]>
2018
18
3
132
Turing instability in two-patch predator-prey population dynamics
Turing instability in two-patch predator-prey population dynamics
en
en
In this paper, a spatio-temporal model as systems of ODE which describe
two-species Beddington-DeAngelis type predator-prey system living in
a habitat of two identical patches linked by migration is
investigated. It is assumed in the model that the per capita
migration rate of each species is influenced not only by its own but
also by the other one's density, i.e., there is cross diffusion
present. We show that a standard (self-diffusion) system may be
either stable or unstable, a cross-diffusion response can stabilize
an unstable standard system and destabilize a stable standard
system. For the diffusively stable model, numerical studies show
that at a critical value of the bifurcation parameter the system
undergoes a Turing bifurcation and the cross migration response is
an important factor that should not be ignored when pattern emerges.
255
261
Ali
Al-Qahtani
Aesha
Almoeed
Bayan
Najmi
Shaban
Aly
Self-diffusion
cross-diffusion
diffusive instability
pattern formation
Article.1.pdf
[
[1]
U. Dieckmann, R. Law, J. A. Metz, The Geometry of Ecological Interaction: Simplifying Spatial Complexity, Cambridge University Press, Cambridge (2005)
##[2]
M. Farkas, Two ways of modeling cross diffusion, Nonlinear Anal., 30 (1997), 1225-1233
##[3]
M. Farkas, Dynamical Models in Biology, Academic Press, San Diego (2001)
##[4]
Y. Huang, O. Diekmann, Interspecific influence on mobility and Turing instability, Bull. Math. Biol., 65 (2003), 143-156
##[5]
J. D. Murray , Mathematical Biology, Springer-Verlag, Berlin (1989)
##[6]
Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra system, World Scientific Publishing Co., Singapore (1996)
##[7]
A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72
]
\(F_{m}\)-contractive and \(F_{m}\)-expanding mappings in \(M\)-metric spaces
\(F_{m}\)-contractive and \(F_{m}\)-expanding mappings in \(M\)-metric spaces
en
en
Inspired by the work of Górnicki in his recent article [J. Górnicki, Fixed Point Theory Appl., \({\bf 2017}\) (2017), 10 pages], where he introduced a new class of self mappings
called \(F\)-expanding mappings, in this paper we introduce the concept of \(F_{m}\)-contractive and
\(F_{m}\)-expanding mappings in \(M\)-metric spaces. Also, we prove the existence and uniqueness of fixed point for such mappings.
262
271
Nabil
Mlaiki
\(M\)-metric spaces
\(F_{m}\)-contractive
\(F_{m}\)-expanding mappings
Article.2.pdf
[
[1]
K. Abodayeh, N. Mlaiki, T. Abdeljawad, W. Shatanawi , Relations between partial metric spaces and M-metric spaces, Caristi Kirk’s Theorem in M-metric type spaces , J. Math. Anal., 7 (2016), 1-12
##[2]
M. Asadi, E. Karapınar, P. Salimi , New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014 ), 1-9
##[3]
J. Górnicki , Fixed points theorems for F-expanding mappings , Fixed Point Theory Appl., 2017 (2017), 1-10
##[4]
R. H. Haghi, S. Rezapour, N. Shahzad , Be careful on partial metric fixed point results, Topology Appl., 160 (2013), 450-454
##[5]
S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183-197
##[6]
N. Mlaiki, N. Souayah, K. Abodayeh, T. Abdeljawad , Contraction principles in Ms-metric spaces , J. Nonlinear Sci. Appl., 10 (2017), 575-582
##[7]
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012 ), 1-6
]
Explicit solution for some generalized fluids in laminar flow with slip boundary conditions
Explicit solution for some generalized fluids in laminar flow with slip boundary conditions
en
en
In this study, we present a new approximation method to give an explicit solution of a laminar flow using a Sisko
model. This is a problem of a generalized Newtonian fluid with slip boundary conditions. The proposed method
is based on the variational iteration method (VIM) combined with an approximation step. This method is validated
where the exact solution is available. In addition, in order to enrich the discussion, a numerical method is
presented. The results illustrate that the VIM may be more effective that the finite difference method for a dilatant
fluid. However, the VIM will be inappropriate for pseudoplastic fluid cases.
272
281
Mourad
Chamekh
Tarig. M.
