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Abstract

In this paper, we first construct a complete metric space Λ consisting of a class of strong vector equilibrium problems
(for short, (SVEP)) satisfying some conditions. Under the abstract framework, we introduce a notion of well-posedness for the
(SVEP), which unifies its Hadamard and Tikhonov well-posedness. Furthermore, we prove that there exists a dense Gδ set Q of
Λ such that each (SVEP) in Q is well-posed, that is, the majority (in Baire category sense) of (SVEP) in Λ is well-posed. Finally,
metric characterizations on the well-posedness for the (SVEP) are given. c©2017 all rights reserved.
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1. Introduction

The concept of Hadamard well-posedness is inspired by the classical idea of Hadamard, which goes
back to the beginning of the last century. It requires existence and uniqueness of the optimal solution
together with continuous dependence on the problem data. For this reason, Hadamard well-posedness
is often called also stability. In 1966, Tikhonov introduced another concept of well-posedness imposing
convergence of each minimizing sequence to the uniqueness minimum solution. Its motivation from
the approximate solution of scalar optimization problems is clear. Just after the Tikhonov’s paper [26]
dealing with unconstrained scalar optimization problems, Levitin and Polyak [17] extended the notion to
constrained scalar optimization problems. Various extensions of Hadamard and Tikhonov well-posedness
of scalar optimization problems have been developed and well studied (see [8]).

It is worth noting that in the last decades there has been an increasing interest in the study of vector
optimization problems. With the development of theory of vector optimization problems, well-posedness
of scalar optimization problems is gradually extended to vector optimization problems (see [7, 12–14, 19–
23]). Due to the optimal solution and the optimal value of vector optimization problems usually are
not unique, so the well-posedness of vector optimization problems exhibits diversity and complexity in

∗Corresponding author
Email addresses: yylong1980@163.com (Yang Yanlong), iamdengxicai@163.com (Deng Xicai), shwxiang@vip.163.com (Xiang

Shuwen), jws0505@163.com (Jia Wensheng)

doi:10.22436/jnsa.010.01.08

Received 2016-09-14

http://dx.doi.org/10.22436/jnsa.010.01.08


Y. Yang, X. Deng, S. Xiang, W. Jia, J. Nonlinear Sci. Appl., 10 (2017), 84–91 85

comparison with scalar optimization problems. However, we know that the uniqueness of the solution of
optimization problems plays an irreplaceable role to the approximate solution of optimization problems.
In many cases, the solution of optimization problems is not unique, so the study of the uniqueness of
solution of optimization problems has become very difficult. For this reason, some scholars turned to seek
generic uniqueness of solutions of optimization problems and get a series of research results. Kenderov
[15] investigated generic uniqueness of solutions scalar optimization problems and get an important
result that most of scalar optimization problems has a unique solution. Beer [3] generalized the result
of [15] to a kind of constrained optimization problems with Ĉech complete metric space. Kenderov and
Ribarska [16] proved that the most of two-person continues zero sum games have a unique equilibrium
point and the majority of minimax problems with continuous function have a unique solution. Tan
et al. [25] investigated generic uniqueness of saddle point problems with discontinuous binary payoff
function. Zaslavski [31, 32] studied generic uniqueness of saddle point, scalar optimization problems and
equilibrium problems in metric space. Yu et al. [28] proved that a class of equilibrium problems has a
unique equilibrium point.

On the other hand, vector equilibrium problems (for short, (VEP)) has also attracted much attention
in the recent years especially due to its applications within the fields of vector optimization problems
and vector variational inequalities (see [5, 11]). Various types of well-posedness for (VEP) have been
intensively studied in the literature, such as [4, 6, 18, 33]. By using a scalarization method, Li et al. [18]
introduced two types of Levitin-Polyak well-posedness for (VEP) with variable domination structures
and gave sufficient conditions and metric characterizations of Levitin-Polyak well-posedness for (VEP).
Using the bounded rationality model (see, [2, 29, 30]), Deng and Xiang [6] introduced and studied well-
posedness in connection with generalized vector equilibrium problems, which unifies its Hadamard and
Levitin-Polyak well-posedness. Zhang et al. [33] extended the result of [6] to symmetric vector qusi-
equilibrium problems.

