Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

On (α, p) -convex contraction and asymptotic regularity

M. S. Khan^a, Y. Mahendra Singh^b, Georgeta Maniu^c, Mihai Postolache^{d,e,*}

^aDepartment of Mathematics and Statistics, Sultan Qaboos University, P. O. Box 36, PCode 123 Al-Khod, Muscat, Sultanate of Oman, Oman.

^bDepartment of Humanities and Basic Sciences, Manipur Institute of Technology, Takyelpat-795001, India.

^cDepartment of Computer Science, Information Technology, Mathematics and Physics, Petroleum-Gas University of Ploieşti, Bucureşti Bvd., No. 39, 100680 Ploieşti, Romania.

^dChina Medical University, Taichung, Taiwan.

^eUniversity Politehnica of Bucharest, Bucharest, Romania.

Abstract

In this paper, we present the notions of (α, p) -convex contraction (resp. (α, p) -contraction) and asymptotically T²-regular (resp. (T, T^2) -regular) sequences, and prove fixed point theorems in the setting of metric spaces.

Keywords: Approximate fixed point, fixed point, (α, p) -convex contraction, asymptotically regular sequence, asymptotically T (resp. T² and (T, T²))-regular sequences.

2010 MSC: 47H10, 54H25.

©2018 All rights reserved.

1. Introduction and preliminaries

Let (X, d) be a metric space, and C a nonempty set of X. A mapping T: C \rightarrow C is called nonexpansive if $d(Tx, Ty) \leq d(x, y)$ for all $x, y \in$ C. In 2007, Goebel and Japón Pineda [8] introduced the class of mean nonexpansive mappings, an extension for the class of nonexpansive mappings. A mapping T: C \rightarrow C is called mean nonexpansive (or α -nonexpansive) if, for some $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ with $\sum_{i=1}^n \alpha_i = 1$, $\alpha_i \geq 0$ for all i, and $\alpha_1, \alpha_n > 0$, we have

$$\sum_{i=1}^n \alpha_i d(\mathsf{T}^i x,\mathsf{T}^i y) \leqslant d(x,y)$$

for all $x, y \in C$. Further, Goebel and Japón Pineda [8] introduced the class of (α, p) -nonexpansive

*Corresponding author

Email addresses: mohammad@squ.edu.om (M. S. Khan), ymahenmit@rediffmail.com (Y. Mahendra Singh), maniugeorgeta@gmail.com (Georgeta Maniu), emscolar@yahoo.com (Mihai Postolache)

doi: 10.22436/jmcs.018.02.01

Received 2017-09-01

mappings. A mapping T: C \rightarrow C is called (α, p) -nonexpansive, if for some $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ with $\sum_{i=1}^{n} \alpha_i = 1, \alpha_i \ge 0$ for all i, and $\alpha_1, \alpha_n > 0$, and for some $p \in [1, \infty)$, we have

$$\sum_{i=1}^{n} \alpha_i d^p(\mathsf{T}^i x, \mathsf{T}^i y) \leqslant d^p(x, y)$$

for all $x, y \in C$. In particular, for n = 2, the above inequality reduces to

$$\alpha_1 d^p(\mathsf{T} x, \mathsf{T} y) + \alpha_2 d^p(\mathsf{T}^2 x, \mathsf{T}^2 y) \leqslant d^p(x, y)$$

for all $x, y \in C$, we say that T is $((\alpha_1, \alpha_2), p)$ -nonexpansive.

Example 1.1. Let $X = [0, \infty) \subset \mathbb{R}$ with usual metric d(x, y) = |x - y| for all $x, y \in X$. Define a translation function T: $X \to X$ by the formula Tx = x + a for any fixed a > 0. Now, setting $\alpha_1 = \alpha_2 = \frac{1}{2}$ and $p \ge 1$, we have

$$|Tx - Ty|^{p} + |T^{2}x - T^{2}y|^{p} = 2|x - y|^{p}$$

that is,

$$\frac{1}{2}|Tx - Ty|^{p} + \frac{1}{2}|Tx - Ty|^{p} = |x - y|^{p}$$

Therefore, T is $((\alpha_1, \alpha_2), p)$ -nonexpansive mapping.

Example 1.2. Let $X = \{0, 1, 2\}$ with usual metric d(x, y) = |x - y| for all $x, y \in X$. Define the mapping

$$\mathsf{T} \colon \mathsf{X} \to \mathsf{X}, \quad \mathsf{T} \mathsf{x} = \begin{cases} 1, & \mathsf{x} \neq \mathsf{0}, \\ \mathsf{0}, & \mathsf{x} = \mathsf{0}. \end{cases}$$

Setting $\alpha = (\alpha_1, \alpha_2)$, $\alpha_1, \alpha_2 > 0$ and $\alpha_1 + \alpha_2 = 1$, for any $p \ge 1$, we have

$$\alpha_1|\mathsf{T} x-\mathsf{T} y|^p+\alpha_2|\mathsf{T}^2 x-\mathsf{T}^2 y|^p\leqslant |x-y|^p.$$

Therefore, T is $((\alpha_1, \alpha_2), p)$ -nonexpansive mapping.

In 1982, Istrăţescu [10] introduced the class of convex contraction mappings in the setting of metric space and generalized the well known Banach's contraction principle [2]. Some works have appeared recently on generalization of such class of mappings in the setting of metric, ordered metric, and cone metric, b-metric and 2-metric spaces (for example, Alghamdi et al. [1], Ghorbanian et al. [7], Miandaragh et al. [14], Miculescu and Mihail [15], Khan et al. [12], etc.).

Let (X, d) be a metric space and $T: X \to X$ be a mapping. Given $\varepsilon > 0$, then $x_0 \in X$ is said to be an ε -fixed point of T on X, whenever $d(x_0, Tx_0) < \varepsilon$. Note that every fixed point is ε -fixed point but the converse need not be true. We denote the set of all ε - fixed points of T for a given $\varepsilon > 0$ by $F_{\varepsilon}(T) = \{x \in X | d(Tx, x) < \varepsilon\}$ and Fix(T), the set of all fixed points of T.

We say that T has the approximate fixed point property (AFPP) if for all $\varepsilon > 0$, there exists an ε -fixed point of T i.e., for all ε , $F_{\varepsilon}(T) \neq \emptyset$, or equivalently, $\inf_{x \in X} d(Tx, x) = 0$.

For details we refer to Berinde [3], Kohlenbach and Leuştean [13], Reich and Zaslavski [16], Tijs et al. [17].

Example 1.3 ([12]). If $X = [0, \infty)$, let $T: X \to X$, $Tx = x + \frac{1}{2x+1}$ for all $x \in X$. Setting $0 < \varepsilon < \frac{1}{2}$ and taking $x_0 \in X$ such that $x_0 > \frac{1-\varepsilon}{2\varepsilon}$, we obtain,

$$d(\mathsf{T} x_0, x_0) = |\mathsf{T} x_0 - x_0| = \left| \frac{1}{2x_0 + 1} \right| < \varepsilon.$$

This shows that T has an ε -fixed point, so $F_{\varepsilon}(T) \neq \emptyset$. Note that T has no fixed point in X.

Definition 1.4 ([4]). A self mapping T on X is said to be asymptotically regular at a point $x \in X$ if $\lim_{n\to\infty} d(T^nx, T^{n+1}x) = 0$.

Definition 1.5 ([5]). A sequence $\{x_n\}$ in X is called an asymptotically T-regular, if $\lim_{n\to\infty} d(x_n, Tx_n) = 0$.

Lemma 1.6 ([3]). If (X, d) is a metric space and T is an asymptotically regular self mapping on X, that is $d(T^mx, T^{m+1}x) \rightarrow 0$ for all $x \in X$, then T has the AFPP.

In the next section, we discuss the notions of (α, p) -convex contraction (resp. (α, p) -contraction) and asymptotically T²-regular (resp. (T, T^2) -regular) sequences. Further, we show with examples that the notions of asymptotically T-regular and T²-regular sequences are independent to each other.

2. (α, p) -convex contraction and asymptotic regularity

Let T be a self mapping on a metric space (X, d).

