# Inherent irreversibility analysis in a buoyancy induced magnetohydrodynamic couple stress fluid

Volume 18, Issue 4, pp 411--422 Publication Date: October 30, 2018       Article History
• 244 Views

### Authors

Jacob A. Gbadeyan - Department of Mathematics, University of Ilorin, Nigeria. - Department of Mathematics, Covenant University, Nigeria. Abiodun A. Opanuga - Department of Mathematics, Covenant University, Nigeria.

### Abstract

This paper investigates the inherent irreversibility in a buoyancy induced magnetohydrodynamic (MHD) couple stress fluid through non-Darcian porous medium. It is assumed that the fluid exchanges heat with the ambient following Newtonian law. The governing Navier-Stoke and energy equations are formulated and non-dimensionalied, the approximate solutions for the velocity and temperature profiles are obtained via Adomian decomposition method. The results are used to calculate the entropy generation rate, and Bejan number. The effects of Buoyancy force, suction/injection, Hartman number and other flow parameters on velocity, temperature, entropy generation rate, and Bejan number are analyzed and discussed graphically. The results show that increase in Buoyancy force and suction/injection increases fluid velocity and temperature.Entropy generation rate becomes higher as the values of Buoyancy force, suction/injection parameter, and Hartman number increases.

### Keywords

• Buoyancy force
• MHD
• porous medium
• entropy generation

•  76D05
•  76W05
•  76M25
•  34B15

### References

• [1] S. O. Adesanya, Second law analysis for third-grade fluid with variable properties, J. Therm., 2014 (2014), 8 pages.

• [2] S. O. Adesanya, J. A. Falade, Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium , Alexandria Eng. J., 54 (2015), 615–622.

• [3] S. O. Adesanya, O. D. Makinde, Effects of couple stress on entropy generation rate in a porous channel with convective heating, Comput. Appl. Math., 34 (2015), 293–307.

• [4] S. O. Adesanya, O. D. Makinde, Thermodynamic analysis for a third grade fluid through a vertical channel with internal heat generation, J. Hydrodynamics Ser. B, 27 (2015), 264–272.

• [5] A. O. Ajibade, B. K. Jha, A. Omame, Entropy generation under the effect of suction/injection, Appl. Math. Model., 35 (2011), 4630–4646.

• [6] A. Arikoglu, I. Ozkol, G. Komurgoz, Effect of slip on entropy generation in a single rotating disk in MHD flow , Appl. Energy, 85 (2008), 1225–1236.

• [7] A. Barletta , Laminar convection in a vertical channel with viscous dissipation and buoyancy effects, Int. Commun. Heat Mass, 26 (1999), 153–164.

• [8] T. Basak, R. S. Kaluri, A. R. Balakrishnan, Entropy generation during natural convection in a porous cavity: Effect of thermal boundary conditions, Numer. Heat Transfer Part A: Appl., 62 (2012), 336–364.

• [9] A. Bejan , Second-law analysis in heat transfer and thermal design, Adv. Heat Transfer, 15 (1982), 1–58.

• [10] A. Bejan, Second law analysis in heat transfer, Energy int. J., 15 (1980), 721–732.

• [11] M. M. Bhatti, A. Zeeshanb, R. Ellahi, N. Ijaz, Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field, J. Mol. Liq., 230 (2017), 237–246.

• [12] S. Das, R. N. Jana, Entropy generation due to MHD flow in a porous channel with Navier slip, Ain Shams Eng. J., 5 (2014), 575–584.

• [13] A. El Jery, N. Hidouri, M. Magherbi, A. B. Brahim , Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection, Entropy, 12 (2010), 1391–1417.

• [14] M. Ferdows, M. J. Uddin, A. A. Afify , Scaling group transformation for MHD boundary layer free convective heat and mass transfer flow past a convectively heated nonlinear radiating stretching sheet, Int. J. Heat Mass Transfer, 56 (2013), 181–187.