Elzaki
Sisko model
variational iteration method
dilatant fluid
pseudoplastic fluid
Article.3.pdf
[
[1]
N. Ali, A. Zaman, M. Sajid, Unsteady blood flow through a tapered stenotic artery using Sisko model, Comput. & Fluids, 101 (2014), 42-49
##[2]
M. M. Bhatti, T. Abbas, M. M. Rashidi, Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet, J. Magnet., 21 (2016), 468-475
##[3]
M. M. Bhatti, R. Ellahi, A. Zeeshan, Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls, J. Mol. Liq., 222 (2016), 101-108
##[4]
M. M. Bhatti, A. Zeeshan, Analytic study of heat transfer with variable viscosity on solid particle motion in dusty Jeffery fluid, Modern Phys. Lett. B, 2016 (2016), 1-13
##[5]
M. M. Bhatti, A. Zeeshan, R. Ellahi, Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magnetonanoparticles, Comput. Biol. Med., 78 (2016), 29-41
##[6]
M. M. Bhatti, A. Zeeshan, N. Ijaz, O. A. Beg, A. Kadir , Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct, Eng. Sci. Tech. Int. J., 20 (2017), 1129-1139
##[7]
R. Ellahi, M. M. Bhatti, I. Pop, Effects of Hall and Ion Slip on MHD peristaltic flow of Jeffrey fluid in a non-Uniform rectangular duct, Internat. J. Numer. Methods Heat Fluid Flow, 26 (2016), 1802-1820
##[8]
R. Ellahi, E. Shivanian, S. Abbasbandy, T. Hayat, Numerical study of magnetohydrodynamics generalized Couette flow of Eyring-Powell fluid with heat transfer and slip condition, Internat. J. Numer. Methods Heat Fluid Flow, 26 (2016), 1433-1445
##[9]
L. L. Ferrás, J. M. Nóbrega, F. T. Pinho, Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip, J. Non-Newtonian Fluid Mech., 175–176 (2012), 76-88
##[10]
J.-H. He, Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., 34 (1999), 699-708
##[11]
O. Martin, Modified variational iteration method for the analysis of viscoelastic beams, Appl. Math. Model., 40 (2016), 7988-7995
##[12]
A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Second edition, Chapman & Hall/CRC, Boca Raton, London, New York (2003)
##[13]
S. U. Rahman, R. Ellahi, S. Nadeem, Q. M. Zaigham Zia, Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis, J. Mol. Liq., 218 (2016), 484-493
##[14]
A. W. Sisko, The flow of lubricating greases, Ind. Eng. Chem., 50 (1958), 1789-1792
##[15]
A.-M. Wazwaz , The variational iteration method for solving a system of PDES, Comput. Math. Appl., 54 (2007), 895-902
##[16]
I. S. Weir, W. J. Bailey, A statistical study of rheological models for drilling fluids: Society of Petroleum Engineers, SPE Journal, 1 (1996), 473-486
]
On upper and lower \((\tau_1,\tau_2)\)-precontinuous multifunctions
On upper and lower \((\tau_1,\tau_2)\)-precontinuous multifunctions
en
en
This paper deals with the concepts of upper and lower
\((\tau_1,\tau_2)\)-precontinuous multifunctions.
Some characterizations of upper and lower \((\tau_1,\tau_2)\)-precontinuous multifunctions are investigated. The relationships between upper and lower \((\tau_1,\tau_2)\)-precontinuous multifunctions and the other types of continuity are discussed.
282
293
Chawalit
Boonpok
Chokchai
Viriyapong
Montri
Thongmoon
\(\tau_1\tau_2\)-preopen
lower $(\tau_1,\tau_2)$-precontinuous multifunction
upper $(\tau_1,\tau_2)$-precontinuous multifunction
Article.4.pdf
[
[1]
G. K. Banerjee, On pairwise almost strongly \(\theta\)-continuous mappings, Bull. Calcutta Math. Soc., 79 (1987), 314-320
##[2]
C. Berge, Espaces topologiques: Fonctions multivoques, Collection Universitaire de Mathmatiques, Vol. III, Dunod, Paris (1959)
##[3]
S. Bose, Semi-open sets, semicontinuity and semi-open mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73 (1981), 237-246
##[4]
S. Bose, D. Sinha, Almost open, almost closed, \(\theta\)-continuous and almost quasicompact mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73 (1981), 345-354
##[5]
E. Ekici, S. Jafari, T. Noiri, On upper and lower contra-continuous multifunctions, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat., 54 (2008), 75-85
##[6]
E. Ekici, S. Jafari, V. Popa, On contra-precontinuous and almost contra-precontinuous multifunctions, J. Adv. Res. Pure Math., 2 (2010), 11-25
##[7]
M. Jelić, A decomposition of pairwise continuity , J. Inst. Math. Comput. Sci. Math. Ser., 3 (1990), 25-29
##[8]
F. H. Khedr, S. M. Al-Areefi, T. Noiri, Precontinuity and semi-precontinuity in bitopological spaces, Indian J. Pure Appl. Math., 23 (1992), 625-633
##[9]
I. Kovačević, Subsets and paracompactness, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 14 (1984), 79-87
##[10]
N. Levine , Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41
##[11]
S. N. Maheshwari, R. Prasad, Semi-open sets and semicontinuous functions in bitopological spaces, Math. Notae, 26 (1977/78), 29-37
##[12]
A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53
##[13]
T. Noiri, V. Popa , On weakly precontinuous functions in bitopological spaces, Soochow J. Math., 33 (2007), 87-100
]
Mathematical models of the Spread of Malaria with the vertical transmission (congenital malaria)
Mathematical models of the Spread of Malaria with the vertical transmission (congenital malaria)
en
en
The main goal of this paper is to develop a mathematical model to study the dynamic of malaria transmission, and the direct effects of congenital malaria on the spread of malaria.
In this study, we have clarified the significant impact of malaria on the human community through their impact on the newborn, and that directly increases spread of the malaria in the human community, especially in the newborns with the lower and inexperienced immunity systems.
The existence and stability of the disease-free points of the system is analyzed. We established that the disease-free equilibrium point is locally asymptotically stable when the reproduction number \(R_{0}<1\) and the disease always dies out. For \(R_{0}>1\) the disease-free equilibrium becomes unstable and there exists a unique endemic equilibrium.
