
Journal of mathematics and computer science    13 (2014), 142-156 

 

RECONSTRUCTION OF THE STURM-LIOUVILLE OPERATORS  

WITH TRANSMISSION AND PARAMETER DEPENDENT BOUNDARY 

CONDITIONS 

 
Mostafa Fallahi, Fereshte Sharaghi, Mohammad  Shahriari 

Department of Mathematics, Faculty of Science, University of Maragheh, P.O. Box 55181-83111,  

Maragheh, Iran. 

fallahi1_mostafa@yahoo.com, shareghi@deylaman.ac.ir, shahriari@tabrizu.ac.ir    

 

Article history: 

Received    June 2014 

Accepted    July 2014 

Available  online  September 2014 

Abstract 
Inverse problems of recovering the coefficients of discontinuous Sturm-Liouville problems with the 

eigenvalue parameter linearly contained in one of the boundary conditions are studied: 

1) From Weyl m- function. 

2) From spectral data. 
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1. Introduction 

We consider the Sturm-Liouville problem  

(1.1)                

With the eigenparameter dependent boundary conditions: 

(1.2)  ( )    ( )    ( )     

(1.3)  ( )  (    ) 
 ( )  (     ) ( )     

And discontinuous conditions 

(1.4)              (   )     (   )   (   )    
    (   )     (   )              

Where  ( )    (   ) is a real-valued function,                         and          
   For simplicity we use the notation    ( ( )                  ) for the problem (   )  
(   )  Boundary  value  problems  with discontinuities  inside the interval often appear in 
Mathematics, mechanics, physics, geophysics and other branches of natural sciences. As a rule, such 
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problems are connected with discontinuous material properties. The inverse problem of 
reconstructing the material properties of a medium from data collected outside of the medium is of 
central importance in disciplines ranging from engineering to the geosciences. The inverse problem 
of recovering higher-order differential operators from the Weyl functions has been studied in [17]. In 
[1] the Sturm-Liouville problem with discontinuities in the case when an eigenparameter linearly 
appears not only in the differential equation but it also appears in both of the boundary conditions is 
investigated. Paper [14] is devoted to the study of inverse problems by (i) one spectrum and a 
sequence of norming constants; (ii) two spectra. We will first start in section 2 to obtain the spectral 
properties of L and study the asymptotic  behavior of eigenvalues, eigenfunction and norming  
constants  with discontinuity in an interior point on (   )  In section 3 we study the inverse problem 
of recovering the pair    ( ( )                  ) of the from (   )  (   ) from the given 
Weyl function  ( ). For this purpose we will use the method of spectral mappings for Sturm-
Liouville operators on interval (   )  (   ) and using the solution of the main equation, we provide 
algorithm 3.1 for the solution of the inverse problem. In section 4 we construction Sturm-Liouville 
equation with spectra data            by algorithm (   )  

We refer to the somewhat complementary surveys in [1, 14, 3, 4, 8, 9, 11, 14, 15, 18] and [20] for 
further aspects of this field. For general background on inverse Sturm-Liouville problems we refer 
(e.g.) to the monographs [7, 10, 12, 17, 19] and [21]. 
 

2. Properties of the spectrum 

Let  (   ) and  (   ) be the solutions of (   ) satisfying the initial conditions 

(2.1)                    (   )                              (   )     

(2.2)                     (   )                      
 (   )                      

From the linear differential equations we obtain the Wronskian 

 (2.3)                            (   )    ( )  ( )    ( ) ( ) 

Is constant on    (   )  (   )for two solutions                   satisfying the transmission 
conditions (   ). Moreover, we set  

      (   )                        ( )     ( ( )  ( ))     ( )     ( )  

Then  ( ) is an entire function whose roots   coincide with the eigenvalues of  . Let the inner 
product in the Hilbert space       (   )       be define by 

 

(2.5)                       〈   〉  ∫   ( ) ̅ ( )  
 

 
 

 

 
   ̅     

 Where 

(2.6)                              (  ( )
  

) and   (  ( )
  

)     

We define the operator T acting in  such that 

 

(2.7)                         ( )  (
    ( )  ( )  ( )

    
 ( )      ( )

) 

With 
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(2.8)          ( )  {   |

  ( )   
 ( )     [   )  (   ]        (   ) 

  
 (   )    

    
 (   )       (   ) 

  (   )      (   )      
 ( )     ( )

} 

Denote 

(2.9)            ( )  (
 (    )

  (    )   (    )
) 

It is easy to see that the set of functions          are orthogonal function, i.e. 

