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Abstract
In this manuscript we define the right fractional derivative and its corresponding right fractional integral for the newly

suggested nonlocal fractional derivative with Mittag-Leffler kernel. Then, we obtain the related integration by parts formula.
We use the Q-operator to confirm our results. The related Euler-Lagrange equations are reported and one illustrative example
is discussed. c©2017 All rights reserved.
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1. Introduction and preliminaries

Fractional calculus is developing faster during the last few years and many phenomena possessing the
power law effect were described accurately with fractional models (see for example Refs. [7, 14, 17, 18, 20,
21, 23, 24, 26, 27] and the references therein). Many excellent results of the fractional models were reported
in various fields of science and engineering. One of the specificity of the fractional calculus is that we have
many fractional derivatives which gives the researcher the opportunity to choose the specific fractional
derivative which corresponds better to a given real world problem. The description of phenomena with
memory effect is still a big challenge for the researchers, therefore new tools and methods should be
created to be able to get better description of the real world phenomena and the existing models. In this
respect it seems that there is a need of new fractional derivatives with nonsingular kernel. One of the
best candidates among the existing kernels is the one based on Mittag-Leffler (ML) functions [9]. Based
on this, very recently a new fractional derivative [9] was constructed and applied to several real world
problems [8, 10]. Some results on the discrete version of this new fractional derivative can be seen in [6].
For the first nonlocal fractional derivatives with nonsingular exponential kernel we refer to [12, 13, 19, 25]
and the references therein and for other local approaches of the fractional derivatives we refer to the
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recent manuscripts [3, 15]. In this paper we would like to present several important properties of the
new derivative introduced in [9] in order to see the advantages of it as well as in order to start to apply
it in fractional variational principles and optimal control problems. Having above mentioned things in
mind we present in the second section the fundamental integration by parts formula. Integration by
parts is of great importance in fractional calculus [17] and discrete fractional calculus [1, 2, 4, 5]. In the
third section we developed the corresponding fractional Euler-Lagrange equations [11] and we give an
illustrative example of it.

From the classical fractional calculus, we recall [17, 23, 24]

• The left Riemann-Liouville fractional integral of order α > 0 starting from a has the following form

(aI
αf)(t) =

1
Γ(α)

∫t
a

(t− s)α−1f(s)ds.

• The right Riemann-Liouville fractional integral of order α > 0 ending at b > a is defined by

(Iαbf)(t) =
1
Γ(α)

∫b
t

(s− t)α−1f(s)ds.

• The left Riemann-Liouville fractional derivative of order 0 < α < 1 starting at a has the form

(aD
αf)(t) =

d

dt
(aI

1−αf)(t).

• The right Riemann-Liouville fractional derivative of order 0 < α < 1 ending at b becomes

(Dαbf)(t) =
−d

dt
(I1−αb f)(t).

2. The right fractional derivative and integration by parts formula

If f is defined on an interval [a,b], then the action of theQ-operator is defined as (Qf)(t) = f(a+b− t).

Definition 2.1 ([9]). Let f ∈ H1(a,b), a < b, and α ∈ [0, 1], then the definition of the new (left Caputo)
fractional derivative with Mittag-Leffler nonsingular kernel becomes:

(ABCa Dαf)(t) =
B(α)

1 −α

∫t
a

f′(x)Eα[−α
(t− x)α

1 −α
]dx

and in the left Riemann-Liouville sense has the following form:

(ABRa Dαf)(t) =
B(α)

1 −α

d

dt

∫t
a

f(x)Eα[−α
(t− x)α

1 −α
]dx,

where B(0) = B(1) = 1. The associated fractional integral is

(ABa Iαf)(t) =
1 −α

B(α)
f(t) +

α

B(α)
(aI

αf)(t). (2.1)

Let us denote the new right Riemann-Liouville fractional derivative that we wish to propose by ABRDαb
and its corresponding integral by ABIαb . From classical fractional calculus it is known that (aIαQf)(t) =
Q(Iαbf)(t) and (aD

αQf)(t) = Q(Dαbf)(t). We wish this relation to be satisfied for the new left and right
fractional derivatives and integrals.

(ABRa DαQf)(t) =
B(α)

1 −α

d

dt

∫t
a

f(a+ b− x)Eα[−α
(t− x)α

1 −α
]dx

=
B(α)

1 −α

d

dt

∫b
a+b−t

f(u)Eα[−α
(u− (a+ b− t))α

1 −α
]dx,

(2.2)

where the change of variable u = a+b− x is used. Based on the relation (2.2) we formulate the definition
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for the new right fractional derivative.