The main purpose of this paper is to present some generic well-posedness results for a class of (SVEP).
We first introduce and study the well-posedness for a class of (SVEP) which unifies Hadamard and
Tikhonov well-posedness by using the bounded rationality model and the scalarization method. Further-
more, we prove that the majority (in Baire category sense) of the kind of (SVEP) is well-posed by using the
result of generic uniqueness of nonlinear problems. Finally, metric characterizations on well-posedness
for the kind of (SVEP) are shown.

2. Preliminaries

Let X be a metric space, and Y be a Hausdorff topological vector space. Assume that C denotes a
nonempty, closed, convex, and pointed cone in Y with apex at the origin and int(C) 6= ∅, where int(C)
denotes the topological interior of C.

Let f : X× X → Y be a vector-valued mapping and consider the following strong vector equilibrium
problem, which is called P(X, f): there exists an element x ∈ X such that

f(x,y) ∈ −C, ∀y ∈ X.

First, we introduce the notion of the approximating solution sequence for P(X, f).

Definition 2.1. A sequence {xn} ⊂ X is called the approximating solution sequence for P(X, f), if there
exists {εn} ⊂ R+ with εn → 0 such that

f(xn,y) − εne ∈ −C, ∀y ∈ X.

Next, let us recall some useful definitions and lemmas.

Definition 2.2. Let f : X×X→ Y be a vector-valued mapping. f is said to be strictly pseudomonotone on
X×X iff for all x,y ∈ X with x 6= y,

f(x,y) + f(y, x) /∈ −int(C).
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Definition 2.3 ([1]). Let F : X⇒ Y be a set-valued mapping.

1. F is said to be upper semicontinuous at x ∈ X if for any open set U ⊃ F(x), there is an open
neighborhood O(x) of x such that U ⊃ F(x ′) for each x ′ ∈ O(x);

2. F is said to be lower semicontinuous at x if for any open set U∩ F(x) 6= ∅, there is an open neighbor-
hood O(x) of x such that U∩ F(x ′) 6= ∅ for each x ′ ∈ O(x);

3. F is said to be a usco mapping if F is upper semicontinuous and F(x) is nonempty compact for each
x ∈ X;

4. F is said to be closed if Graph(F) is closed, where Graph(F) = {(x,y) ∈ X× Y : x ∈ X,y ∈ F(x)} is the
graph of F.

Lemma 2.4 ([5, 10, 20]). For any fixed e ∈ int(C), the nonlinear scalarization function is defined by

ξe(z) := inf{r ∈ R : z ∈ re−C}, ∀z ∈ Y.

the nonlinear scalarization function ξe has the following properties

(1) ξe(z) < r ⇔ z ∈ re− int(C),
(2) ξe(z) 6 r ⇔ z ∈ re−C,
(3) ξe(z) > r ⇔ z /∈ re− int(C),
(4) ξe(z) > r ⇔ z /∈ re−C.

The following Lemma 2.5 is due to Theorem 2 of Fort [9], also see Lemma 2.1 of [27].

Lemma 2.5. Let Y be a complete metric space, X be a metric space and F : Y → 2X be a usco mapping. Then there
exists a dense Gδ set Q of Y such that F is continuous at every y ∈ Q.

3. A unified approach to notions of well-posedness

Let X be a compact metric space supplied with a distance d, (Y, ‖ · ‖) be a Banach space and C be a
nonempty, closed, convex, and pointed cone in Y with apex at the origin and int(C) 6= ∅. Let Λ be the
collection of P(X, f) such that Λ = {f : X× X → Y|f is continuous and strictly pseudomonotone on X× X,
for all x ∈ X, f(x, x) = 0 and there exists x ∈ X such that f(x,y) ∈ −C, ∀y ∈ X}.

For any f1, f2 ∈ Λ, we define

ρ(f1, f2) := sup
(x,y)∈X×X

‖f1(x,y) − f2(x,y)‖.