Definition 2.1. A self mapping T on X is said to be (α, p) -contraction, if for some $\alpha \in (0, 1)$ and $p \ge 1$, there exists $0 \le k < 1$ satisfying the following inequality

$$\alpha d^{p}(\mathsf{T}x,\mathsf{T}y) + (1-\alpha)d^{p}(\mathsf{T}^{2}x,\mathsf{T}^{2}y) \leqslant kd^{p}(x,y)$$
(2.1)

for all $x, y \in X$.

Note that if we set $\alpha = \alpha_1$, $\alpha_2 = 1 - \alpha$, and k = 1 in the inequality (2.1), then T reduces to $((\alpha_1, \alpha_2), p)$ nonexpansive (see [8]). Further, if p = 1 and k < 1 (resp. k = 1) in the inequality (2.1), then T reduces to α -contraction (resp. α -nonexpansive) with multi-index length 2 (see [9]).

Definition 2.2. A self mapping T on X is said to be (α, p) -convex contraction, if for some $\alpha \in (0, 1)$ and $p \ge 1$, there exist $k_i \ge 0$ for all $i \in \{1, 2, ..., 5\}$ such that $\sum_{i=1}^{i=5} k_i < 1$ satisfying the following inequality

$$\alpha d^{p}(Tx,Ty) + (1-\alpha)d^{p}(T^{2}x,T^{2}y) \leq k_{1}d^{p}(x,y) + k_{2}d^{p}(x,Tx) + k_{3}d^{p}(Tx,T^{2}x) + k_{4}d^{p}(y,Ty) + k_{5}d^{p}(Ty,T^{2}y)$$
(2.2)

for all $x, y \in X$.

Obviously, if $k_i = 0$ for all $i \in \{2, 3, 4, 5\}$, then the inequality (2.2) reduces to (α, p) -contraction. We shall call α -contraction and α -convex contraction, if p = 1 in the inequalities (2.1) and (2.2). If $\alpha = k_1 = 0$ and p = 1 in (2.2), then it reduces to two-sided convex contraction [10].

Example 2.3. On X = [0, 1], consider T: X \rightarrow X, endowed with usual metric d(x, y) = |x - y|. We define $Tx = \frac{1-x^2}{2}$, for all $x \in X$. Then, we obtain $T^2x = \frac{3+2x^2-x^4}{8}$. Now, we have

$$|\mathsf{T}x - \mathsf{T}y| = \frac{1}{2}|x^2 - y^2| = \frac{(x+y)}{2}|x-y| \le |x-y|.$$

Also,

$$|\mathsf{T}^2\mathsf{x}-\mathsf{T}^2\mathsf{y}| = \frac{1}{8}|(2\mathsf{x}^2-\mathsf{x}^4)-(2\mathsf{y}^2-\mathsf{y}^4)| \leqslant \frac{1}{4}|\mathsf{x}^2-\mathsf{y}^2| + \frac{1}{8}|\mathsf{x}^4-\mathsf{y}^4| \leqslant |\mathsf{x}-\mathsf{y}|.$$

Therefore, for $\alpha = \frac{1}{2}$ and p = 1, we obtain

$$\alpha |Tx - Ty| + (1 - \alpha)|T^2x - T^2y| \leq |x - y|$$

This shows that T is nonexpansive and α -nonexpansive for p = 1.

Further, for p = 2 and $\alpha = \frac{1}{2}$, we obtain

$$\alpha |\mathsf{T}x-\mathsf{T}y|^2 + (1-\alpha)|\mathsf{T}^2x-\mathsf{T}^2y|^2 \leqslant \frac{1}{2}|x-y|^2 + \frac{1}{8}|x-y|^2 = \frac{5}{8}|x-y|^2.$$

This shows that T is (α, p) -contraction for p = 2 > 1.

In [6], Gallagher mentioned that all nonexpansive mappings are mean nonexpansive, but the converse is not true. That is, there exists a mean nonexpansive mapping which is not nonexpansive (see [6, Examples 2.3 and 2.4]). However, it may happen that a nonexpansive mapping need not necessarily be a mean nonexpansive.

Example 2.4. Let T: X \rightarrow X, where X = [0, 1] with usual metric d(x, y) = |x - y|. We define Tx = $\frac{x^2}{2}$ for all $x \in X$. Setting $\alpha = \frac{1}{2}$ and p = 1. Now, we have

$$|Tx - Ty| = \frac{1}{2}|x^2 - y^2| \le |x - y|$$

Also, we have,

$$|\mathsf{T}^2 x - \mathsf{T}^2 y| = \frac{1}{8} |x^4 - y^4| = \frac{(x^2 + y^2)(x + y)}{8} |x - y| \leqslant \frac{1}{2} |x - y|.$$

Therefore,

$$\frac{1}{2}|\mathsf{T}\mathsf{x}-\mathsf{T}\mathsf{y}|+\frac{1}{2}|\mathsf{T}^2\mathsf{x}-\mathsf{T}^2\mathsf{y}|\leqslant \frac{3}{4}|\mathsf{x}-\mathsf{y}|,$$

where, $k = \frac{3}{4}$, $\alpha = \frac{1}{2}$. This shows that T is nonexpansive but not mean nonexpansive.

Now, we introduce the notions of asymptotically T²-regular (resp. (T, T^2) -regular) sequences. **Definition 2.5.** A sequence $\{x_n\}$ is called an asymptotically T²-regular, if $\lim_{n\to\infty} d(x_n, T^2x_n) = 0$. **Example 2.6.** Let $X = \mathbb{R}$ endowed with usual metric d(x, y) = |x - y|. We define

$$\mathsf{T} \colon \mathsf{X} \to \mathsf{X}, \quad \mathsf{T} \mathsf{x} = \begin{cases} 1 - x^2, & x \neq 1, \\ 2, & x = 1. \end{cases}$$

Choose a sequence $\{x_n\}$ in X such that $x_n \to 1$ as $n \to \infty$, except the constant sequence $x_n = 1$. Then, $Tx_n = (1 - x_n^2) \to 0$ as $n \to \infty$. Therefore, $\lim_{n\to\infty} |Tx_n - x_n| = 1 \neq 0$. Also, we have $T^2x_n = T(Tx_n) = T(1 - x_n^2) = [1 - (1 - x_n^2)^2] \to 1$. Consequently, $|x_n - T^2x_n| \to 0$. Therefore, $\{x_n\}$ is asymptotically T²-regular sequence but not asymptotically T-regular sequence in X.

Example 2.7. Let T: X \rightarrow X, where X = \mathbb{R} with the usual metric d(x, y) = |x - y|. Define

$$Tx = \begin{cases} \frac{x^2}{2}, & x < 2, \\ 0, & x = 2, \\ 2, & x > 2. \end{cases}$$

Consider a sequence $\{x_n\}$ in X such that $x_n \to 2$ as $n \to \infty$, except the constant sequence $x_n = 2$. Then, $Tx_n \to 2$ as $n \to \infty$. Therefore, $\lim_{n\to\infty} |Tx_n - x_n| = 0$. Further, we have $T^2x_n = T(Tx_n) \to 2$ or 0, according as $x_n \to 2$ from left or right. So, $\lim_{n\to\infty} T^2x_n$ does not exist. Therefore, $|x_n - T^2x_n|$ does not tend to 0 as $n \to 0$. It shows that $\{x_n\}$ is asymptotically T-regular sequence, but not asymptotically T^2 -regular sequence in X.

It may be observed from Examples 2.6 and 2.7, that the notions of asymptotically T-regular and T² -regular sequences are independent to each other.

Definition 2.8. A sequence $\{x_n\}$ in X is called an asymptotically (T, T^2) -regular, if $\lim_{n\to\infty} d(x_n, Tx_n) = 0$ and $\lim_{n\to\infty} d(x_n, T^2x_n) = 0$.

Obviously, if $\{x_n\}$ is an asymptotically (T, T^2) -regular sequence, then it satisfies both asymptotically T and T²-regular conditions.