Definition 2.2. The right fractional new derivative with ML kernel of order α ∈ [0, 1] is defined by

(ABRDαbf)(t) = −
B(α)

1 −α

d

dt

∫b
t

f(x)Eα[−α
(x− t)α

1 −α
]dx.

On the other hand,

(ABa IαQf)(t) =
1 −α

B(α)
f(a+ b− t) +

α

B(α)
(aI

αQf)(t)

=
1 −α

B(α)
f(a+ b− t) +

α

B(α)
Q(Iαbf)(t) = Q[

1 −α

B(α)
f(t) +

α

B(α)
(Iαbf)(t)].

(2.3)

Moreover, we solve the equation (ABDαbf)(t) = u(t). Indeed,

(ABDαbf)(t) = (ABDαbQQf)(t) = (QAB aD
αQf)(t) = u(t),

or
(ABa DαQf)(t) = Qu(t),

and hence,

Qf(t) =
1 −α

B(α)
Qu(t) +

α

B(α)
aI
αQu(t) =

1 −α

B(α)
Qu(t) +

α

B(α)
QIαbu(t).

Applying Q to both sides above, we have

f(t) =
1 −α

B(α)
u(t) +

α

B(α)
Iαbu(t). (2.4)

Now, relations (2.3) and (2.4) suggest the following definition for the new right fractional integral.

Definition 2.3. The right fractional new integral with ML kernel of order α ∈ [0, 1] is defined by

(ABIαbf)(t) =
1 −α

B(α)
f(t) +

α

B(α)
Iαbf(t).

Before we present an integration by part formula for the new proposed fractional derivatives and
integrals, we introduce the following function spaces: for p > 1 and α > 0, we define

(ABa Iα(Lp) = {f : f =ABa Iαϕ,ϕ ∈ Lp(a,b)}

and
(ABIαb(Lp) = {f : f =AB Iαbφ, φ ∈ Lp(a,b)}.

In [9] it was shown that the left fractional operator ABRa Dα and its associate fractional integral ABa Iα

satisfy (ABRa Dα ABa Iαf)(t) = f(t) and above we have shown that (ABRDαb
AB)Iαbf)(t) = f(t). On the other

hand we next prove that (ABa Iα ABRa Dαf)(t) = f(t) and (ABIαb
ABRDαbf)(t) = f(t) and hence the function

spaces (ABa Iα(Lp) and (ABIαb(Lp) are nonempty.

Theorem 2.4. The functions (ABRa Dαf)(t) and (ABRDαbf)(t) satisfy the equations

(ABa Iαg)(t) = f(t), (ABIαbg)(t) = f(t),

respectively.

Proof. We just prove the left case. The right case can be proved by means of the Q-operator. From the
definition, the first equation is equivalent to
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1 −α

B(α)
g(t) +

α

B(α)
(aI

αg)(t) = f(t).

Apply the Laplace transform to see that

1 −α

B(α)
G(s) +

α

B(α)
s−αG(s) = F(s).

From which it follows that

G(s) =
B(α)

1 −α

F(s)sα

sα + α
1−α

.

Finally, the Laplace inverse will lead to that g(t) = (ABRa Dαf)(t).

Theorem 2.5 (Integration by parts). Let α > 0, p > 1, q > 1, and 1
p + 1

q 6 1 +α (p 6= 1 and q 6= 1 in the case
1
p + 1

q = 1 +α ). Then

• If ϕ(x) ∈ Lp(a,b) and ψ(x) ∈ Lq(a,b), then∫b
a

ϕ(x)(ABa Iαψ)(x)dx =
1 −α

B(α)

∫b
a

ψ(x)ϕ(x)dx+
α

B(α)

∫b
a

(Iαbϕ)(x)ψ(x)dx

=

∫b
a

ψ(x)(ABIαbϕ)(x)dx

(2.5)

and similarly,∫b
a
ϕ(x)(ABIαbψ)(x)dx =

1 −α

B(α)

∫b
a
ψ(x)ϕ(x)dx+

α

B(α)

∫b
a
(aI

αϕ)(x)ψ(x)dx =

∫b
a
ψ(x)(ABa Iαϕ)(x)dx.

• If f(x) ∈AB Iαb(Lp) and g(x) ∈ AB
a Iα(Lq), then∫b

a

f(x)(ABRa Dαg)(x)dx =

∫b
a

(ABRDαbf)(x)g(x)dx.

Proof.