It is easy to check that (Λ, ρ) is a complete metric space.
Given the bounded rationality model M = {Λ,X, F,Φ} for P(X, f): Λ and X are two complete metric

spaces; the feasible set, the solution set and the rationality function of P(X, f) are defined as

F(f) := X,
E(f) := {x ∈ X : f(x,y) ∈ −C,∀y ∈ X},

Φ(f, x) := sup
y∈X

ξe ◦ f(x,y).

Lemma 3.1.

1. ∀f ∈ Λ,E(f) 6= ∅ and ∀x ∈ X,Φ(f, x) > 0.
2. ∀f ∈ Λ, Φ(f, x) 6 ε if and only if f(x,y) − εe ∈ −C,∀y ∈ X.
3. x ∈ E(f) if and only if Φ(f, x) = 0.
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Proof.

1. By the definition of Λ, for all f ∈ Λ,E(f) 6= ∅. If x ∈ F(f), then we have

Φ(f, x) > ξe ◦ f(x, x) = 0.

2. If f(x,y) − εe ∈ −C, for all y ∈ X, by Lemma 2.4 (2), then we have ξe ◦ f(x,y) 6 ε, for all y ∈ X. So,
Φ(f, x) = sup

y∈X
ξe ◦ f(x,y) 6 ε.

Conversely, if Φ(f, x) = sup
y∈X

ξe ◦ f(x,y) 6 ε, then ξe ◦ f(x,y) 6 ε, for all y ∈ X. By Lemma 2.4 (2),

we get f(x,y) − εe ∈ −C, for all y ∈ X.
3. Using the above results, we can get it.

By Definition 2.1 and Lemma 3.1, for all f ∈ Λ and εn > 0 with εn → 0, solution set and ε-solution
set for P(f, x) is defined as

E(f) = {x ∈ X : Φ(f, x) = 0}, E(f, ε) = {x ∈ X : Φ(f, x) 6 ε}.

Thus, Tikhonov and Hadamard well-posedness for P(X, f) is defined as follows.

Definition 3.2.

1. P(X, f) is said to be Tikhonov well-posed (in short T-wp) iff E(f) = {x} (a singleton) and ∀xn ∈
E(f, εn),∀εn > 0 with εn → 0 implies that {xn} converges to x.

2. P(X, f) is said to be Hadamard well-posed (in short H-wp) iff E(f) = {x} (a singleton) and ∀fn ∈
Λ, fn → f,∀xn ∈ E(fn) implies that {xn} converges to x.

Finally, we establish a well-posedness concept for P(X, f), which unifies its Hadamard and Tikhonov
well-posedness.

Definition 3.3. P(X, f) is said to be well-posed (in short wp) iff E(f) = {x} (a singleton), ∀fn ∈ Λ, fn →
f, ∀xn ∈ E(fn, εn), ∀εn > 0 with εn → 0 implies that {xn} converges to x.

Lemma 3.4.

1. If P(X, f) is wp, then it must be T-wp.
2. If P(X, f) is wp, then it must be H-wp.

Proof.

1. For all xn ∈ E(f, εn), for any εn > 0 with εn → 0, we define fn = f,∀n ∈ N, then fn → f and
xn ∈ E(fn, εn). Since P(X, f) is wp, then there must have xn → x ∈ E(f). Thus, P(X, f) must be
T-wp.

2. For all fn ∈ Λ, fn → f, for any xn ∈ E(fn), we define εn = 0,∀n ∈ N, then xn ∈ E(fn, εn). Since
P(X, f) is wp, then there must have xn → x ∈ E(f). Thus, P(X, f) must be H-wp.

4. Generic well-posedness of (SVEP)

In order to show sufficient conditions of generic well-posedness for P(X, f), we first give the following
lemmas.