                                            〈     〉             

By attaching a subscript 1 or 2 to the functions   and  , we mean to refer to the first subinterval [0, 
a) or to the second subinterval  (   ]  Therefore we see that 

(2.10)                   (    )  {
  (    )            

  (    )            
 

      Therefore, we define norming constants by 

(2.11)                
 =∫   

 (    )  
 

 
 ∫   

 (    )   
(  

 (    )    (    ))
 

 

 

 
 

Where    (    ) and    (    ) are defined in Theorem 2.2. 

Remark 2.1 The numbers           are called the spectral data of the problem 

(1.1)-(1.4). 

Theorem 2.2 The following asymptotic forms hold 

(2.12)                   √          
  

  

 
 

  

 
 

(2.13)        (    )  {
 (    

 )        
    (

 

 
)                                                                      

(    
 ) [          

            
 (    )]   (

 

 
)                 

 

(2.14)        (    
 ) [

   

 
((  )  (  ) )  

 

 
]   (  ) 

Where          
 

 
(   

 

  
)      ( )         

                  

Proof  By using the similar proof of [17] we obtain 

(2.15)          (   )        
 

 
      

 

 
∫     (   ) ( ) (   )                 

 

 
 

(2.16)        (   )                (    )  (    
  

 
)

     

 
 

                                 (    
  

 
)

    (    )

 
 

 

 
∫     (   ) ( ) (   )                        
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(2.17)      (   )  (     )( 
     (   )        (      ))   

  ((      )   
  

 
)
    (   )

 
  ((      )   

  

 
) 

    (      )

 
  

               
 

 
∫ (   

 
    (   )        (      )) ( ) (   )   

 
 

 
∫     (   ) ( ) (   )

 

 

                                                                                     

    (2.18)       (   )  
       

 
    (   )   (     )     (   ) 

 
 

 
∫     (   ) ( ) (   )             

 

 

 

From  (    )  (    ) we obtain 

(2.19)      
 (   )

   {
        (

 

   
       )                                                    

(               (    ))   (
 

   
       )         

       

(2.20)       
 (   )

   {
       (   )        (      )   (

 

   
      (   ))          

     (   )   (
 

   
      (   ))                                                                    

 

From (   ) and (    )  (    ) we get 

(2.21)          ( )    (     √  

√ 
      √ (    )

√ 
)   (         )  

Denote 

(2.22)            ( )       √  

√ 
      √ (    )

√ 
 

And 

(2.23)                               
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Where   is sufficiently small and   
  are the zeros of   ( ) except 0 . Since,    ( )   ( 

 

        ) 
And    ( )    ( )   (          ) for       and large values n, using the Rouche's theorem, 
We establish that contour   . Consequently, in the annulus between    and      ,    has precisely one 
zero, namely   

 . Therefore, for the eigenvalue   ,  the equality         
   is true . On the other hand, 

by using again the Rouche's theorem in                
      for sufficiently small  , we get the 

asymptotic formulae       
       (       ( )) is valid for large  . Finally, the equality     (

 

 
) is 

taken from the well known  formulae   ( )(  
    )    

 (  
 )    (  ) , This fact proves the 

equality  (    ) where    is the same as    in ([ ]      )   By using (    ) in (    ) and (    ) in 
(    ) we get (    ) and (    ) respectively.                                                               

 
3. Reconstruction by Weyl M-function 

Using properties of the spectrum the Weyl m-function [13], we can write 

(3.1)             ( )   
 (   )

 ( )
 

Also asymptotic expansion have been obtained  

(3.2)                ( )  
 

√  
  (   ) 

Let  (   ) be a solution of (   ) subject to the initial conditions 

                                       (   )                (   )    

and the jump conditions (   )  The function  (   ) can be represented as 

(3.3)                  (   )  
 (   )

 ( )
  (   )   ( ) (   )  

