbanian, S. Rezapour, N. Shahzad, Some ordered fixed point results and the property (P), Comput. Math. Appl., 63 (2012), 1361-1368. 1
[8] K. Goebel, M. Japón Pineda, A new type of nonexpansiveness, Proc. 8th Int. Conf. Fixed Point Theory Appl., Chiang Mai, (2007). 1, 2
[9] K. Goebel, B. Sims, Mean Lipschitzian mappings, Nonlinear analysis and optimization I, Nonlinear analysis, Contemp. Math., Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 513 (2010), 157-167. 2
[10] V. I. Istrăţescu, Some fixed point theorems for convex contraction mappings and convex nonexpansive mappings, I. Libertas Math., 1 (1981), 151-163. 1, 2
[11] M. S. Khan, P. K. Jhade, Theorems on fixed points for asymptotically regular sequences and maps in b-metric space, SQU J. Sci., 22 (2017), 48-52. 3
[12] M. S. Khan, Y. M. Singh, G. Maniu, M. Postolache, On generalized convex contractions of type-2 in b-metric and 2-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2902-2913. 1, 1.3, 3
[13] U. Kohlenbach, L. Leuştean, The approximate fixed point property in product spaces, Nonlinear Anal., 66 (2007), 806818. 1
[14] M. A. Miandaragh, M. Postolache, S. Rezapour, Approximate fixed points of generalized convex contractions, Fixed Point Theory Appl., 2013 (2013), 8 pages. 1, 3
[15] R. Miculescu, A. Mihail, A generalization of Istrăţescu's fixed point theorem for convex contractions, Fixed Point Theory, 18 (2017), 689-702. 1
[16] S. Reich, A. J. Zaslavski, Genericity and porosity in fixed point theory: a survey of recent results, Fixed Point Theory Appl., 2015 (2015), 21 pages. 1
[17] S. Tijs, A. Torre, R. Brânzei, Approximate fixed point theorems, Miron Nicolescu (1903-1975) and Nicolae Ciorănescu (1903-1957), Libertas Math., 23 (2003), 35-39. 1

[^0]: *Corresponding author
 Email addresses: mohammad@squ.edu.om (M. S. Khan), ymahenmit@rediffmail.com (Y. Mahendra Singh), maniugeorgeta@gmail.com (Georgeta Maniu), emscolar@yahoo.com (Mihai Postolache)
 doi: 10.22436/jmcs.018.02.01
 Received 2017-09-01