• From the definition and the integration by parts for (classical) Riemann-Liouville fractional integrals
we have∫b

a

ϕ(x)(ABa Iαψ)(x)dx =

∫b
a

ϕ(x)[
1 −α

B(α)
ψ(x) +

α

B(α)
aI
αψ(x)]dx

=
1 −α

B(α)

∫b
a

ϕ(x)ψ(x)dx+
α

B(α)

∫b
a

ψ(x)Iαbϕ(x)dx

=

∫b
a

ψ(x)[
1 −α

B(α)
ϕ(x) +

α

B(α)
Iαbϕ(x)]dx =

∫b
a

ψ(x)(ABIαbϕ(x))dx.

The other case follows similarly by Definition 2.3 and the integration by parts for (classical) Riemann-
Liouville fractional integrals.

• From definition and the first part we have∫b
a

f(x)(ABRa Dαg)(x)dx =

∫b
a

(ABIαbφ)(x).(
ABR
a Dα ◦ ABRa Iαϕ)(x)dx
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=

∫b
a

(ABIαbφ)(x).ϕ(x)dx

=
1 −α

B(α)

∫b
a

φ(x)ϕ(x)dx+
α

B(α)

∫b
a

φ(x)(aI
αϕ)(x)dx

=
1 −α

B(α)

∫b
a

(ABRDαbf)(x)(
ABR
a Dαg)dx

+
α

B(α)

∫b
a

(ABRDαbf)(x)[
B(α)

α
g(x) −

1 −α

α
(ABRa Dαg)]dx

=

∫b
a

(ABRDαbf)(x)g(x)dx.

In the proof, the identity (aI
αϕ)(x) =

B(α)
α (ABa Iαϕ)(x) − 1−α

α ϕ(x) deriven from (2.1) has used.

Example 2.6. This example is a numerical application of Theorem 2.5.

• To verify (2.5), let ψ(x) = x, ϕ(x) = 1 − x, α = 1
2 , [a,b] = [0, 1], and B(α) = 1. Then,

AB
0 I1/2x =

x

2
+

1
2
Γ(2)x3/2

Γ(5/2)
=
x

2
+

2x3/2

3
√
π

,

and
ABI

1/2
1 (1 − x) =

1 − x

2
+

2(1 − x)3/2

3
√
π

.

Hence, the left hand side of (2.5) results in∫b
a

ϕ(x)(AB aI
αψ)(x)dx =

∫ 1

0
(1 − x) AB 0I

1/2x =

∫ 1

0
(1 − x)[

x

2
+

2x3/2

3
√
π
]dx =

1
12

+
8

105
√
π

,

and ∫b
a

ψ(x)(ABIαbϕ(x)dx =

∫ 1

0
x(ABI

1/2
1 (1 − x)dx =

∫ 1

0
x[

1 − x

2
+

2(1 − x)3/2

3
√
π

]dx =
1
12

+
8

105
√
π

.

• To verify the second part of Theorem 2.5, let f(x) = 1−x
2 +

2(1−x)3/2

3
√
π

and g(x) = x
2 + 2x3/2

3
√
π

with α = 1
2 ,

[a,b] = [0, 1], and B(α) = 1. Then,∫b
a

f(x)(ABRa Dαg)(x)dx =

∫ 1

0
[
1 − x

2
+

2(1 − x)3/2

3
√
π

]xdx =
1

12
+

8
105
√
π

,

and ∫b
a

(ABRDαbf)(x)g(x)dx =

∫ 1

0
(1 − x)[

x

2
+

2x3/2

3
√
π
]dx =

1
12

+
8

105
√
π

.

From [9] we recall the relation between the Riemann-Liouville and Caputo new derivatives as

(ABC0 Dαf)(t) = (ABR0 Dαf)(t) −
B(α)

1 −α
f(0)Eα(−

α

1 −α
tα). (2.6)

From [16] recall the (left) generalized fractional integral operator

(Eγρ,µ,ω,a+ϕ)(x) =

∫x
a

(x− t)µ−1Eγρ,µ[ω(x− t)ρ]ϕ(t)dt, x > a.
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Analogously, the (right) generalized fractional integral operator can be defined by

(Eγρ,µ,ω,b−ϕ)(x) =

∫b
x

(t− x)µ−1Eγρ,µ[ω(t− x)ρ]ϕ(t)dt, x < b,

where Eγρ,µ(z) =
∑∞
k=0

(γ)kz
k

Γ(ρk+µ)k! , denotes the generalized Mittag-Leffler function defined for complex
ρ,µ,γ (Re(ρ) > 0) [16, 17].

Definition 2.7. The new (right) Caputo fractional derivative of order 0 < α < 1 is defined by

(ABCDαbf)(t) = −
B(α)

1 −α

∫b
t

f′(x)Eα[−α
(x− t)α

1 −α
]dx.