Example 2.9. Let T: X \rightarrow X, where X = \mathbb{R} with usual metric d(x, y) = |x - y|. Define

$$\Gamma x = \begin{cases} 4 - x, & x < 2, \\ 0, & x = 2, \\ \frac{x^2}{2}, & x > 2. \end{cases}$$

Consider a sequence $\{x_n\}$ in X such that $x_n \to 2$ as $n \to \infty$, except the constant sequence $x_n = 2$. Then, $Tx_n \to 2$ as $n \to \infty$ and $T^2x_n = T(Tx_n) \to 2$. Therefore, $|x_n - Tx_n| \to 0$ and $|x_n - T^2x_n| \to 0$ as $n \to \infty$. So, $\{x_n\}$ is both asymptotically T-regular and T²-regular sequence in X. Therefore, $\{x_n\}$ is asymptotically (T, T^2) -regular sequence in X.

Lemma 2.10. If a sequence $\{x_n\}$ in X is asymptotically (T, T^2) -regular in X, then

$$\lim_{n \to \infty} d(Tx_n, T^2x_n) = 0$$

Proof. By the triangle inequality, we obtain

$$d(\mathsf{T} x_n, \mathsf{T}^2 x_n) \leqslant d(\mathsf{T} x_n, x_n) + d(x_n, \mathsf{T}^2 x_n).$$

Hence, $d(Tx_n, T^2x_n) \rightarrow 0$ as $n \rightarrow \infty$.

The converse of Lemma 2.10 is not true. In support of this, we have the following example.

Example 2.11. Let T: X \rightarrow X, where X = \mathbb{R} with usual metric d(x, y) = |x - y|. We consider

$$\mathsf{T} \mathsf{x} = \begin{cases} 1, & \mathsf{x} \neq \mathbf{0}, \\ \mathbf{0}, & \mathsf{x} = \mathbf{0}. \end{cases}$$

Choose a sequence $\{x_n\}$ in X such that $x_n \to 0$ as $n \to \infty$. Then, Tx_n and T^2x_n converge to 1 as $n \to \infty$. Therefore, $|Tx_n - x_n| \to 1 \neq 0$ and $|x_n - T^2x_n| \to 1 \neq 0$ as $n \to \infty$. It shows that $d(Tx_n, T^2x_n) \to 0$ as $n \to \infty$, but the sequence $\{x_n\}$ is neither asymptotically T-regular nor asymptotically T^2 -regular in X. Therefore, the sequence $\{x_n\}$ is not asymptotically (T, T^2) -regular.

3. Fixed point results

Theorem 3.1. Let (X, d) be a metric space and $T: X \to X$ be a (α, p) -contraction such that $k + \alpha < 1$. Then, T has the AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.

Proof. Let $x_0 \in X$. Now, we define a sequence $\{x_n\}$ by $x_{n+1} = T^{n+1}x_0$ for all $n \ge 0$. If $x_n = x_{n+1}$ i.e., $T^n x_0 = T(T^n x_0)$ for some n, then the conclusion follows immediately. Without lost of generality, we assume that $x_n \ne x_{n+1}$ for all $n \ge 0$. Setting $\nu = d(x_0, Tx_0) + d(Tx_0, T^2x_0)$ we have $d(x_0, Tx_0) \le \nu$ and $d(Tx_0, T^2x_0) \le \nu$. Taking $x = x_0$ and $y = Tx_0$ in the inequality (2.1), we obtain

$$\begin{split} (1-\alpha)d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0) &\leqslant \alpha d^p(\mathsf{T}x_0,\mathsf{T}^2x_0) + (1-\alpha)d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0) \\ &\leqslant kd^p(x_0,\mathsf{T}x_0) = k\nu^p \Rightarrow d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0) \leqslant \frac{k}{1-\alpha}\nu^p \Rightarrow d(\mathsf{T}^2x_0,\mathsf{T}^3x_0) \leqslant h\nu, \end{split}$$

where $h^p = \frac{k}{1-\alpha}$, and since $k + \alpha < 1 \Rightarrow h^p < 1$.

Again, taking $x = Tx_0$ and $y = T^2x_0$ in relation (2.1), we obtain

 $(1-\alpha)d^{p}(\mathsf{T}^{3}x_{0},\mathsf{T}^{4}x_{0}) \leqslant \alpha d^{p}(\mathsf{T}^{2}x_{0},\mathsf{T}^{3}x_{0}) + (1-\alpha)d^{p}(\mathsf{T}^{3}x_{0},\mathsf{T}^{4}x_{0})$

$$\leqslant \mathrm{kd}^{\mathrm{p}}(\mathrm{Tx}_{0},\mathrm{T}^{2}\mathrm{x}_{0}) \Rightarrow \mathrm{d}^{\mathrm{p}}(\mathrm{T}^{3}\mathrm{x}_{0},\mathrm{T}^{4}\mathrm{x}_{0}) \leqslant \mathrm{h}^{\mathrm{p}}\mathrm{v}^{\mathrm{p}} \Rightarrow \mathrm{d}(\mathrm{T}^{3}\mathrm{x}_{0},\mathrm{T}^{4}\mathrm{x}_{0}) \leqslant \mathrm{h}\mathrm{v}.$$

And

$$(1-\alpha)d^{p}(T^{4}x_{0},T^{5}x_{0}) \leqslant \alpha d^{p}(T^{3}x_{0},T^{4}x_{0}) + (1-\alpha)d^{p}(T^{4}x_{0},T^{5}x_{0}) \leqslant kd^{p}(T^{2}x_{0},T^{3}x_{0}) \Rightarrow d(T^{4}x_{0},T^{5}x_{0}) \leqslant h^{2}\nu.$$

Also, we obtain

$$d(\mathsf{T}^5\mathsf{x}_0,\mathsf{T}^6\mathsf{x}_0) \leqslant \mathsf{h}^2\mathsf{v}.$$

Following similar arguments as in ([12, 14]), we obtain $d(T^mx_0, T^{m+1}x_0) \leq h^l v$, whenever m = 2l or m = 2l + 1. Therefore, $d(T^mx_0, T^{m+1}x_0) \rightarrow 0$ as $m \rightarrow \infty$, i.e., T is asymptotically regular at x_0 . By Lemma 1.6, T has an approximate fixed point. Now, suppose that T is continuous and (X, d) is a complete metric space. In order to show that $\{x_n\}$ is a Cauchy sequence in X, fix a nonzero positive integer m.

Case (i). For m = 2l with $l, q \ge 1$, then

$$\begin{split} d(\mathsf{T}^m x_0,\mathsf{T}^{m+q} x_0) = & d(\mathsf{T}^{2l} x_0,\mathsf{T}^{2l+q} x_0) \\ \leqslant & d(\mathsf{T}^{2l} x_0,\mathsf{T}^{2l+1} x_0) + d(\mathsf{T}^{2l+1} x_0,\mathsf{T}^{2l+2} x_0) \\ & + d(\mathsf{T}^{2l+2} x_0,\mathsf{T}^{2l+3} x_0) + d(\mathsf{T}^{2l+3} x_0,\mathsf{T}^{2l+4} x_0) + \cdots \\ & + d(\mathsf{T}^{2l+q-2} x_0,\mathsf{T}^{2l+q-1} x_0) + d(\mathsf{T}^{2l+q-1} x_0,\mathsf{T}^{2l+q} x_0) \\ \leqslant & h^l \nu + h^l \nu + h^{l+1} \nu + h^{l+1} \nu + \cdots \\ & \leqslant & 2h^l \Big(1 + h + h^2 + h^3 + \cdots \Big) \nu \leqslant 2h^l \frac{1}{(1-h)} \nu. \end{split}$$

Case (ii). Similarly, for m = 2l + 1 with $l, q \ge 1$, we obtain

$$\begin{split} d(\mathsf{T}^m x_0,\mathsf{T}^{m+q} x_0) =& d(\mathsf{T}^{2l+1} x_0,\mathsf{T}^{2l+q+1} x_0) \\ \leqslant & d(\mathsf{T}^{2l+1} x_0,\mathsf{T}^{2l+2} x_0) + d(\mathsf{T}^{2l+2} x_0,\mathsf{T}^{2l+3} x_0) \\ & + d(\mathsf{T}^{2l+3} x_0,\mathsf{T}^{2l+4} x_0) + d(\mathsf{T}^{2l+4} x_0,\mathsf{T}^{2l+5} x_0) + \cdots \\ & + d(\mathsf{T}^{2l+q-1} x_0,\mathsf{T}^{2l+q} x_0) + d(\mathsf{T}^{2l+q} x_0,\mathsf{T}^{2l+q+1} x_0) \\ \leqslant & h^l \nu + h^{l+1} \nu + h^{l+1} \nu + h^{l+2} \nu + \cdots \\ & \leqslant & 2h^l \Big(1 + h + h^2 + h^3 + \cdots \Big) \nu \leqslant 2h^l \frac{1}{(1-h)} \nu. \end{split}$$