294
305
Ebrahim
As-Shareef
Arif
Saif
Cui-Hong
Yang
Xin-An
Zhang
Congenital malaria
vertical transmission
basic reproduction number
stability
Article.5.pdf
[
[1]
R. M. Anderson, M. R. M., Infectious Diseases of Human, Oxford University Press, Oxford (1991)
##[2]
S. Aneke, Mathematical modelling of drug resistant malaria parasites and vector populations, Math. Methods Appl. Sci., 25 (2002), 335-346
##[3]
J. L. Aron, R. M. May, The population dynamics of malaria. In: Anderson R.M. (eds) The Population Dynamics of Infectious Diseases: Theory and Applications, Springer, Boston (1982)
##[4]
N. Bacaer, C. Sokhna, A reaction-diffusion system modeling the spread of resistance to an antimalarial drug , Math. Biosci. Engrg., 2 (2005), 227-238
##[5]
N. T. J. Bailey , Biomathematics of malaria , Charles Griffin, London (1982)
##[6]
B. Brabbin , An Assessment of Low Birthweight Risk in Primiparae as an Indicator of Malaria Control in Pregnancy, Int. J. Epidemiol., 20 (1991), 276-283
##[7]
L. J. Bruce-Chwatt, Transfusion malaria revisited, Trop. Dis. Bull., 79 (1982), 827-840
##[8]
R. Catherine, Lesko, P. M. Arguin, Newman, D. Robert , Congenital malaria in the United States: a review of cases from 1966 to 2005 , Arch Pediatr Adolesc Med., 161 (2007), 1062-1067
##[9]
V. Chauhan, R. Negi, B. Verma, S. Thakur, Transfusion transmitted malaria in a non-endemic area, J Assoc Physicians India., 57 (2009), 653-654
##[10]
N. Chitnis, J. Cushing, J. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24-45
##[11]
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296
##[12]
K. Dietz, L. Molineaux, A. Thomas , A malaria model tested in the African savannah , Bull. World Health Organ., 50 (1974), 347-357
##[13]
S. Emad, L. Saira, H. Seema, H. Shahina, Congenital malaria, Pak. J. Med. Sci., 24 (2008), 765-767
##[14]
P. R. Fischer , Malaria and newborns, J. Tropical Pediatrics, 49 (2003), 132-135
##[15]
J. Freeman, K. F. Laserson, I. Petralanda, A. Spielman, Effect of chemotherapy on malaria transmission among Yanomami Amerindians: simulated consequences of placebo treatment, Am. J. Trop. Med. Hyg., 60 (1999), 774-780
##[16]
G. M. Gitau, J. M. Eldred, Malaria in pregnancy: clinical, therapeutic and prophylactic considerations, Obstet. Gynecol., 7 (2005), 5-11
##[17]
H. W. Hethcote , Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335-356
##[18]
J. C. Koella, On the use of mathematical models of malaria transmission, Acta tropica, 49 (1991), 1-25
##[19]
J. Koella, R. Antia , Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2003 (2003), 1-11
##[20]
J. C. Koella, C. Boëte , A model for the coevolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria , Am. Nat., 161 (2003), 698-707
##[21]
V. Laosombat, S. Dharmasakti , Neonatal malaria in Southern Thailand, Southeast Asian J. Trop Med. Public Health, 12 (1981), 99-103
##[22]
J. Li, R. Welch, U. S. Nair, T. L. Sever, D. E. Irwin, C. Cordon-Rosales, N. Padilla, Dynamic malaria models with environmental changes, ” In Proceedings of the Thirty- Fourth Southeastern Symposium on System Theory ”, Huntsville, USA., (2002), 396-400
##[23]
G. Macdonald , The epidemiology and control of malaria, Oxford University Press, London (1957)
##[24]
C. Menendez , Malaria during pregnancy: a priority area of malaria research and control , Parasitol. Today, 11 (1995), 178-183
##[25]
C. Menendez, A. Mayor , Congenital malaria: the least known consequence of malaria in pregnancy, Seminars in Fetal Neonatal Medicine, Elsevier, 12 (2007), 207-213
##[26]
M. Mukhtar, F. Lesi, E. Iroha, M. Egri-Okwaji, A. Mafe, Congenital malaria among inborn babies at a tertiary centre in Lagos, Nigeria, J. tropical pediatrics, 52 (2006), 19-23
##[27]
J. Nedelman, Introductory review some new thoughts about some old malaria models, Math. Biosci., 73 (1985), 159-182
##[28]
G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1173-1202
##[29]
G. A. Ngwa, W. S. Shu , A mathematical model for endemic malaria with variable human and mosquito populations, Math. Comput. Modelling, 32 (2000), 747-763
##[30]
D. A. Opare , Congenital malaria in newborn twins, Ghana Med. J., 44 (2010), 76-78
##[31]
A. A. Orogade, C. O. Falade, H. U. Okafor, O. A. Mokuolu, A. I. Mamman, T. A. Ogbonu, O. O. Ogunkunle, K. S. Ernest, M. V. Callahan, D. H. Hamer , Clinical and laboratory features of congenital malaria in Nigeria, J. Pediatric Infect. Dis., 3 (2008), 181-187
##[32]
S. C. Redd, J. J. Wirima, R. W. Steketee, J. G. Breman, D. L. Heymann , Transplacental transmission of Plasmodium falciparum in rural Malawi, Amer. J. Tropical Medicine Hygiene, 55 (1996), 57-60
##[33]
D. J. Rogers, S. E. Randolph, R. W. Snow, S. I. Hay , Satellite imagery in the study and forecast of malaria, Nature, 415 (2002), 710-715