Next, we prove the right version of (2.6) by making use of the Q-operator.

Proposition 2.8. The right new Riemann-Liouville fractional derivative and the new right Caputo fractional deriva-
tive are related by the identity:

(ABCDαbf)(t) = (ABRDαbf)(t) −
B(α)

1 −α
f(b)Eα(−

α

1 −α
(b− t)α). (2.7)

Proof. Applying the Q-operator to the identity (2.6) and using the dual facts

Q(ABR0 Dαf)(t) = (ABRDαbQf)(t)

and Q(ABC0 Dαf)(t) = (ABCDαbQf)(t) we obtain that

(ABCDαbQf)(t) = (ABRDαbQf)(t) −
B(α)

1 −α
f(0)Eα(−

α

1 −α
(b− t)α).

Now, we change f(t) by (Qf)(t) = f(b− t) to conclude our claim.

Proposition 2.9 (Integration by parts for the Caputo fractional derivative ”(ABCa Dα), a = 0”).

•
∫b

0 (
ABC
a Dαf)(t)g(t) =

∫b
0 f(t)(

ABRDαbg)(t)dt+
B(α)
1−α f(t) E1

α,1, −α
1−α ,b−g)(t)|

b
0 .

•
∫b

0 (
ABCDαbf)(t)g(t) =

∫b
0 f(t)(

ABR
0 Dαg)(t)dt−

B(α)
1−α f(t) E1

α,1, −α
1−α ,0+g)(t)|

b
0 .

Proof. The proof of the first part follows by Theorem 2.5 and (2.6) and the proof of the second part follows
by Theorem 2.5 and (2.7).

3. The fractional Euler-Lagrange equations

Below, we find the Euler-Lagrange equations corresponding to a Lagrangian possessing the left new
Caputo derivative.

Theorem 3.1. Let 0 < α 6 1 be non-integer, b ∈ R, and 0 < b. Assume that the functional J : C2[0,b] → R of
the form

J(f) =

∫b
0
L(t, f(t), ABC0 Dαf(t))dt

has a local extremum in S = {y ∈ C2[0,b] : y(0) = A,y(b) = B} at some f ∈ S, where L : [0,b]×R×R → R.
Then,

[L1(s) +
ABRDαbL2(s)] = 0, for all s ∈ [0,b],

where L1(s) =
∂L
∂f (s) and L2(s) =

∂L
∂ ABC0 Dαf

(s).
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Proof. We suppose that J admits a local maximum in S at f. Thus, there exists an ε > 0 in such a way
that J(f̂) − J(f) 6 0 for all f̂ ∈ S with ‖f̂− f‖ = supt∈Na∩ bN |f̂(t) − f(t)| < ε. For any f̂ ∈ S there is an
η ∈ H = {y ∈ C2[0,b], y(0) = y(b) = 0} obeying f̂ = f+ εη. As a result, the ε-Taylor’s theorem gives us
that

L(t, f, f̂) = L(t, f+ εη, ABC0 Dαf+ ε ABC0 Dαη) = L(t, f, ABC0 Dαf) + ε[ηL1 +
ABC
0 DαηL2] +O(ε

2).

Then,

J(f̂) − J(f) =

∫b
0
L(t, f̂(t), ABC0 Dαf̂(t))dt−

∫b
0
L(t, f(t), ABC0 Dαf(t))dt

= ε

∫b
0
[η(t)L1(t) + (ABC0 Dαη)(t)L2(t)]dt+O(ε

2).

Let the quantity δJ(η,y) =
∫b

0 [η(t)L1(t) + (ABC0 Dαη)(t)L2(t)]dt denote the first variation of J.
We notice that, if η ∈ H, then −η ∈ H, and δJ(η,y) = −δJ(−η,y). For ε small, the sign of J(f̂) − J(f) is

determined by the sign of first variation, unless δJ(η,y) = 0 for all η ∈ H. To make the parameter η free,
we utilize the integration by part formula in Proposition 2.9, to reach

δJ(η,y) =
∫b

0
η(s)[L1(s) +

ABRDαbL2(s)]dt+ η(t)
B(α)

1 −α
(E1
α,1, −α

1−α ,b−L2)(t)|
b
0 = 0,

for all η ∈ H, and, as a result, the result is obtained by the fundamental lemma of calculus of variation.

We call (E1
α,1, −α

1−α ,b−L2)(t)|
b
0 = 0 the natural boundary condition.