Where the functions  (   ) and  ( ) are called the Weyl solution and the Weyl function for the 
boundary value problem  . Now, we prove the uniqueness theorem for the solution of the inverse 

problem.  We agree together a boundary value problem   ̃ of the same form but with different 

coefficients   ̃( )  ̃  ̃   ̃   ̃  ̃   ̃   ̃   

Theorem 3.1     ( )    ̃ ( )  then      ̃, i.e ,  ( ) =  ̃( ), a.e,      ̃     ̃       ̃  

      ̃     ̃       ̃       ̃                                                                                                                             

Proof. Let us define the matrix  (   )   [   (   )]          by the formula 

(3.4)                    (   )(
 ̃(   )  ̃(   )

 ̃ (   )  ̃ (   )
)  (

 (   )  (   )

  (   )   (   )
) 

Using (   ) and (   ) we have, 

(3.6)              {
 (   )     (   ) ̃(   )     (   ) ̃

 (   ) 

 (   )     (   ) ̃(   )     (   ) ̃
 (   ) 

 

According to (   ) and (   )  for fixed  , the functions    (   ) are meromorphic Function in   with 
simple poles in the points    and  ̃ . Denote    

      ̃  where 

                                 

And  
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                 ̃     |   ̃ |             

From        and using the asymptotic form of   (   ) we get |  (   ) |      
      (     )  

  Thus it follows that 

(3.7)                 (   )          (   )       
        

       

Using (   ) and (   ) we get 

   (   )   (   ) ̃ (   )   (   ) ̃ (   )  ( ̃( )   ( )) (   ) ̃ (   ) 

     (   )   (   ) ̃(   )   (   ) ̃(   )  ( ̃( )   ( )) (   ) ̃(   )  

Thus, if  ( )     ̃( )  then for each fixed  , the function    (   ) are entire in 

 . Together with (   ) this yields    (   )         (   )     ( )  Using (   ) we 

Derive 

(3.8)                (   )    ( ) ̃(   )     (   )   ( ) ̃(   )  

From  ( (   )  (   ))      and similarly  ( ̃(   )  ̃(   ))     , we have  ( )     . So   
from (   ) we obtain,  (   )    ̃(   ) and  (   )     ̃(   ) for all   and  . Consequently,    
 ̃                                                                                                                              

Now we construct the solution of the inverse problem. For this work first we denote 

(3.9)      {
 (     )  

 ( (   )  (   ))

   
 ∫  (   ) (   )   

 

 
       (     )   (     ) ̂( ) 

 ̃(     )  
 ( ̃(   )  ̃(   ))

   
 ∫  ̃(   ) ̃(   )   

 

 
       ̃(     )   ̃(     ) ̂( ) 

 

From Theorem     we have 

(3.10)       (     )  {
∫   (    )  (    )                                                                                 

 

 

∫   (    )  (    )   ∫   (    )  (    )                             
 

 
 

 

 

 

where   
  =    and   

       

 

Lemma 3.2, Let             . The following estimates hold 

(3.11)        (     )  | ̃(     )|  
     (    )

       
                

Proof, For definiteness, let       and      . All other cases can be treated in the same way. Take 
a fixed   . For              we have by virtue of (   )  and relation of 
   (   )             (     )   for         

(3.12)         (     )  |
 ( (   )  (   ))

   
|      (    )

       

       
  

Where   positive constant      

Since 

              
        

       
    

√         

√ (     )     
    

√         

√          
  √    
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So, we have  

 

(3.13)                  (     )  
    (    )

     
  

For         we get 

                                                                    
       

     
   

 

  
 

And consequently 

                                                     
 

     
 

  

       
,    

    

  
. 

Substituting this estimate into the right-hand side of (    ) we obtain 

                                                    (     )  
      (    )

       
 

Therefore,(    ) is proved for             . Analogously, for             , (    )  is valid.                                                                                                           
  

In the following figure we have the contour              where    is a bounded closed contour 
encircling the set                         ( )       and     is the two-sided cut along the 
arc                       

Theorem 3.3 The following relations hold 

(3.14)                        ̃(   )   (   )  
 

   
∫  ̃(     ) (   )  

 

 
 

(3.15)               (     )   ̃(     )  
 

   
∫  ̃(     ) (     )     
 

 
 

 The relation (    ) is called the main equation of the inverse problem. 

Proof.  For                     , 

(3.16)           (     )    ̃(     )  
  

   (       )
   (   )     

Denote                       Consider the Contour                       with counter 

clockwise circuit, and also consider the contour   
                      with clockwise circuit. 