Taking $l \to \infty$ in all cases, since h < 1, we obtain, $d(T^m x_0, T^n x_0) \to 0$. Therefore, $\{x_n\}$ is a Cauchy sequence in X. Since, X is complete, there exists a point $z \in X$ such that $x_n = T^n x_0 \to z \in X$ as $n \to \infty$. This shows that z is a fixed point of T. Now, we prove that T has a unique fixed point in X. Let $z^* \in X$ be another fixed point of T. Using (2.1) for x = z and $y = z^*$, we obtain

$$\alpha d^{p}(\mathsf{T}z,\mathsf{T}z^{*}) + (1-\alpha)d^{p}(\mathsf{T}^{2}z,\mathsf{T}^{2}z^{*}) \leqslant kd^{p}(z,z^{*}) \Rightarrow (1-k)d^{p}(z,z^{*}) \leqslant 0$$

leading to $d(z, z^*) = 0$, a contradiction. Hence, T has a unique fixed point in X.

We have the following example for the validity of Theorem 3.1.

Example 3.2. Let T: X \rightarrow X, where X = [0,1] with usual metric d(x,y) = |x - y|. Define Tx = $\frac{1-x^2}{2}$ for all $x \in X$. Setting $\alpha = \frac{1}{6}$ and p = 2, we obtain

$$\alpha |Tx - Ty|^2 + (1 - \alpha)|T^2x - T^2y|^2 \leqslant \alpha |x - y|^2 + \frac{(1 - \alpha)}{2}|x - y|^2 = \frac{(1 + \alpha)}{2}|x - y|^2 = \frac{7}{12}|x - y|^2.$$

This shows that T is (α, p) -contraction with $\alpha + k = \frac{3}{4} < 1$. Moreover, $x = -1 + \sqrt{2}$ is the unique fixed point of T in X.

Theorem 3.3. Let (X, d) be a metric space and $T: X \to X$ be a (α, p) -convex contraction such that $\left(\sum_{i=1}^{5} k_i\right) + \alpha < 1$. Then, T has the AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.

Proof. We define a sequence $\{x_n\}$ by $x_{n+1} = T^{n+1}x_0$ for all $n \ge 0$ and continue the same arguments as in Theorem 3.1, setting $v = d(x_0, Tx_0) + d(Tx_0, T^2x_0)$. Now, using (2.2) for $x = x_0$ and $y = Tx_0$, we obtain

$$\begin{split} (1-\alpha)d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0) \leqslant &+ \alpha d^p(\mathsf{T}x_0,\mathsf{T}^2x_0) + (1-\alpha)d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0) \\ \leqslant &(k_1+k_2)d^p(x_0,\mathsf{T}x_0) + (k_3+k_4)d^p(\mathsf{T}x_0,\mathsf{T}^2x_0+k_5d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0) \\ \leqslant &(k_1+k_2+k_3+k_4)\nu^p + k_5d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0). \end{split}$$

Therefore,

$$d^p(\mathsf{T}^2x_0,\mathsf{T}^3x_0)\leqslant \frac{k_1+k_2+k_3+k_4}{1-\alpha-k_5}\nu^p=h^p\nu^p\Rightarrow d(\mathsf{T}^2x_0,\mathsf{T}^3x_0)\leqslant h\nu$$

for $h^p = \left(\frac{k_1 + k_2 + k_3 + k_4}{1 - \alpha - k_5}\right)$; moreover, since $\left(\sum_{j=1}^5 k_j\right) + \alpha < 1 \Rightarrow h^p < 1$. Similarly, one can obtain

$$d(\mathsf{T}^3x_0,\mathsf{T}^4x_0)\leqslant h\nu,\quad\text{and}\quad d(\mathsf{T}^4x_0,\mathsf{T}^5x_0)\leqslant h^2\nu,\quad\text{and}\quad d(\mathsf{T}^5x_0,\mathsf{T}^6x_0)\leqslant h^2\nu.$$

Following similar arguments as in Theorem 3.1, we obtain $d(T^mx_0, T^{m+1}x_0) \rightarrow 0$ as $m \rightarrow \infty$, i.e., T is asymptotically regular at x_0 . By Lemma 1.4, T has AFPP. Further, by assuming the continuity of T and the completeness of X, the existence of a fixed point z can be proved, using similar arguments as in Theorem 3.1.

Now, we show that T has a unique fixed point in X. Let $z^* \in X$ be another fixed point of T. Using (2.2) for x = z and $y = z^*$, we obtain

$$\begin{aligned} \alpha d^{p}(\mathsf{T}z,\mathsf{T}z^{*}) + (1-\alpha)d^{p}(\mathsf{T}^{2}z,\mathsf{T}^{2}z^{*}) \leqslant & k_{1}d^{p}(z,z^{*}) + k_{2}d^{p}(z,\mathsf{T}z) + k_{3}d^{p}(\mathsf{T}z,\mathsf{T}^{2}z) \\ & + k_{4}d^{p}(z^{*},\mathsf{T}z^{*}) + k_{5}d^{p}(\mathsf{T}z^{*},\mathsf{T}^{2}z^{*}) \Rightarrow (1-k_{1})d^{p}(z,z^{*}) \leqslant 0, \end{aligned}$$

which gives $d(z, z^*) = 0$, a contradiction and hence, T has a unique fixed point in X.

One can verify the validity of Theorem 3.3 with Example 3.2 taking with $\alpha = \frac{1}{6}$, $k_1 = \frac{7}{12}$, $k_2 = k_3 = k_4 = k_5 = 0$, and p = 2.

Theorem 3.4. Let (X, d) be a complete metric space and $T: X \to X$ be a (α, p) -contraction such that $0 \le k < \alpha$ or $k + \alpha < 1$. If T is asymptotically regular at some point x_0 in X, then there exists a unique fixed point of T.

Proof. Let T be an asymptotically regular mapping at $x_0 \in X$. Consider a sequence $\{T^n x_0\}$ in X and for any two non zero positive integers $m, n \ge 1$ such that m > n, let us analyze the following two situations: Case(i). When $0 \le k < \alpha$. Using the inequality (2.1), we obtain

$$\begin{split} \alpha d^p(\mathsf{T}^m x_0,\mathsf{T}^n x_0) \leqslant & \alpha d^p(\mathsf{T}^m x_0,\mathsf{T}^n x_0) + (1-\alpha) d^p(\mathsf{T}^{m+1} x_0,\mathsf{T}^{n+1} x_0) \\ & \leqslant & \mathsf{k} d^p(\mathsf{T}^{m-1} x_0,\mathsf{T}^{n-1} x_0) \leqslant \mathsf{k} \Big[d(\mathsf{T}^{m-1} x_0,\mathsf{T}^m x_0) + d(\mathsf{T}^m x_0,\mathsf{T}^n x_0) + d(\mathsf{T}^n x_0,\mathsf{T}^{n-1} x_0) \Big]^p. \end{split}$$

Taking $n, m \to \infty$ and using the asymptotically regularity of T at x_0 , the above inequality gives

$$\alpha \lim_{n \to \infty} d^{p}(\mathsf{T}^{\mathfrak{m}} x_{0}, \mathsf{T}^{\mathfrak{n}} x_{0}) \leqslant k \lim_{n \to \infty} d^{p}(\mathsf{T}^{\mathfrak{m}} x_{0}, \mathsf{T}^{\mathfrak{n}} x_{0}),$$

that is,

$$(\alpha - k) \lim_{n \to \infty} d^p (\mathsf{T}^m x_0, \mathsf{T}^n x_0) \leqslant 0.$$

Since $0 \leq k < \alpha$, it follows $\lim_{n \to \infty} d(T^m x_0, T^n x_0) = 0$.