Lemma 4.1. Φ is lower semicontinuous on Λ×X.
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Proof. It is only needed to show that ∀ε > 0,∀fn ∈ Λ, fn → f ∈ Λ,∀xn ∈ X, xn → x ∈ X, there exists
n0 ∈ N such that for all n > n0,

Φ(fn, xn) > Φ(f, x) − ε. (4.1)

By definition of the least upper bound, there exists y0 ∈ X such that

ξe ◦ f(x,y0) > Φ(f, x) −
ε

2
. (4.2)

Since X is compact, there exists yn ∈ X such that yn → y0. Since fn → f and f is continuous on X× X,
then we have

‖fn(xn,yn) − f(x,y0)‖ 6 ‖fn(xn,yn) − f(xn, ,yn)‖+ ‖f(xn,yn) − f(x,y0)‖ → 0. (4.3)

By continuity of ξe and (4.3), we have

ξe ◦ fn(xn,yn)→ ξe ◦ f(x,y0). (4.4)

By (4.4), there exists n1 ∈ N such that for any n > n1 > n0,

ξe ◦ fn(xn,yn) > ξe ◦ f(x,y0) −
ε

2
. (4.5)

From (4.2) and (4.5), for any n > n1 > n0, we get (4.1), that is,

Φ(fn, xn) > ξe ◦ fn(xn,yn) > ξe ◦ f(x,y0) −
ε

2
> Φ(f, x) − ε.

Lemma 4.2. E : Λ→ 2X is a usco mapping.

Proof. Since X is compact, by Lemma 4.1, we have {x ∈ X : Φ(f, x) 6 0} is closed and hence E(f) is compact.
Next, we show that E is upper semicontinuous at f. Suppose to the contrary that there is an open

set O of X with O ⊃ E(f) such that there are a sequence {fn} with fn → f and a sequence {xn} with
xn ∈ E(fn), but xn /∈ O. Note that xn ∈ E(fn), we have xn ∈ X. Since X is compact, there is a subsequence
{xnk} ⊂ {xn} such that xnk → x ∈ X. Note that xnk ∈ E(xnk) and thus Φ(fnk , xnk) = 0. By Lemma 4.1, we
have

0 6 Φ(f, x) 6 lim infΦ(fnk , xnk) = 0.

Hence x ∈ E(f) ⊂ O, which is a contradiction with xnk → x and O is open but xnk /∈ O for all nk ∈ N.
This shows that E : Λ→ 2X is upper semicontinuous.

Referring to [24], it is easy to check the following.

Lemma 4.3. There exists a dense Gδ set Q of Λ such that E(f) is a singleton for each f ∈ Q.

Theorem 4.4. There exists a dense Gδ set Q of Λ such that, for any f ∈ Q, P(X, f) is wp.

Proof. For all fn ∈ Λ, fn → f, and any xn ∈ E(fn, εn), ∀εn > 0 with εn → 0, then we have xn ∈ X and
Φ(fn, xn) 6 εn. Since X is compact, then there exists a subsequence {xnk} ⊂ {xn} such that xnk → x ∈ X.
Secondly, by Φ(fn, xn) 6 εn and Lemma 4.1, we have

0 6 Φ(f, x) 6 lim inf
nk→∞ Φ(fnk , xnk) 6 lim inf

nk→∞ εnk = 0,

which implies that Φ(f, x) = 0. By Lemma 4.3, there exists a dense Gδ set Q of Λ such that, for any f ∈ Q,
E(f) is a singleton. Thus, there exists a dense Gδ set Q of Λ such that, for any f ∈ Q, P(X, f) is wp.

Finally, by Lemma 3.4, and Theorem 4.4, it is easy to check the following.

Corollary 4.5. There exists a dense Gδ set Q of Λ such that, for any f ∈ Q, P(X, f) is H-wp.

Corollary 4.6. There exists a dense Gδ set Q of Λ such that, for any f ∈ Q, P(X, f) is T-wp.
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5. Metric characterizations of well-posedness for (SVEP)

In order to give metric characterization of well-posedness of P(X, f), we introduce the following nota-
tion.

Let f ∈ Λ be given sequence. The approximating solution set of P(X, f) is defined for all δ > 0 and
ε > 0, by

S(δ, ε) :=
⋃

f ′∈B(f,δ)∩Λ

E(f ′, ε) =
⋃

f ′∈B(f,δ)∩Λ

{x ∈ X : Φ(f ′, x) 6 ε}. (5.1)

where, B(f, δ) denotes the ball centered at f with radius δ.
Clearly, we have, for all f ∈ Λ,
(1) S(0, 0) = E(f);
(2) ∀δ > 0 and ε > 0, E(f) ⊆ S(δ, ε);
(3) if 0 6 δ2 6 δ1 and 0 6 ε2 6 ε1, then S(δ2, ε2) ⊆ S(δ1, ε1).