By Cauchy's integral formula 

   (   )      
 

   
∫

   (   )     
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   (   )    (   )

   
 

 

   
∫

   (   )

(   )(   )

 

  
                      

  

Using (   ) we get 

   
   

∫
   (   )     

   
  

 

     

      
   

∫
   (   )

(   )(   )
      

    And consequently 

 (3.17)           (   )      ∫
   (   )    

   
  

 

 
          

       (3.18)    
   (   )    (   )

   
 

 

   
∫

   (   )

(   )(   )

 

 
                      

By virtue of (   ) and (    )  

       (   )   ̃(   )  
 

   
∫

 ̃(   )   (   )  ̃ (   )   (   )

   

 

 
             

       Taking (   ) into account we get  

       (   )   ̃(   )  
 

   
∫ [ ̃(   ) ( (   ) ̃ (   )   (   ) ̃ (   ))

                       

 

 

 

                                                                                        ̃ (   )( (   ) ̃(   )   (   ) ̃(   ))]
  

   
  

In view of (   )   this yields (    ). According to (    ) and the proof of Lemma 

(1.6.3, in [6]) we arrive at 

   (     )   ̃(     )  
 

   
∫ (

 ( ̃(   )  ̃(   )) ( (   )  (   )

(   ) (   )
)

 

 
 

 

   
∫ (

 ( ̃(   )  ̃(   )) ( (   )  (   )

(   ) (   )

 

 
)   

In view of (   ) and (   ) this yields (    )                                                                          

Theorem 3.4 For each fixed     (   )    (   )  the main equation (    ) has a unique solution 
 (   )     ( )  Where  ( )  is a Banach space contained the continuous bounded functions 
 ( )        with the norm               ( )   

Proof For            we consider the following linear bounded operators in  ( ) 

(3.19)                                 ̃ ( )   ( )  
 

   
∫  ̃

 

 
(     ) ( )    

 (3.20)                                 ( )   ( )  
 

   
∫  ̃

 

 
(     ) ( )    

          From (    ) and (    ) we get 

          ̃ ( )   ( )  
 

   
∫  ̃

 

 
(     ) ( )   

 

   
∫  ̃

 

 
(     ) ( )   
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∫  ̃(     ) (

 

   
∫  ̃

 

 

(     ) ( )  )    
 

 

 

   ( )  
 

   
∫ ( (     )   ̃(     )  

 

   
∫  ̃(     ) (     )  

 

 

)  ( )   
 

 

 

From (    ) we have 

                                               ̃ ( )     ( )  ( )     ( )  

Also we obtain analogously    ̃ ( )    ( ) Thus, 

                                                                         ̃    ̃                

Where E is the identity operator, Hence the operator  ̃ has a bounded inverse operator, and the 
main equation (    ) is uniquely solvable for each fixed            Analogously For           
relation (    ) is uniquely solvable.                                         

Theorem 3.5 The following relations hold  

(3.21)                                           ( )     ̃( )     ( )  

(3.22)                                                 ̃      ( )  

(3.23)                        ̃      ( )          ̃      ( )  ̃          ̃   

(3.24)                                    =  ̃ − ( 
  

   

  
)  (     )  

Where 

(3.25)                     ( )  
 

   
∫  ̃(   ) (   ) ( )   

 

 
    ( )      

 ( ) 

Proof. By (   )  (    ) and (    ) we get  

(3.26)                  ̃ (   )    ( ) ̃(   )    (   )  
 

   
∫  ̃

 

 
(     )  (   )   

(3.27)                   ̃  (   )   (   )  
 

   
∫  ̃

 

 
(     )   (   )   

                             
 

   
∫   ̃(   ) ̃(   )  (   ) ( )  

 

 
 

 

   
∫  ( ̃(   ) ̃(   ))

 
 (   ) ( )  

 

 
 

In (    ) we replace the second derivatives by using equation(   )  and so we replace  (   ) using 
(3.14).This yields 

 ̃( ) ̃(   )   ( ) ̃(   )  
 

   
∫ ( (   )  (   )) ( ) (   )  

 

 

 

                                                    
 

   
∫   ̃(   ) ̃(   ) ( )  (   )  

 

 
 

                                                    
 

   
∫ ( ̃(   ) ̃(   ))  ( ) (   )  
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After canceling terms with   (   )  we arrive at (    )  Taking        and       in (    ) 
and(    ) we get (    )  (    )  also By virtue of (   )  it from (    ) that 

 (3.28)                        (   )    
   (   )  

And using (   ) (    ) and (    ) we have (    )  

Thus, we obtain the following algorithm for the solution of the inverse problem. 