Case(ii). When $0 < k + \alpha < 1$. Using the inequality (2.1), we obtain

$$\begin{split} (1-\alpha)d^{p}(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) &\leqslant \alpha d^{p}(\mathsf{T}^{\mathfrak{m}-1}x_{0},\mathsf{T}^{\mathfrak{n}-1}x_{0}) + (1-\alpha)d^{p}(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) \\ &\leqslant kd^{p}(\mathsf{T}^{\mathfrak{m}-2}x_{0},\mathsf{T}^{\mathfrak{n}-2}x_{0}) \\ &\leqslant k\Big[d(\mathsf{T}^{\mathfrak{m}-2}x_{0},\mathsf{T}^{\mathfrak{m}}x_{0}) + d(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) + d(\mathsf{T}^{\mathfrak{n}}x_{0},\mathsf{T}^{\mathfrak{n}-2}x_{0})\Big]^{p} \\ &\leqslant k\Big[d(\mathsf{T}^{\mathfrak{m}-2}x_{0},\mathsf{T}^{\mathfrak{m}-1}x_{0}) + d(\mathsf{T}^{\mathfrak{m}-1}x_{0},\mathsf{T}^{\mathfrak{m}}x_{0}) \\ &\quad + d(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) + d(\mathsf{T}^{\mathfrak{n}}x_{0},\mathsf{T}^{\mathfrak{n}-1}x_{0}) + d(\mathsf{T}^{\mathfrak{n}-1}x_{0},\mathsf{T}^{\mathfrak{n}-2}x_{0})\Big]^{p}. \end{split}$$

Taking $n, m \to \infty$, we find

$$(1-\alpha)\lim_{n\to\infty}d^{p}(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0})\leqslant k\lim_{n\to\infty}d^{p}(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0})\Rightarrow(1-\alpha-k)\lim_{n\to\infty}d^{p}(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0})\leqslant 0.$$

Therefore, $\lim_{n\to\infty} d(T^m x_0, T^n x_0) = 0$ as $0 < k + \alpha < 1$. Consequently, $\{T^n x_0\}$ is a Cauchy sequence in X. Since X is complete, it follows $T^n x_0 \to z$ as $n \to \infty$ for some $z \in X$. Now, we show that Tz = z, i.e., z is a fixed point of T. For this, using again the inequality (2.1), we find

$$\alpha d^{p}(\mathsf{T}z,\mathsf{T}^{n}x_{0}) \leqslant \alpha d^{p}(\mathsf{T}z,\mathsf{T}^{n}x_{0}) + (1-\alpha)d^{p}(\mathsf{T}^{2}z,\mathsf{T}^{n+1}x_{0}) \leqslant kd^{p}(z,\mathsf{T}^{n-1}x_{0}).$$

As $n \to \infty$, we obtain

$$\alpha d^{p}(Tz,z) \leq 0,$$

which leads to d(Tz, z) = 0, that is Tz = z. Therefore, *z* is a fixed point of T. The uniqueness of the fixed point follows immediately as in Theorem 3.1.

Example 3.5. Let $T: X \to X$, where X = [0, 1] with usual metric d(x, y) = |x - y|. Define $Tx = \frac{1+x}{2}$ for all $x \in X$. For any arbitrary $x_0 \in X$, we have $Tx_0 = \frac{1+x_0}{2}$ and $T^n x_0 = \frac{2^n - 1 + x_0}{2^n}$, where T^n denotes the nth iterate of T. Also, we have

$$\lim_{n \to \infty} d(\mathsf{T}^{n} \mathsf{x}_{0}, \mathsf{T}^{n+1} \mathsf{x}_{0}) = \lim_{n \to \infty} \left| \frac{2^{n} - 1 + \mathsf{x}_{0}}{2^{n}} - \frac{2^{n+1} - 1 + \mathsf{x}_{0}}{2^{n+1}} \right| = 0.$$

This shows that T is asymptotically regular at all points in X. Obviously, $\{T^n x_0\}$ is a sequence in X such that $T^n x_0 \rightarrow 1 \in X$ as $n \rightarrow \infty$. Taking $\alpha = \frac{1}{3}$, $k = \frac{1}{8}$, and p = 2, then T is (α, p) -contraction for all $x, y \in X$ such that $k < \alpha$ or $k + \alpha < 1$. Thus, all the conditions of Theorem 3.4 are satisfied and hence, 1 is the unique fixed point of T.

Theorem 3.6. Let (X, d) be a complete metric space and $T: X \to X$ be a α -contraction such that $k < \alpha$. If there exists an asymptotically T-regular sequence in X, then T has a unique fixed point.

Proof. Let $\{x_n\}$ be an asymptotically T-regular sequence in X. Then, for any two non zero positive integers m, n such that m > n, we obtain

$$\begin{split} \alpha d(x_m, x_n) &\leqslant \alpha \Big[d(x_m, Tx_m) + d(Tx_m, Tx_n) + d(Tx_n, x_n) \Big] \\ &= \alpha \Big[d(x_m, Tx_m) + d(Tx_n, x_n) \Big] + \alpha d(Tx_m, Tx_n) \\ &\leqslant \alpha \Big[d(x_m, Tx_m) + d(Tx_n, x_n) \Big] + \alpha d(Tx_m, Tx_n) + (1 - \alpha) d(T^2x_m, T^2x_n) \\ &\leqslant \alpha \Big[d(x_m, Tx_m) + d(Tx_n, x_n) \Big] + k d(x_m, x_n), \end{split}$$

$$\mathbf{d}(\mathbf{x}_{\mathfrak{m}},\mathbf{x}_{\mathfrak{n}}) \leqslant \frac{\alpha}{\alpha-k} \Big[\mathbf{d}(\mathbf{x}_{\mathfrak{m}},\mathsf{T}\mathbf{x}_{\mathfrak{m}}) + \mathbf{d}(\mathsf{T}\mathbf{x}_{\mathfrak{n}},\mathbf{x}_{\mathfrak{n}}) \Big].$$

Taking $n, m \to \infty$ and using the fact that the sequence $\{x_n\}$ is asymptotically T-regular, we obtain

$$\lim_{n\to\infty} d(x_m, x_n) = 0.$$

This shows that $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists a point $z \in X$ such that $x_n \to z \in X$ as $n \to \infty$.

Now, we show that Tz = z, i.e., z is a fixed point of T.

-

$$\begin{aligned} \alpha d(\mathsf{T}z, \mathsf{x}_n) &\leq \alpha \Big[d(\mathsf{T}z, \mathsf{T}\mathsf{x}_n) + d(\mathsf{T}\mathsf{x}_n, \mathsf{x}_n) \Big] \\ &\leq \alpha d(\mathsf{T}z, \mathsf{T}\mathsf{x}_n) + (1 - \alpha) d(\mathsf{T}^2 z, \mathsf{T}^2 \mathsf{x}_n) + \alpha d(\mathsf{T}\mathsf{x}_n, \mathsf{x}_n) \leq k d(z, \mathsf{x}_n) + \alpha d(\mathsf{T}\mathsf{x}_n, \mathsf{x}_n) \end{aligned}$$

As $n \to \infty$ and since $\{x_n\}$ is asymptotically T-regular, we obtain

$$\alpha d(Tz, z) \leqslant 0$$

leading to Tz = z. Therefore, *z* is a fixed point of T. The uniqueness of the fixed point follows immediately.

Example 3.7. Let $T: X \to X$, where X = [0,1] with usual metric d(x,y) = |x-y|. Define $Tx = \frac{x}{3}$ for all $x \in X$. Consider a sequence $\{x_n\}$ in X such that $x_n \to 0$, then $Tx_n \to 0$, i.e., $|x_n - Tx_n| \to 0$ as $n \to \infty$. So, $\{x_n\}$ is asymptotically T-regular in X. Setting $\alpha = \frac{1}{2}$, $k = \frac{2}{9}$, then T is α -contraction for all $x, y \in X$ such that $k < \alpha$. Thus, all the conditions of Theorem 3.6 are satisfied and hence, 0 is the unique fixed point of T.

Theorem 3.8. Let (X, d) be a complete metric space and $T: X \to X$ be a α -contraction such that $k + \alpha < 1$. If there exists an asymptotically T^2 -regular sequence in X, then T has a unique fixed point.