Lemma 5.1. For all f ∈ Λ,E(f) =
⋂

δ,ε>0
cl(S(δ, ε)), where cl(S(δ, ε)) denotes closure of S(δ, ε).

Proof. Clearly, E(f) ⊆
⋂

δ,ε>0
cl(S(δ, ε)). Thus, we only need to show

⋂
δ,ε>0

cl(S(δ, ε)) ⊆ E(f). Indeed, if

x ∈
⋂

δ,ε>0
cl(S(δ, ε)), then ∀δ > 0 and ε > 0, x ∈ cl(S(δ, ε)). Thus, there exists a sequence {xn} such that

xn ∈ S(δ, ε) and xn → x. So, for each n ∈ N, we have xn ∈ S( 1
n , 1
n) and, so there exists fn ∈ B(f, 1

n) such
that xn ∈ X and Φ(fn, xn) 6 1

n . Since X is compact, there exists {xnk} ⊂ {xn} such that xnk → x ∈ X. Since
Φ(f, x) > 0 and Φ is lower semicontinuous at (f, x), then

0 6 Φ(f, x) 6 lim inf
nk→∞ Φ(fnk , xnk) 6 lim

nk→∞ 1
nk

= 0.

It shows that x ∈ E(f) and this implies that
⋂

δ,ε>0
cl(S(δ, ε)) ⊆ E(f). Therefore, E(f) =

⋂
δ,ε>0

cl(S(δ, ε)).

Theorem 5.2. P(X, f) is wp iff

diam(cl(S(δ, ε)))→ 0 as (δ, ε)→ (0, 0), (5.2)

where, diam(cl(S(δ, ε))) denotes the diameter of cl(S(δ, ε)) defined by

diam(cl(S(δ, ε))) := sup{d(x1, x2) : x1, x2 ∈ cl(S(δ, ε))}.

Proof. By way of contradiction, if (5.2) does not hold, then there exists a real number a > 0 and δn, εn > 0
with (δn, εn) → (0, 0) such that diam(cl(S(δn, εn))) > a. Hence, there exist two sequences {un}, {vn} ⊂
S(δn, εn) such that d(un, vn) > a

2 . Since P(X, f) is wp, then we have E(f) = {x} (a singleton), and
un → x, vn → x. This contradicts d(un, vn) > a

2 .
Conversely, ∀xn ∈ S(δn, εn), δn, εn > 0 with (δn, εn) → (0, 0). Without loss of generality, suppose

that 0 6 δn+1 6 δn and 0 6 εn+1 6 εn. Since X is complete, cl(S(δn, εn)) ⊇ cl(S(δn+1, εn+1)), and
diam(cl(S(δn, εn)))→ 0 (n→∞), there exists a unique x ∈ X such that

+∞⋂
n=1

cl(S(δn, εn)) = {x}.

By Lemma 5.1, we have

E(f) =

+∞⋂
n=1

cl(S(δn, εn)) = {x}.

It shows that P(X, f) is wp.



Y. Yang, X. Deng, S. Xiang, W. Jia, J. Nonlinear Sci. Appl., 10 (2017), 84–91 90

In (5.1), let δ = 0, then the approximating solution set of P(X, f) is defined for any ε > 0, by

E(f, ε) := {x ∈ X : Φ(f, x) 6 ε}.

Corollary 5.3. P(X, f) is T-wp if and only if diam(E(f, ε))→ 0 as ε→ 0.

Proof. For all ε > 0, for any wn ∈ E(f, ε) and wn → w, then we have wn ∈ X and Φ(f,wn) 6 ε. Since X
is compact, then we have w ∈ X. By Φ(f,wn) 6 ε and Φ is lower semicontinuous on Λ×X, we have

Φ(f,w) 6 lim inf
n→∞ Φ(f,wn) 6 ε.

It implies that E(f, ε) is closed. Thus, by Theorem 5.2, the above result holds.
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