Algorithm 3.1 Let the function  ( ) be given. Then 

i) Choose  ̃ such that  ̃( )    (   )  ̃  ̃   ̃   ̃   ̃  and  ̃       

ii) Find  (   ) by solving equation (    )  

iii) Construct  ( ) and           via (    )  (    )  

iv) Construct    by (    )  

 

4. Reconstruction by spectral data 

      Let two sequences of real numbers      and      (      ) with the following 

  Properties be given 

                                                √          
  

  

 
 

  

 
 

                                                   (    
 ) (

   

 
((  )  (  ) )  

 

 
)   (  ) 

 Where  

                                      ( )              
 

  
       

 

  
  

Now we consider the inverse problem of recovering L from the spectral data          . Let us 
choose a model boundary value problem  ̃     ( ̃( )  ̃  ̃   ̃   ̃   ̃   ̃ ) with real  ̃( )  
   (   )  ̃  ̃   ̃   ̃  and  ̃     ̃  ̃  –  ̃     such that    ̃ and       

 

 
∫  ( )  

 

 
. 

 Let 

(4.1)                                                        ̃    and    ∑   
 
       <  

Where     = |   −  ̃ | + |   −  ̃ |. Denote 

            ̃              ̃     ( )   (     )  ̃  ( )   ̃(     )    

                               ̃  (   )  
 ( ̃(   )  ̃  ( ))

   (     )
 

 

   
∫  ̃(   )  ̃  ( )  

 

 
 

                                                            ̃     (   )   ̃  (     ) 

It follows from (    ),(2.16) that 

(4.2)                 |   
 ( )|   (   

    )  | ̃  
 ( )|   (   

    )  
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(4.3)             | ̃     ( )|  
 

|  
    

 |  
 | ̃   

     
( )|   (|  

      
 |   )

 
  

Lemma 4.1 The following relation holds 

(4.4)                    ̃(   )   (   )  ∑ ( ̃  (   )   ( )   ̃  (   )   ( ))
 
    

Proof By virtue of (   ) we have 

(4.5)                                      ̃     ̃  

It follow from (    ) and (    ) that 

(4.6)                          (   )   ̃ (   )            (    )  

Similary,  

(4.7)             |  (   )   ̃ (   )|            (   (   ))  

Denote   
      

     ̃ 
   From (   ) and (   ) we have       

(4.8)           |  (   )   ̃ (   )|       
      (     )         

            

Let  (   )  be the matrix defined in Theorem     and               (  )                    
be the image of the set        under the mapping       

 .Denote                     , 
and    =                                                           Since for each fixed 
 , the functions     are meromorphic in   with simple poles    and  ̃ , we get by Cauchy theorem 

     (4.9)                        (   )      
 

   
∫

   (   )    

   
  

 

   
           

Where         , and     is the Kronecker's delta. Further (   ) and (   ) imply 

(4.10)       (   )    ( (   )   ̃(   )) ̃ (   )  ( (   )   ̃(   ))  ̃ (   ) 

Also we can obtain 

(4.11)                                  (   )            
       

   

By virtue of (    ) 

(4.12)                          
 

   
∫

   (   )    

   
     

 

      
 

And consequently (   ) yields 

                                      

                                           (   )            
 

   
∫

   (   )    

   
  

 

   
  

Substituting into (   ) we obtain 

 (   )   ̃(   )     
   

 

   
∫

 ̃(   )   (   )   ̃ (   )   (   )

   
  

 

   

  

Taking (   ) into account we calculate 

 (   )   ̃(   )     
   

 

   
∫ ( ̃(   )( (   ) ̃ (   )   (   ) ̃ (   ))
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                                        ̃ (   ) ( (   ) ̃(   )   (   ) ̃(   ))
  

   
  

Or, in view of (   )  

(4.13)              ̃(   )   (   )        
 

   
∫

 ( ̃(   )  ̃(   ))