Proof. Let $\{x_n\}$ be an asymptotically T²-regular sequence in X. Then, for any two non zero positive integers m, n such that m > n, we obtain

$$\begin{split} (1-\alpha)d(x_{m},x_{n}) \leqslant &(1-\alpha) \left[d(x_{m},\mathsf{T}^{2}x_{m}) + d(\mathsf{T}^{2}x_{m},\mathsf{T}^{2}x_{n}) + d(\mathsf{T}^{2}x_{n},x_{n}) \right] \\ = &(1-\alpha) \left[d(x_{m},\mathsf{T}^{2}x_{m}) + d(\mathsf{T}^{2}x_{n},x_{n}) \right] + (1-\alpha)d(\mathsf{T}^{2}x_{m},\mathsf{T}^{2}x_{n}) \\ \leqslant &(1-\alpha) \left[d(x_{m},\mathsf{T}^{2}x_{m}) + d(\mathsf{T}^{2}x_{n},x_{n}) \right] + \alpha d(\mathsf{T}x_{m},\mathsf{T}x_{n}) + (1-\alpha)d(\mathsf{T}^{2}x_{m},\mathsf{T}^{2}x_{n}) \\ \leqslant &(1-\alpha) \left[d(x_{m},\mathsf{T}^{2}x_{m}) + d(\mathsf{T}^{2}x_{n},x_{n}) \right] + kd(x_{m},x_{n}), \end{split}$$

that is,

$$\mathbf{d}(\mathbf{x}_{\mathfrak{m}},\mathbf{x}_{\mathfrak{n}}) \leqslant \frac{1-\alpha}{1-\alpha-k} \Big[\mathbf{d}(\mathbf{x}_{\mathfrak{m}},\mathsf{T}^{2}\mathbf{x}_{\mathfrak{m}}) + \mathbf{d}(\mathsf{T}^{2}\mathbf{x}_{\mathfrak{n}},\mathbf{x}_{\mathfrak{n}}) \Big].$$

Since $\{x_n\}$ is asymptotically T²-regular sequence, by taking $n, m \to \infty$, we obtain

$$\lim_{n\to\infty} d(x_m, x_n) = 0,$$

which proves that $\{x_n\}$ is a Cauchy sequence. Since, X is complete, there exists a point $z \in X$ such that $x_n \to z \in X$ as $n \to \infty$.

In order to show that *z* is a fixed point of T in X, we make several steps.

First, we show that $T^2 z = z$. Using inequality (2.1), we obtain

$$(1-\alpha)d(\mathsf{T}^{2}z, x_{n}) \leq (1-\alpha)\left\lfloor d(\mathsf{T}^{2}z, \mathsf{T}^{2}x_{n}) + d(\mathsf{T}^{2}x_{n}, x_{n})\right\rfloor$$
$$\leq \alpha d(\mathsf{T}z, \mathsf{T}x_{n}) + (1-\alpha)d(\mathsf{T}^{2}z, \mathsf{T}^{2}x_{n}) + (1-\alpha)d(\mathsf{T}^{2}x_{n}, x_{n})$$
$$\leq kd(z, x_{n}) + (1-\alpha)d(\mathsf{T}^{2}x_{n}, x_{n}).$$

Taking $n \to \infty$, and using the asymptotically T²-regularity of the sequence $\{x_n\}$, we obtain

 $(1-\alpha)\mathbf{d}(\mathsf{T}^2 z, z) \leq 0,$

which gives $T^2 z = z$. Therefore, one can obtain inductively that $T^{2n} z = z$ and $T^{2n+1} z = Tz$ for $n \ge 1$. We show that Tz = z, i.e., z is a fixed point of T.

Using the inequality (2.1), we obtain

$$(1-\alpha)d(z,\mathsf{T} z) = (1-\alpha)d(\mathsf{T}^2 z,\mathsf{T}^3 z) \leqslant \alpha d(\mathsf{T} z,\mathsf{T}^2 z) + (1-\alpha)d(\mathsf{T}^2 z,\mathsf{T}^3 z) \leqslant \mathsf{k} d(z,\mathsf{T} z),$$

that is,

$$(1-\alpha-k)d(z,Tz) \leq 0$$

a contradiction, if $Tz \neq z$. Therefore, z is a fixed point of T. Using the inequality (2.1), one can obtain the uniqueness of fixed point.

Example 3.9. Let T: X \rightarrow X, where X = {0,1,2} and A = {0,1} \subset X with usual metric d(x,y) = |x-y|. Define

$$\mathsf{T} \mathsf{x} = \begin{cases} 1, & \mathsf{x} \notin \mathsf{A}, \\ 0, & \mathsf{x} \in \mathsf{A}. \end{cases}$$

Consider a sequence $\{x_n\}$ in X such that $x_n \to 0$, then $Tx_n \to 1$ and $T^2x_n \to 0$ as $n \to \infty$. Consequently, $|x_n - T^2 x_n| \to 0$ as $n \to \infty$. So, $\{x_n\}$ is asymptotically T²-regular in X. Setting $\alpha = k = \frac{1}{3}$, then T is α -contraction for all $x, y \in X$ such that $k + \alpha < 1$. Thus, all the conditions of Theorem 3.8 are satisfied and hence, 0 is the unique fixed point of T.

The following Theorems 3.10 and 3.12 are motivated by Theorems 3.1 and 3.4 of Khan and Jhade [11].

Theorem 3.10. Let (X, d) be a complete metric space and T: $X \rightarrow X$ be an α -convex contraction such that $0 < \infty$ $k_1 + \alpha < 1 \text{ and } \mu, h < 1, \text{ where } \mu = \max\{\frac{k_3}{\alpha - k_2 - k_3}, \frac{k_5}{\alpha - k_4 - k_5}\} \text{ and } h = \max\{\frac{k_2 + k_3}{1 - \alpha - k_3}, \frac{k_4 + k_5}{1 - \alpha - k_5}\}.$ If there exists an asymptotically (T, T^2) -regular sequence in X, then T has a unique fixed point.

Proof. Let $\{x_n\}$ be an asymptotically (T, T^2) -regular sequence in X. Then, for any non zero positive integers m, n such that m > n, we obtain

$$\begin{split} (1-\alpha)d(x_m,x_n) \leqslant &(1-\alpha) \left\lfloor d(x_m,\mathsf{T}^2x_m) + d(\mathsf{T}^2x_m,\mathsf{T}^2x_n) + d(\mathsf{T}^2x_n,x_n) \right\rfloor \\ = &(1-\alpha) \left[d(x_m,\mathsf{T}^2x_m) + d(\mathsf{T}^2x_n,x_n) \right] + (1-\alpha)d(\mathsf{T}^2x_m,\mathsf{T}^2x_n) \\ \leqslant &(1-\alpha) \left[d(x_m,\mathsf{T}^2x_m) + d(\mathsf{T}^2x_n,x_n) \right] + \alpha d(\mathsf{T}x_m,\mathsf{T}x_n) + (1-\alpha)d(\mathsf{T}^2x_m,\mathsf{T}^2x_n) \\ \leqslant &(1-\alpha) \left[d(x_m,\mathsf{T}^2x_m) + d(\mathsf{T}^2x_n,x_n) \right] \\ + &k_1 d(x_m,x_n) + k_2 d(x_m,\mathsf{T}x_m) + k_3 d(\mathsf{T}x_m,\mathsf{T}^2x_m) + k_4 d(x_n,\mathsf{T}x_n) + k_5 d(\mathsf{T}x_n,\mathsf{T}^2x_n), \end{split}$$

$$(1 - \alpha - k_1)d(x_m, x_n) \leq (1 - \alpha) \left[d(x_m, T^2 x_m) + d(T^2 x_n, x_n) \right] \\ + k_2 d(x_m, T x_m) + k_3 d(T x_m, T^2 x_m) + k_4 d(x_n, T x_n) + k_5 d(T x_n, T^2 x_n)$$