##[34]
S. Romand, P. Bouree, J. Gelez, B. Bader-Meunier, F. Bisaro, J. P. Dommergues , Congenital malaria. Infected twins born to an asymptomatic mother , Presse Med., 23 (1994), 797-800
##[35]
R. Ross, The prevention of malaria, John Murray, London (1911)
##[36]
R. Slinger, A. Giulivi, M. Bodie-Collins, F. Hindieh, R. S. John, G. Sher, M. Goldman, M. Ricketts, K. C. Kain , Transfusion-transmitted malaria in Canada, Canad. Med. Association J., 164 (2001), 377-379
##[37]
S. A. Sotimehin, T. I. Runsewe-Abiodun, O. T. Oladapo, O. F. Njokanma, D. M. Olanrewaju, Possible risk factors for congenital malaria at a tertiary care hospital in Sagamu , Ogun State, South-West Nigeria, J. Tropical Pediatrics, 54 (2008), 313-320
##[38]
R. W. Steketee, B. L. Nahlen, M. E. Parise, C. Menendez , The burden of malaria in pregnancy in malaria-endemic areas, Amer. J. Tropical Medicine Hygiene, 64 (2001), 28-35
##[39]
J. Tumwiine, J. Y. T. Mugisha, L. S. Luboobi, A mathematical model for the dynamic of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189 (2007), 1953-1965
##[40]
A. M. Van Eijk, J. G. Ayisi, F. O. Ter Kuile, A. O. Misore, J. A. Otieno, M. S. Kolczak, P. A. Kager, R. W. Steketee, B. L. Nahlen , Malaria and human immunodeficiency virus infection as risk factors for anemia in infants in Kisumu, western Kenya, Am. J. Trop. Med. Hyg., 67 (2002), 44-53
##[41]
, , , (World Health Organization (WHO) and WHO Global Malaria Programme.), -
##[42]
, World Health Organization, Malaria-A global crisis, Geneva (1999)
##[43]
, , , ( www.malaria.com/overview/malaria-faq.), -
##[44]
, , , (www.malaria.com/questions/malaria-contagious-spread.), -
##[45]
H. M. Yang, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector), Rev. Saude. Publica, 34 (2000), 223-231
##[46]
H. M. Yang, M. U. Ferreira, Assessing the effects of global warming and local social and economic conditions on the malaria transmission, Rev. Saude. Publica, 34 (2000), 214-222
]
Construction of multi-layered QR codes utilizing partitions of positive integers
Construction of multi-layered QR codes utilizing partitions of positive integers
en
en
Multi-layered QR (MLQR) codes are created by superimposing many black and white QR codes, all of which are assigned their white areas with the colors in RGB color space. These colors must be different enough to enable distinguishing each layer of a MLQR code. This makes a MLQR code be able to hold more data than a common QR code.
In this work, the procedures for generating and un-layering MLQR codes were proposed and the according graphical user interfaces (GUIs) were created with MATLAB. They use the property of a partition of the number 255, constructed by the geometric sequence \(\left\{2^{n-1}\right\}_{n\in\mathbb{N}}\), to compute the collection of suitable colors for assigning to black and white QR codes in the generating process. Our developed procedures can promote better intercommunication between human and computers, therefore ensure easier computer programming and being more flexible in the number of layers of created MLQR codes. We found that the developed GUIs could work accurately up to 15 layers because more QR code layers require the use of more colors, which diminish an ability to clearly distinguish the color of each QR code layer.
306
313
Passawan
Noppakaew
Sukanya
Khomkuth
Sureepat
Sriwilas
Quick response codes
preinvex function
geometric sequences
partitions of positive integers
Article.6.pdf
[
[1]
T. Dean, C. Dunn, Quick Layered Response (QLR) Codes , Informally published manuscript, Electrical Engineering, Stanford University, Stanford (2012)
##[2]
G. Jancke, High Capacity Color Barcodes (HCCB), Available Online, (2007)
##[3]
H. Kato, Mobile Multi-Color Composite: A Novel Color 2D-Barcode for True Ubiquitous Computing, Doctoral thesis, School of Computer and Information Science, Edith Cowan University (2009)
##[4]
C. Nessen, Encoding Multi-layered Data into QR Codes for Increased Capacity and Security, Research Experience for Undergraduates Summer, South Dakota School of Mines and Technology (2013)
]
Symplectic properties research for finite element methods of Hamiltonian system
Symplectic properties research for finite element methods of Hamiltonian system
en
en
In this paper, we first apply properties of the wedge product and continuous finite element methods to prove that the
linear, quadratic element
methods are symplectic algorithms to the linear
Hamiltonian systems, i.e., the symplectic condition \(dp_{j+1}\wedge dq_{j+1}=dp_{j}\wedge dq_{j}\) is preserved exactly and the linear element method is an approximately symplectic integrator to nonlinear
Hamiltonian systems, i.e., \(dp_{j+1}\wedge dq_{j+1}=dp_{j}\wedge dq_{j}+O(h^2)\), as
well as energy conservative.