   
 ( ) (   )  

 

   
   

Then we have  

                                  

 ( ̃(   )  ̃(   ))

   
 ( ) (   )   ̃  (   )   ( )  

Now with calculation the integral in (    ) by residue theorem we arrive at (   )             

Let   be a set of indices     (   )                For each fixed     [   ]  we 

define the vector 

 ( )  [  ( )]    [
   ( )

   ( )
]
   

 [             ]  

by the formulae 

                   [   ( )
   ( )

]
   

=[
     

  
] [   ( )

   ( )
]   [

  (   ( )     ( ))  
   ( )  

]  

                                                                                  {
   

          
            

             
            

   

we also define the block matrix 

  ( )  [    ( )]     =[
      ( )       ( )

      ( )       ( )
]              (   )     (   ) 

By the formulae 

[
      ( )       ( )

      ( )       ( )
]  [

     

  
] [

      ( )       ( )

      ( )       ( )
] [

   
   

] 

 [
ξ
 
  (      ( )        ( ))   (      ( )        ( )        ( )        ( ))

        ( )       ( )        ( )
] 

Analogously we define  ̃( )  ̃ ( ) by replacing in the previous definitions     ( ) 

 by   ̃  ( ) and       ( ) by  ̃     ( ) also we have 

(4.14)                    
 ( )   (  

   )         ( )  
   

|  
    

 |  
      

Similary   

(4.15)             | ̃  
 ( )|   (  

   )    ̃     ( )  
   

|  
    

 |  
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Let us consider the Banach space   of bounded squencess      [  ]    with the norm         
       |   |. It follows from (    )  and (    ) that for each fixed     [   ]  the operators 
     ̃ ( ) and      ̃( ) (here   is the identity operator), acting from   to  , is a linear bounded 
operator, and 

 

       ̃( )       ∑
  

|  
    

 |       

  Taking into account our notation, we can rewrite (   ) in the form 

   ̃  (   )     (   )  ∑ ( ̃     ( )   ( )   ̃     ( )   ( ))
 
     

 Or  

  (4.16)                           ̃ (   )  (   ̃( )) ( ) 

Thus, for each fixed , the vector  ( )      is a solution of equation (    )in the Banach space  . 
Equation (    ) is called the main equation of the inverse problem. solving (    ) we find the vector 
 ( ) and consequently, the functions    ( )               . Since    ( )     (      ) are the 
solutions of (   )  we can construct the function  ( ) by the formula     

(4.17)                                    ( )         
     

  ( )

   ( )
 .         

 we get the coefficient   by 

(4.18)                                       (     )  

Also we obtain the coefficients      and    from the linear system of equations 

 

(4.19)                        {
(      )    

 ( )  (       )   ( )               
 ̃                                                                                                

         

And finally we obtain 

 

(4.20)                                 
  

  (   )

   (   )
 

  
  (   )

   (   )
 

Now, we get the following algorithm for the solution of the inverse problem of recovering   from the 
given spectral data             

Algorithm 4.1 Let the spectral data           be given. Then 

i) Choose  ̃ such that  ̃   , and construct  ̃( ) and  ̃( )  

ii) Find  ( ) by solving (    )  

iii) Calculate  ( )         and    by (    ) (    ) and (    )  

iv) Construct     by  (    ). 
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Example 4.2 Take  ̃     ( ̃( )                ̃     )  Let              be the spectral data of  ̃. 
Clearly, 

 ̃       ̃        (     )    ̃  ( )     (     )  ̃  ( )     (     )  

Let        ̃ (     )        ̃ , and        be an arbitrary positive number. Denote 

       
 

  
 

 

 ̃ 
, then (   ) yields 

                                            ̃  ( )     ( )(   ∫  ̃  
  

 
( )  ) 

So, we have 

                                     ( )  {
 (    )                         

     (     
  )               

 

Where                  
  . Using (    ) and value         , it is easy to see that 

                                    ( )  {
    (    )                         

       
 
 
 (     

  )               
 

Also, we can obtain the following relations 

       
   

 

(     
  )

        
  

(     
  )

          
    

 

(     
  ) 

 

So finally we obtain 

                                         
  

  (   )

   (   )
 

  
  (   )

   (   )
 

 (  
     

 )

(    )
. 
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