Since, $\{x_n\}$ is asymptotically (T, T^2) -regular sequence. Letting $n, m \to \infty$ and using Lemma 2.10, we obtain $\lim_{n\to\infty} d(x_n, x_m) = 0$. This shows that $\{x_n\}$ is a Cauchy sequence in X. Since, X is complete, there exists a point $z \in X$ such that $x_n \to z \in X$ as $n \to \infty$. Now, we show that z is a fixed point of T in X. For this, first we show that $T^2z = z$. Using inequality (2.1), we obtain

$$\begin{split} (1-\alpha)d(\mathsf{T}^2z, x_n) \leqslant &(1-\alpha) \Big[d(\mathsf{T}^2z, \mathsf{T}^2x_n) + d(\mathsf{T}^2x_n, x_n) \Big] \\ \leqslant &\Big[\alpha d(\mathsf{T}z, \mathsf{T}x_n) + (1-\alpha) d(\mathsf{T}^2z, \mathsf{T}^2x_n) \Big] + (1-\alpha) d(\mathsf{T}^2x_n, x_n) \\ \leqslant &k_1 d(z, x_n) + k_2 d(z, \mathsf{T}z) + k_3 d(\mathsf{T}z, \mathsf{T}^2z) \\ &+ k_4 d(x_n, \mathsf{T}x_n) + k_5 d(\mathsf{T}x_n, \mathsf{T}^2x_n) + (1-\alpha) d(\mathsf{T}^2x_n, x_n) \\ \leqslant &k_1 d(z, x_n) + k_2 d(z, \mathsf{T}z) + k_3 \Big[d(\mathsf{T}z, x_n) + d(\mathsf{T}^2z, x_n) \Big] \\ &+ k_4 d(x_n, \mathsf{T}x_n) + k_5 d(\mathsf{T}x_n, \mathsf{T}^2x_n) + (1-\alpha) d(\mathsf{T}^2x_n, x_n), \end{split}$$

that is,

$$(1 - \alpha - k_3)d(\mathsf{T}^2 z, x_n) \leqslant k_1 d(z, x_n) + k_2 d(z, \mathsf{T} z) + k_3 d(\mathsf{T} z, x_n) + k_4 d(x_n, \mathsf{T} x_n) + k_5 d(\mathsf{T} x_n, \mathsf{T}^2 x_n) + (1 - \alpha) d(\mathsf{T}^2 x_n, x_n).$$

Taking $n \to \infty$ and using Lemma 2.10, we obtain

$$(1-\alpha-k_3)\mathbf{d}(\mathsf{T}^2z,z)\leqslant (k_2+k_3)\mathbf{d}(z,\mathsf{T}z),$$

that is,

$$d(\mathsf{T}^2 z, z) \leqslant \frac{k_2 + k_3}{1 - \alpha - k_3} d(\mathsf{T} z, z).$$

Similarly, by symmetry of the α -convex contraction, one can obtain

$$d(\mathsf{T}^2 z, z) \leqslant \frac{k_4 + k_5}{1 - \alpha - k_5} d(\mathsf{T} z, z).$$

Since, $h = \max\{\frac{k_2+k_3}{1-\alpha-k_3}, \frac{k_4+k_5}{1-\alpha-k_5}\} < 1$. This shows that $d(T^2z, z) \leq hd(Tz, z)$. Now, we show that Tz = z, i.e., z is a fixed point of T.

$$\begin{split} \alpha d(Tz, x_n) &\leqslant \alpha \Big[d(Tz, Tx_n) + d(Tx_n, x_n) \Big] + (1 - \alpha) d(T^2 z, T^2 x_n) \\ &= \alpha d(Tz, Tx_n) + (1 - \alpha) d(T^2 z, T^2 x_n) + \alpha d(Tx_n, x_n) \\ &\leqslant k_1 d(z, x_n) + k_2 d(z, Tz) + k_3 d(Tz, T^2 z) \\ &+ k_4 d(x_n, Tx_n) + k_5 d(Tx_n, T^2 x_n) + \alpha d(Tx_n, x_n) \\ &\leqslant k_1 d(z, x_n) + k_2 d(z, Tz) + k_3 d(Tz, z) \\ &+ k_3 d(T^2 z, z) + k_4 d(x_n, Tx_n) + k_5 d(Tx_n, T^2 x_n) + \alpha d(Tx_n, x_n). \end{split}$$

As $n \to \infty$, we obtain

$$\alpha d(\mathsf{T} z, z) \leqslant (\mathsf{k}_2 + \mathsf{k}_3) d(\mathsf{T} z, z) + \mathsf{k}_3 d(\mathsf{T}^2 z, z),$$

$$\mathbf{d}(\mathsf{T} z, z) \leqslant \frac{\mathbf{k}_3}{\alpha - \mathbf{k}_2 - \mathbf{k}_3} \mathbf{d}(\mathsf{T}^2 z, z).$$

Similarly, based on the symmetry of α -convex contractions, one can prove

$$\mathbf{d}(\mathsf{T} z, z) \leqslant \frac{\mathbf{k}_5}{\alpha - \mathbf{k}_4 - \mathbf{k}_5} \mathbf{d}(\mathsf{T}^2 z, z).$$

Since $\mu = \max\{\frac{k_3}{\alpha - k_2 - k_3}, \frac{k_5}{\alpha - k_4 - k_5}\} < 1$, we find

$$d(\mathsf{T} z, z) \leqslant \mu d(\mathsf{T}^2 z, z) \leqslant h \mu d(\mathsf{T} z, z),$$

that is,

 $(1-h\mu)d(\mathsf{T} z,z)\leqslant 0$

leading to d(Tz, z) = 0 as $h\mu < 1$. Therefore, z is a fixed point of T. For uniqueness, let $z^* \in X$ be another fixed point of T. Using (2.1) for x = z and $y = z^*$, we obtain

 $\alpha d(\mathsf{T} z,\mathsf{T} z^*) + (1-\alpha) d(\mathsf{T}^2 z,\mathsf{T}^2 z^*) \leqslant k_1 d(z,z^*) + k_2 d(z,\mathsf{T} z) + k_3 d(\mathsf{T} z,\mathsf{T}^2 z) + k_4 d(z^*,\mathsf{T} z^*) + k_5 d(\mathsf{T} z^*,\mathsf{T}^2 z^*),$

that is,

$$(1-\mathbf{k}_1)\mathbf{d}(z,z^*) \leqslant 0,$$

which in turn gives $d(z, z^*) = 0$ and hence, T has a unique fixed point in X.

Example 3.11. Let T: X \rightarrow X, where X = [0,1]. Define Tx = $\frac{1+x}{4}$ for all x \in X. Consider a sequence {x_n} in X such that x_n $\rightarrow \frac{1}{3}$ as n $\rightarrow \infty$. Consequently, Tx_n, T²x_n $\rightarrow \frac{1}{3}$ as n $\rightarrow \infty$. Therefore, the sequence {x_n} is asymptotically (T, T²)-regular in X. Setting $\alpha = \frac{1}{2}$, k₁ = $\frac{5}{32}$, k₂ = k₃ = k₄ = k₅ = 0, then T is α -convex contraction such that k₁ + $\alpha < 1$, $\mu = 0 < 1$ and h = 0 < 1. Thus, all the conditions of Theorem 3.10 are satisfied and hence, $\frac{1}{3}$ is the unique fixed point of T.

Theorem 3.12. Let (X, d) be a complete metric space and $T: X \to X$ be a α -convex contraction such that $k_1 < \alpha$ or, $0 < k_1 + \alpha < 1$ and $\mu, h < 1$, where $\mu = \max\{\frac{k_3}{\alpha - k_2 - k_3}, \frac{k_5}{\alpha - k_4 - k_5}\}$ and $h = \max\{\frac{k_2 + k_3}{1 - \alpha - k_3}, \frac{k_4 + k_5}{1 - \alpha - k_5}\}$. If T is asymptotically regular at some point x_0 in X, then there exists a unique fixed point of T.

Proof. Let T be an asymptotically regular mapping at $x_0 \in X$. Consider a sequence $\{T^n x_0\}$ and for any two non zero positive integers $m, n \ge 1$ such that m > n.

We analyze the following cases.