314
327
Qiong
Tang
Yangfan
Liu
Yujun
Zheng
Hongping
Cao
Hamiltonian systems
continuous finite element methods
energy conservative
wedge product
symplectic algorithm
Article.7.pdf
[
[1]
S. D. Bond, B. J. Leimkuhler, Molecular dynamics and the accuracy of numerically computed averages, Acta Numer., 16 (2007), 1-65
##[2]
C. M. Chen, Finite element superconvergence construction theory, Hunan Press of Science and Technology, Changsha (2001)
##[3]
C. M. Chen, Y. Q. Huang, High accuracy theory of finite element, Hunan Press of Science and Technology, Changsha (1995)
##[4]
K. Feng, Collected Works of Feng Kang, National Defence Industry Press, Beijing (1995)
##[5]
K. Feng, M. Z. Qin, Symplectic Geometry Algorithm for Hamiltonian systems , ZheJiang Press of Science and Technology, HangZhou (2004)
##[6]
Z. Ge, J. E. Marsden, Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory, Phys. Lett. A, 133 (1988), 134-139
##[7]
O. Gonzalez, J. C. Simo, On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Comp. Meth. Appl. Mech. Engi., 134 (1996), 197-222
##[8]
E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, Berlin (2006)
##[9]
C. Kane, J. E. Marsden, M. Ortiz, Symplectic-Energy-Momentum Preserving Variational Integrators, J. Math. Phys., 40 (1999), 3353-3371
##[10]
F. M. Lasagni , Canonical Runge-Kutta methods , Z. Angew. Math. Phys., 39 (1988), 952-953
##[11]
B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge Universty Press, Cambridge (2004)
##[12]
S. Reich, Multisymplectic Runge-Kutta methods for Hamiltonian wave equation, J. Comput. Phys., 157 (2000), 473-499
##[13]
R. D. Ruth, A canonical intergration technique, IEEE Trans. Nucl. Sci., 30 (1983), 2669-2671
##[14]
J. M. Sanz-Serna, Runge-Kutta Schemes for Hamiltonian Systems, BIT, 28 (1988), 877-883
##[15]
J. M. Sanz-Serna, M. P. Calvo , Numerical Hamiltonian Problems, Chapman & Hall, London (1994)
##[16]
A. M. Stuart, A. R. Humphries , Dynamical Systems and Numerical Analysis, Cambridge university press, Cambridge (1998)
##[17]
Y. B. Suris , The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems \(x''=-\frac{\partial u}{\partial x}\), U.S.S.R. Comput. Math. and Math. Phys., 29 (1989), 138-144
##[18]
Q. Tang, C.-M. Chen, L.-H. Liu, Energy conservation and symplectic properties of continuous finite element methods for Hamiltonian systems, Appl. Math. Comput., 181 (2006), 1357-1368
]
Lyapunov functions to Caputo reaction-diffusion fractional neural networks with time-varying delays
Lyapunov functions to Caputo reaction-diffusion fractional neural networks with time-varying delays
en
en
A reaction diffusion equation with a Caputo fractional derivative in time and with time-varying
delays is considered. Stability properties of the solutions are studied via the direct Lyapunov method and arbitrary Lyapunov functions (usually quadratic Lyapunov functions are used). In this paper we give a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of reaction-diffusion fractional neural network with variable coefficients and time-varying delays. We show the quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability are obtained and we illustrate our theory on a particular nonlinear Caputo reaction-diffusion fractional neural network with time dependent delays.
328
345
R. P.
Agarwal
S.
Hristova
Donal
O'Regan
Reaction-diffusion fractional neural networks
delays
Caputo derivatives
Lyapunov functions
stability
fractional derivative of Lyapunov functions
Article.8.pdf
[
[1]
R. Agarwal, S. Hristova, D. O’Regan, Lyapunov functions and strict stability of Caputo fractional differential equations, Adv. Difference Equ., 2015 (2015), 1-20
##[2]
R. Agarwal, S. Hristova, D. O’Regan, Lyapunov functions and stability of Caputo fractional differential equations with delays, , (to be published), -
##[3]
R. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 290-318
##[4]
R. Agarwal, D. O’Regan, S. Hristova, Stability of Caputo fractional differential equations by Lyapunov functions, Appl. Math., 60 (2015), 653-676
##[5]
R. Agarwal, D. O’Regan, S. Hristova, M. Cicek, Practical stability with respect to initial time difference for Caputo fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 106-120
##[6]
H. Bao, J. H. Park, J. Cao, Synchronization of fractional-order complex-valued neural networks with time delay, Neural Netw., 81 (2016), 16-28
##[7]
L. Chen, Y. Chai, R. Wu, T. Ma, H. Zhai, Dynamic analysis of a class of fractional-order neural networks with delay, Neurocomputing, 111 (2013), 190-194
##[8]
B. Chen, J. Chen, Razumikhin-type stability theorems for functional fractional-order differential systems and applications, Appl. Math. Comput., 254 (2015), 63-69
##[9]
D. Chen, R. Zhang, X. Liu, X. Ma, Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4105-4121
##[10]
M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 650-659
##[11]
Y. Huang, H. Zhang, Z. Wang, Dynamical stability analysis of multiple equilibrium points in time-varying delayed recurrent neural networks with discontinuous activation functions, Neurocomputing, 91 (2012), 21-28
##[12]
R. Li, J. Cao, A. Alsaedi, F. Alsaadi, Stability analysis of fractional-order delayed neural networks, Nonlinear Anal. Model. Control, 22 (2017), 505-520
##[13]
Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica J. IFAC, 45 (2009), 1965-1969
##[14]
Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810-1821
##[15]