• [15] O. M. Hadaad, M. M. Abuzaid, M. A. Al-Nimr, Developing free-convection gas flow in vertical open-ended michrochannel filled with porous media, Int. J. comput., 48 (2005), 693–710.

• [16] M. Y. A. Jamalabadi, J. H. Park, C. Y. Lee , Optimal design of magnetohydrodynamic mixed convection flow in a vertical channel with slip boundary conditions and thermal radiation effects by using an entropy generation minimization method, Entropy, 17 (2015), 866–881.

• [17] B. K. Jha, A. O. Ajibade, Free convective flow of heat generation absorbing fluid between vertical porous plates with periodic heat input, Int. J. Heat Mass Transfer, 36 (2009), 624–631.

• [18] A. A. Khan, S. Muhammad, R. Ellahi, Q. M. Zaigham Zia, Bionic Study of Variable Viscosity on MHD Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel, J. Magn., 21 (2016), 273–280.

• [19] A. A. Khana, H. Usmana, K. Vafai, R. Ellahi, Study of peristaltic flow of magnetohydrodynamic Walter’s B fluid with slip and heat transfer , Scientia Iranica, 23 (2016), 2650–2662.

• [20] A. Mazgar, F. Ben Nejma, K. Charrada, Entropy generation through combined non-grey gas radiation and forced convection in cylinders, 6th IASME/WSEAS International Conference on heat transfer, thermal engineering and environment (Rhodes, Greece), 2008 (2008), 11 pages.

• [21] W. N. Mutuku-Njane, O. D. Makinde, Combined effects of buoyancy force and Navier slip on MHD flow of a Nanofluid over a convectively heated vertical porous plate, The Scientific World Journal, 2013 (2013), 8 pages.

• [22] N. F. M. Noor, S. Abbasbandy, I. Hashim, Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink, Int. J. Heat Mass Transfer, 55 (2012), 2122–2128.

• [23] A. A. Opanuga, O. O. Agboola, H. I. Okagbue , Approximate solution of multipoint boundary value problems, J. Eng. Appl. Sci., 10 (2015), 85–89.

• [24] A. A. Opanuga, O. O. Agboola, H. I. Okagbue, J. G. Oghonyon, Solution of differential equations by three semianalytical techniques, Int. J. Appl. Eng. Res., 10 (2015), 39168–39174.

• [25] A. A. Opanuga, J. A. Gbadeyan, S. A. Iyase, Second law analysis of a reactive MHD couple stress fluid through porous channel , Int. J. Appl. Math. Statist., 56 (2017), 85–100.

• [26] A. A. Opanuga, J. A. Gbadeyan, S. A. Iyase, H. I. Okagbue, Effect of thermal radiation on entropy generation of hydromagnetic flow through porous channel , Pacific J. Sci. Tech., 17 (2016), 59–68.

• [27] I. Ozkol, G. Komurgoz, A. Arikoglu , Entropy generation in laminar natural convection from a constant temperature vertical plate in an infinite fluid, Proceedings of the institution of mechanical engineers part A: J. Power Energy, 221 (2007), 609–616.

• [28] M. Pakdemirli, B. S. Yilbas, Entropy generation in a pipe due to non-Newtonian fluid flow: Constant viscosity case, Sadhana, 31 (2006), 21–29.

• [29] P. R. Sharma, K. Sharma, T. Mehta, Radiative and free convective effects on MHD flow through a porous medium with periodic wall temperature and heat generation or absorption, Int. J. Math. Arch., 5 (2014), 119–128

• [30] M. Sheikholeslami, Q. M. Zaigham Zia, R. Ellahi, Influence of Induced Magnetic Field on Free Convection of Nanofluid Considering Koo-Kleinstreuer-Li (KKL) Correlation, Appl. Sci., 6 (2016), 1–11.

• [31] A. Zeeshan, A. Majeed, R. Ellahi, Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation, J. Mol. Liq., 215 (2016), 549–554.