Case (i). When $k_1 < \alpha$. We obtain

$$\begin{split} \alpha d(\mathsf{T}^m x_0,\mathsf{T}^n x_0) \leqslant & \alpha d(\mathsf{T}^m x_0,\mathsf{T}^n x_0) + (1-\alpha) d(\mathsf{T}^{m+1} x_0,\mathsf{T}^{n+1} x_0) \\ \leqslant & k_1 d(\mathsf{T}^{m-1} x_0,\mathsf{T}^{n-1} x_0) + k_2 d(\mathsf{T}^{m-1} x_0,\mathsf{T}^m x_0) \\ & + k_3 d(\mathsf{T}^m x_0,\mathsf{T}^{m+1} x_0) + k_4 d(\mathsf{T}^{n-1} x_0,\mathsf{T}^n x_0) + k_5 d(\mathsf{T}^n x_0,\mathsf{T}^{n+1} x_0) \\ \leqslant & k_1 \Big[d(\mathsf{T}^{m-1} x_0,\mathsf{T}^m x_0) + d(\mathsf{T}^m x_0,\mathsf{T}^n x_0) \\ & + d(\mathsf{T}^n x_0,\mathsf{T}^{n-1} x_0) \Big] + k_2 d(\mathsf{T}^{m-1} x_0,\mathsf{T}^m x_0) \\ & + k_3 d(\mathsf{T}^m x_0,\mathsf{T}^{m+1} x_0) + k_4 d(\mathsf{T}^{n-1} x_0,\mathsf{T}^n x_0) + k_5 d(\mathsf{T}^n x_0,\mathsf{T}^{n+1} x_0), \end{split}$$

$$\begin{aligned} (\alpha - k_1)d(\mathsf{T}^m x_0, \mathsf{T}^n x_0) \leqslant &(k_1 + k_2)d(\mathsf{T}^{m-1} x_0, \mathsf{T}^m x_0) \\ &+ (k_1 + k_4)d(\mathsf{T}^{n-1} x_0, \mathsf{T}^n x_0) + k_3d(\mathsf{T}^m x_0, \mathsf{T}^{m+1} x_0) + k_5d(\mathsf{T}^n x_0, \mathsf{T}^{n+1} x_0). \end{aligned}$$

Taking $n, m \rightarrow \infty$ and using the asymptotically regularity of T at x_0 , we obtain

$$\lim_{n\to\infty} \mathbf{d}(\mathsf{T}^{\mathsf{m}}\mathbf{x}_0,\mathsf{T}^{\mathsf{n}}\mathbf{x}_0) = 0$$

Case (ii). When $0 < k_1 + \alpha < 1$, we obtain

$$\begin{split} (1-\alpha)d(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) &\leqslant \alpha d(\mathsf{T}^{\mathfrak{m}-1}x_{0},\mathsf{T}^{\mathfrak{n}-1}x_{0}) + (1-\alpha)d(\mathsf{T}^{\mathfrak{m}}\mathfrak{m}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) \\ &\leqslant k_{1}d(\mathsf{T}^{\mathfrak{m}-2}x_{0},\mathsf{T}^{\mathfrak{n}-2}x_{0}) + k_{2}d(\mathsf{T}^{\mathfrak{m}-2}x_{0},\mathsf{T}^{\mathfrak{m}-1}x_{0}) \\ &\quad + k_{3}d(\mathsf{T}^{\mathfrak{m}-1}x_{0},\mathsf{T}^{\mathfrak{m}}x_{0}) + k_{4}d(\mathsf{T}^{\mathfrak{n}-2}x_{0},\mathsf{T}^{\mathfrak{n}-1}x_{0}) + k_{5}d(\mathsf{T}^{\mathfrak{n}-1}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) \\ &\leqslant k_{1}\Big[d(\mathsf{T}^{\mathfrak{m}-2}x_{0},\mathsf{T}^{\mathfrak{m}-1}x_{0}) + d(\mathsf{T}^{\mathfrak{m}-1}x_{0},\mathsf{T}^{\mathfrak{m}}x_{0}) \\ &\quad + d(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) + d(\mathsf{T}^{\mathfrak{n}}x_{0},\mathsf{T}^{\mathfrak{n}-1}x_{0}) \\ &\quad + d(\mathsf{T}^{\mathfrak{n}-1}x_{0},\mathsf{T}^{\mathfrak{n}-2}x_{0})\Big] + k_{2}d(\mathsf{T}^{\mathfrak{m}-1}x_{0},\mathsf{T}^{\mathfrak{m}}x_{0}) \\ &\quad + k_{3}d(\mathsf{T}^{\mathfrak{m}}x_{0},\mathsf{T}^{\mathfrak{m}+1}x_{0}) + k_{4}d(\mathsf{T}^{\mathfrak{n}-1}x_{0},\mathsf{T}^{\mathfrak{n}}x_{0}) + k_{5}d(\mathsf{T}^{\mathfrak{n}}x_{0},\mathsf{T}^{\mathfrak{n}+1}x_{0}). \end{split}$$

Taking $n, m \to \infty$, we obtain

$$(1-\alpha-k_1)\lim_{n\to\infty}d(\mathsf{T}^{m+1}\mathsf{x}_0,\mathsf{T}^{n+1}\mathsf{x}_0)\leqslant 0,$$

which gives $\lim_{n\to\infty} d(T^{m+1}x_0, T^{n+1}x_0) = 0$.

In both cases it follows that $\{T^n x_0\}$ is a Cauchy sequence in X. Since X is complete, so $T^n x_0 \to z$ as $n \to \infty$ for some $z \in X$. Thus, by following the same argument as in Theorem 3.10, one can obtain the unique fixed point of T.

One can check the validity of Theorem 3.12 with Example 3.5 setting with $\alpha = \frac{2}{5}$, $k_1 = \frac{7}{20}$, $k_2 = k_3 = k_4 = k_5 = 0$, and p = 1.

Corollary 3.13. Let (X, d) be a metric space and $T: X \to X$ be a two-sided convex contraction mapping. Then, T has AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.

References

- M. A. Alghamdi, S. H. Alnafei, S. Radenović, N. Shahzad, Fixed point theorems for convex contraction mappings on cone metric spaces, Math. Comput. Modelling, 54 (2011), 2020–2026.
- [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- [3] M. Berinde, Approximate fixed point theorems, Stud. Univ. Babeş-Bolyai Math., 51 (2006), 11–25. 1, 1.6
- [4] F. E. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571–575. 1.4
- [5] H. W. Engl, Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers, Nonlinear Anal., 1 (1977), 459–501.
- [6] T. M. Gallagher, *Fixed point results for a new mapping related to mean nonexpansive mappings*, Adv. Oper. Theory, **2** (2017), 1–16. 2
- [7] V. Ghorbanian, S. Rezapour, N. Shahzad, Some ordered fixed point results and the property (P), Comput. Math. Appl., 63 (2012), 1361–1368.
- [8] K. Goebel, M. Japón Pineda, A new type of nonexpansiveness, Proc. 8th Int. Conf. Fixed Point Theory Appl., Chiang Mai, (2007). 1, 2
- [9] K. Goebel, B. Sims, *Mean Lipschitzian mappings*, Nonlinear analysis and optimization I, Nonlinear analysis, Contemp. Math., Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 513 (2010), 157–167. 2

- [10] V. I. Istrăţescu, Some fixed point theorems for convex contraction mappings and convex nonexpansive mappings, I. Libertas Math., 1 (1981), 151–163. 1, 2
- [11] M. S. Khan, P. K. Jhade, *Theorems on fixed points for asymptotically regular sequences and maps in b-metric space*, SQU J. Sci., **22** (2017), 48–52. 3
- [12] M. S. Khan, Y. M. Singh, G. Maniu, M. Postolache, On generalized convex contractions of type-2 in b-metric and 2-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2902–2913. 1, 1.3, 3
- [13] U. Kohlenbach, L. Leuştean, *The approximate fixed point property in product spaces*, Nonlinear Anal., 66 (2007), 806–818.
- [14] M. A. Miandaragh, M. Postolache, S. Rezapour, Approximate fixed points of generalized convex contractions, Fixed Point Theory Appl., 2013 (2013), 8 pages. 1, 3
- [15] R. Miculescu, A. Mihail, A generalization of Istrăţescu's fixed point theorem for convex contractions, Fixed Point Theory, 18 (2017), 689–702. 1
- [16] S. Reich, A. J. Zaslavski, *Genericity and porosity in fixed point theory: a survey of recent results*, Fixed Point Theory Appl., **2015** (2015), 21 pages. 1
- [17] S. Tijs, A. Torre, R. Brânzei, Approximate fixed point theorems, Miron Nicolescu (1903–1975) and Nicolae Ciorănescu (1903–1957), Libertas Math., 23 (2003), 35–39. 1