C. Li, G. Feng, Delay-interval-dependent stability of recurrent neural networks with time-varying delay, Neurocomputing, 72 (2009), 1179-1183
##[16]
J. Liang, J. Cao, Global Exponential Stability of Reaction-Diffusion Recurrent Neural Networks with Time-Varying Delays, Phys. Lett. A, 314 (2003), 434-442
##[17]
X. Lou, B. Cui, Boundedness and Exponential Stability for Nonautonomous Cellular Neural Networks with Reaction- Diffusion Terms, Chaos Solitons Fractals, 33 (2007), 653-662
##[18]
C. M. Marcus, R. M. Westervelt, Stability of analog neural networks with delay, Phys. Rev. A, 39 (1989), 347-359
##[19]
M. E. J. Newman, Communities, modules and large-scale structure in networks, Nature Phys., 8 (2012), 25-31
##[20]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)
##[21]
A. Rahimi, B. Recht, Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning, Adv. Neural Information Processing Syst., 2008 (2008), 1313-1320
##[22]
S. J. Sadati, R. Ghaderi, A. Ranjbar, Some fractional comparison results and stability theorem for fractional time delay systems, Rom. Reports Phy., 65 (2013), 94-102
##[23]
R. K. Saxena, A. M. Mathai, H. J. Haubold, Space-time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative, Axioms, 3 (2014), 320-334
##[24]
I. M. Stamova, On the Lyapunov theory for functional differential equations of fractional order, Proc. Amer. Math. Soc., 144 (2016), 1581-1593
##[25]
I. M. Stamova, S. Simeonov, Delayed ReactionDiffusion Cellular Neural Networks of Fractional Order: MittagLeffler Stability and Synchronization, J. Comput. Nonlinear Dynam., 13 (2017), 1-7
##[26]
I. Stamova, G. Stamov, Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, CRC Press, New York (2016)
##[27]
J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, M. Rief, The complex folding network of single calmodulin molecules, Science, 334 (2011), 512-516
##[28]
J. Vasundhara Devi, F. A. Mc Rae, Z. Drici, Variational Lyapunov method for fractional differential equations, Comput. Math. Appl., 64 (2012), 2982-2989
##[29]
D. Wanduku, G. S. Ladde, Global properties of a two-scale network stochastic delayed human epidemic dynamic model, Nonlinear Anal. Real World Appl., 13 (2012), 794-816
##[30]
H. Wang, Y. Yu, G. Wen, Stability analysis of fractional-order Hopfield neural networks with time delays, Neural Netw., 55 (2014), 98-109
##[31]
S. Wu, C. Li, X. Liao, S. Duan, Exponential stability of impulsive discrete systems with time delay and applications in stochastic neural networks: a Razumikhin approach, Neurocomputing, 82 (2012), 29-36
##[32]
X. Yang, Q. Song, Y. Liu, Z. Zhao, Finite-time stability analysis of fractional-order neural networks with delay, Neurocomputing, 152 (2015), 19-26
##[33]
W. Zhang, R. Wu, J. Cao, A. Alsaedi, T. Hayat, Synchronization of a class of fractional-order neural networks with multiple time delays by comparison principles, Nonlinear Anal. Model. Control, 22 (2017), 636-645
]
Some new fixed point theorems for compatible mappings in partial metric spaces
Some new fixed point theorems for compatible mappings in partial metric spaces
en
en
The aim of this paper is to prove common fixed point theorems for compatible
mappings of type (A) for three self mappings satisfying certain contractive
conditions and its topological properties in partial metric spaces.
346
356
Laila A.
Alnaser
Durdana
Lateef
Jamshaid
Ahmad
Fixed point
self mappings
compatibility of type (A)
partial metric space
Article.9.pdf
[
[1]
J. Ahmad, A. Al-Rawashdeh, A. Azam , New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 1-18
##[2]
N. Hussain, J. Ahmad, A. Azam, On Suzuki-Wardowski type fixed point theorems, J. Nonlinear Sci. Appl., 8 (2015), 1095-1111
##[3]
N. Hussain, J. Ahmad, L. Ćirić, A. Azam , Coincidence point theorems for generalized contractions with application to integral equations , Fixed Point Theory Appl., 2015 (2015), 1-13
##[4]
G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779
##[5]
G. Jungck, P. P. Murthy, Y. Cho , Compatible mappings of type (A) and common fixed points, Math. Japon., 38 (1993), 381-390
##[6]
S. U. Khan, M. Arshad, A. Hussain, M. Nazam, Two new types of fixed point theorems for F-contraction , J. Adv. Stud. Topol., 7 (2016), 251-260
##[7]
S. G. Matthews, Partial Metric Topology , in: Papers on general topology and applications, Ann. New York Acad. Sci. , 728 (1994), 183-197
##[8]
Z. Mustafa, M. Arshad, S. U. Khan, J. Ahmad, M. M. M. Jaradat , Common fixed point for multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl., 10 (2017), 2550-2564
##[9]
D. Wardowski , Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 1-6
##[10]
D. Wardowski, N. Van Dung, Fixed points of F-weak contractions on complete metric space, Demonstr. Math., 47 (2014), 146-155
]
On the inclusion graphs of \(S\)-acts
On the inclusion graphs of \(S\)-acts
en
en
In this paper, we define the inclusion graph \({\Bbb{Inc}}(A)\) of an \(S\)-act \(A\) which is a graph whose vertices are non-trivial subacts of \(A\) and two distinct vertices \(B_1,B_2\) are adjacent if \(B_1 \subset B_2\) or \(B_2 \subset B_1\). We investigate the relationship between the algebraic properties of an \(S\)-act \(A\) and the properties of the graph \(\Bbb{Inc}(A)\). Some properties of \(\Bbb{Inc}(A)\) including girth, diameter and connectivity are studied. We characterize some classes of graphs which are the inclusion graphs of \(S\)-acts. Finally, some results concerning the domination number of such graphs are given.
357
363
Abdolhossein
Delfan
Hamid
Rasouli
Abolfazl
Tehranian
\(S\)-Act
inclusion graph
diameter
girth
domination number
Article.10.pdf
[
[1]
S. Akbari, M. Habibi, A. Majidinya, R. Manaviyat, The inclusion ideal graph of rings, Comm. Algebra, 43 (2015), 2457-2465
##[2]
D. F. Anderson, A. Badawi , The total graph of a commutative ring , J. Algebra, 320 (2008), 2706-2719
##[3]
J. Bosák, The graphs of semigroups, in: Theory of Graphs and its Application, 1964 (1964), 119-125
##[4]
B. Csákány, G. Pollák, The graph of subgroups of a finite group, Czechoslovak Math. J., 19 (1969), 241-247
##[5]
A. Das, Subspace inclusion graph of a vector space, Comm. Algebra, 44 (2016), 4724-4731
##[6]
A. Delfan, H. Rasouli, A. Tehranian, Intersection graphs associated with semigroup acts , , (submitted), -
##[7]
F. R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206-214
##[8]
P. Devi, R. Rajkumar, Inclusion graph of subgroups of a group, Cornell University Library, 2016 (2016), 1-22
##[9]
A. A. Estaji, T. Haghdadi, A. A. Estaji , Zero divisor graphs for S-act, Lobachevskii J. Math., 36 (2015), 1-8
##[10]
M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter & Co., Berlin (2000)
##[11]
H. R. Maimani, M. R. Pournaki, S. Yassemi, Weakly perfect graphs arising from rings , Glasg. Math. J., 52 (2010), 417-425
##[12]
R. Nikandish, M. J. Nikmehr, The intersection graph of ideals of \(\mathbb{Z}_n\) is weakly perfect, Cornell University Library, 2013 (2013), 1-8
##[13]
H. Rasouli, A. Tehranian, Intersection graphs of S-acts , Bull. Malays. Math. Sci. Soc., 38 (2015), 1575-1587
##[14]
M. R. Sorouhesh, H. Doostie, C. M. Campbell, A sufficient condition for coinciding the Green graphs of semigroups, J. Math. Computer Sci., 17 (2017), 216-219
##[15]
D. B. West, Introduction to Graph Theory, Prentice Hall , Upper Saddle River (2001)
]
A class of shape preserving 5-point \(n\)-ary approximating schemes
A class of shape preserving 5-point \(n\)-ary approximating schemes
en
en
A new class of shape preserving relaxed 5-point \(n\)-ary approximating subdivision schemes is presented. Further, the conditions on the initial data assuring monotonicity, convexity and concavity preservation of the limit functions are derived. Furthermore, some significant properties of ternary and quaternary subdivision schemes have been elaborated such as continuity, Hölder exponent, polynomial generation, polynomial reproduction, approximation order, and support of basic limit function. Moreover the visual performance of schemes has also been demonstrated through several examples.
364
380
Robina
Bashir
Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
Ghulam
Mustafa
Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
Praveen
Agarwal
Department of Mathematics, Anand International College of Engineering, Jaipur, India
Approximating scheme
shape preserving
monotonicity
convexity
concavity
polynomial reproduction and generation
Article.11.pdf
[
[1]
U. H. Augsdöefer, N. A. Dodgson, M. A. Sabin, Variation on the four-point subdivision scheme, Comput. Aided Geom. Design, 27 (2010), 78-95
##[2]
Z. J. Cai , Convergence error estimation and some properties of four-point interpolation subdivision scheme, Comput. Aided Geom. Design, 12 (1995), 459-468
##[3]
Z. J. Cai, Convexity preservation of the interpolating four-point C2 ternary stationary subdivision scheme, Comput. Aided Geom. Design, 26 (2009), 560-565
##[4]
G. M. Chaikin, An algorithm for high speed curve generation, Comp. Grap. Image Proces, 3 (1974), 346-349
##[5]
C. Conti, K. Hormann , Polynomial reproduction for univariate subdivision scheme of any arity, Approx. Theory, 163 (2011), 413-437
##[6]
G. De Rham, Un peu de mathmatiques propos d’une courbe plane , Elemente der Math, 2 (1947), 678-689
##[7]
G. Deslauries, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., 5 (1989), 49-68
##[8]
N. Dyn, F. Kuijt, D. Levin, R. van Damme, Convexity preservation of the four-point interpolatory subdivision scheme, Comput. Aided Geom. Design, 16 (1999), 789-792
##[9]
N. Dyn, D. Levin, Subdivision scheme in the geometric modeling, Acta Numerica, 11 (2002), 73-144
##[10]
N. Dyn, D. Levin, J. A. Gregory, A 4-point interpolatory subdivision scheme for curve design , Comput. Aided Geom. Design, 4 (1987), 257-268
##[11]
A. Ghaffar, Lower and higher arity subdivision schemes and their applications, Ph.D. thesis, Department of Mathematics, Islamia university of Bahawalpur (2013)
##[12]
A. Ghaffar, G. Mustafa, K. Qin, The 4-point a-ary approximating subdivision scheme, Open J. Appl. Sci., 3 (2013), 106-111
##[13]
A. Ghaffar, G. Mustafa, K. Qin, Unification and application of 3-point approximating subdivision schemes of varying arity, Open J. Appl. Sci., 2 (2012), 48-52
##[14]
Y.-X. Hao, R.-H. Wang, C.-J. Li, Analysis of a 6-point binary subdivision scheme, Appl. Math. Comput., 218 (2011), 3209-3216
##[15]
M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, M. A. Sabin, An interpolating 4-point C2 ternary stationary subdivision scheme , Comput. Aided Geom. Design, 19 (2002), 1-18
##[16]
M. Z. Hussan, S. Bashir, Shape preserving surface data visualization using rational bi-cubic functions, J. Numer. Math., 19 (2011), 267-307
##[17]
M. Z. Hussan, M. Sarfraz, T. S. Shaikh, Monotone data visualization using rational functions, World Appl. Sci. J., 16 (2012), 1496-1508
##[18]
J. M. Lane, R. F. Riesenfeld, A theoretical development for computer generation and display of piecewise polynomial surfaces, IEEE Trans. Patt. Anal. Mach. Intel., 2 (1980), 35-46
##[19]
A. L. Mehaute, F. I. Uteras, Convexity-preserving interpolatory subdivision, Comput. Aided Geom. Design, 11 (1994), 17-37
##[20]
G. Mustafa, J. Deng, P. Ashraf, N. A. Rehman , The mask of odd points n-ary interpolating subdivision scheme , J. Appl. Math., 2012 (2012), 1-20
##[21]
G. Mustafa, L. Hao, J. Zhang, J. Deng , l1-regression based subdivision schemes for noisy data, Computer-Aided Design, 58 (2015), 189-99
##[22]
G. Mustafa, F. Khan, A new 4-point quaternary approximating subdivision scheme, Abstr. Appl. Anal., 2009 (2009), 1-14
##[23]
G. Mustafa, F. Khan, A. Ghaffar , The m-point approximating subdivision scheme, Lobachevskii J. Math., 30 (2009), 138-145
##[24]
G. Mustafa, N. A. Rehman , The mask of (2b + 4)-point n-ary subdivision scheme, Computing, 90 (2010), 1-14
##[25]
F. Pitolli, Ternary shape-preserving subdivision schemes , Math. Comput. Simulation, 106 (2014), 185-194
##[26]
O. Rioul, Simple regularity for subdivision schemes, SIAM J. Math. Anal., 23 (1992), 1544-1576
##[27]
S. Samreen, Shape preserving data visualization with rational quatric splines, M.Phil. thesis, Department of Mathematics, University of the Punjab (2006)
##[28]
S. S. Siddiqi, N. Ahmad , A new five-point approximating subdivision scheme, Int. J. Comput. Math., 85 (2008), 65-72
##[29]
S. S. Siddiqi, M. Younis, The m-point quaternary approximating subdivision schemes, Amer. J. Comput. Math., 3 (2013), 6-10
##[30]
S. S. Siddiqi , M. Younis, Construction of ternary approximating subdivision schemes, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 76 (2014), 71-78
##[31]
J. Tan, X. Zhuang, L. Zhang, A new four-point shape-preserving C3 subdivision scheme, Comput. Aided Geom. Design, 31 (2014), 57-62
]
On the reversible geodesics of a Finsler space with special \((\alpha,\beta)\)-metric
On the reversible geodesics of a Finsler space with special \((\alpha,\beta)\)-metric
en
en
This paper deals with the existence of reversible geodesics on a Finsler space with some \((\alpha,\beta)\)-metrics. The conditions for a Finsler space \((M,F)\) to be with reversible geodesics are obtained. We study some geometrical properties of \(F\) with reversible geodesics and prove that the Finsler metric \(F\) induces a weighted quasi-metric \(d_F\) on \(M\).
381
387
Mohammad
Rafee
Department of Mathematics, I. K. Gujral Punjab Technical University, Kapurthala, India
Avdhesh
Kumar
Department of Mathematics, I. K. Gujral Punjab Technical University, Kapurthala, India
G. C.
Chaubey
Department of Mathematics, T. D. P. G. College, V. B. S. Purvanchal University, Jaunpur, India
Reversible geodesics
\((\alpha,\beta)\)-metric
distance
quasi-metric
weighted quasi-metric
Article.12.pdf
[
[1]
M. Crampin, Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67 (2005), 401-409
##[2]
G. Hamel, Über die Geomtrieen in denen die Geraden die Kürzeinten sind, Math. Ann., 57 (1903), 231-264
##[3]
H. P. A. Kunzi, V. Vajner, Weighted quasi-metrics, Annals New York Acad. Sci., 728 (1994), 64-77
##[4]
I. Masca, S. V. Sabau, H. Shimada, Reversible geodesics for (\(\alpha,\beta\))-metrics , Intl. J. Math., 21 (2010), 1071-1094
##[5]
I. Masca, S. V. Sabau, H. Shimada, Two dimensional (\(\alpha,\beta\))-metrics with reversible geodesics, Publ. Math. Debrecen, 82 (2013), 485-501
##[6]
S. V. Sabau, H. Shimada, Finsler manifolds with reversible geodesics, Rev. Roumaine Math. Pures Appl., 57 (2012), 91-103
##[7]
Z. Shen, Differential geometry of sprays Finsler spaces, Kluwer Academic Publishers, Dordrecht (2001)
##[8]
Z. Shen, Lectures in Finsler geometry, World Scientific, USA (2001)
##[9]
Z. Shen, On projectively flat (\(\alpha,\beta\))-metrics, Canad. Math. Bull., 52 (2009), 132-144
##[10]
Z. Shen, G. C. Yiedrin, On a class of projectively flat metrics with constant flag curvature , Canad. J. Math., 60 (2008), 443-456
##[11]
P. Vitolo, A representation theorem for quasi-metric space, Topology Appl., 65 (1995), 101-104
]