In the same manner, if the Lagrangian depends on the right Caputo fractional derivative, we obtain:

Theorem 3.2. Let 0 < α 6 1 be non-integer, b ∈ R, and 0 < b. Assume that the functional J : C2[0,b] → R of
the form

J(f) =

∫b
0
L(t, f(t), ABCDαbf(t))dt

has a local extremum in S = {y ∈ C2[0,b] : y(0) = A,y(b) = B} at some f ∈ S, where L : [0,b]×R×R → R.
Then,

[L1(s) +
ABR
0 DαL2(s)] = 0 for all s ∈ [0,b],

where L1(s) =
∂L
∂f (s) and L2(s) =

∂L
∂ ABCDαbf

(s).

Proof. This proof is similar to Theorem 3.1 by utilizing the second integration by parts in Proposition 2.9
to obtain the natural boundary condition as (E1

α,1, −α
1−α ,0+L2)(t)|

b
0 = 0.

Theorem 3.3 ([16]). Let ρ,µ,γ,ν,σ, λ ∈ C (Re(ρ),Re(µ),Re(ν) > 0), then∫x
0
(x− t)µ−1Eγρ,µ(λ[x− t]

ρ)tν−1Eσρ,ν(λt
ρ)dt = xµ+ν−1E

γ+σ
ρ,µ+ν(λx

ρ).

In particular, if γ = 1, µ = 1, and ρ = α, we conclude∫x
0
Eα(λ[x− t]

α)tν−1Eσα,ν(λt
α)dt = xνE1+σ

α,1+ν(λx
α). (3.1)

From [17] we recall also the following differentiation formula that will be helpful.
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For α,µ,γ, λ ∈ C (Re(α > 0) and n ∈N we have

(
d

dz
)n[zµ−1Eγα,µ(λz

α)] = zµ−n−1E
γ
α,µ−n(λz

α). (3.2)

Now, by the help of (3.1) and (3.2), we have

ABR
0 Dα[xν−1Eσα,ν(λx

α)] =
B(α)

1 −α

d

dx
[xνE1+σ

α,1+ν(λx
α)] =

B(α)

1 −α
xν−1E1+σ

α,ν (λxα). (3.3)

Similarly, by the help of (3.2) and (3.1), we have

ABC
0 Dα[xν−1Eσα,ν(λx

α)] =
B(α)

1 −α

∫x
0
xνEα(λ(x− t)

α)
d

dt
[tν−1Eσα,ν(λx

α)]dt =
B(α)

1 −α
xν−1E1+σ

α,ν (λxα). (3.4)

Remark 3.4. An interesting observation of (3.3) and (3.4) is that the function

g(x) = lim
ν→0+

1 −α

B(α)
xν−1E−1

α,ν(λx
α) =

αxα−1

B(α)Γ(α)

denotes a nonzero function whose fractional ABR and ABC derivative become zero. This result can be
seen since (−1)0 = 1, (−1)1 = −1, and (−1)k = 0 for k = 2, 3, 4, . . ., and since

E0
α,ν(λ, x) =

xν−1

Γ(ν)
→ 0, ν→ 0+.

Note here that the function g(x) tends to the constant function 1 when α goes to 1.

Using the following relation (14) in [9]

(ABC0 Dαf)(t) = (ABR0 Dαf)(t) −
B(α)

1 −α
f(0)Eα(λtα), λ =

−α

1 −α
,

and the identity (see [17] page 78 for example)

(0I
αtβ−1Eµ,β[λt

µ](x) = xα+β−1Eµ,α+β[λx
µ],

where the ML-function with two parameters α and β is given by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk+β)
, (z,β ∈ C; Re(α) > 0),

where Eα,1(z) = Eα(z), the following result can be utilized to solve fractional dynamical systems involving
the Caputo fractional derivative with ML kernels.

Proposition 3.5. For 0 < α < 1, we conclude that

(ABa Iα ABCa Dαf)(x) = f(x) − f(a)Eα(λ(x− a)
α) −

α

1 −α
f(a)xαEα,α+1(λ(x− a)

α) = f(x) − f(a). (3.5)

Similarly,
(ABIαb

ABCDαbf)(x) = f(x) − f(b).

Example 3.6. To show the reported results we study an example of physical interest under Theorem 3.1.
We deal with the following action,

J(y) =

∫b
0
[
1
2
(ABC0 Dαy(t))2 − V(y(t))]dt,
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where 0 < α < 1 with y(0), y(b) are assigned or with the natural boundary condition

(E1
α,1, −α

1−α ,b−
ABC
0 Dαy(t))(t)|b0 = 0.

As a result, by applying Theorem 3.1 we obtain

(ABRDαb o
ABC
0 Dαy)(s) −

dV

dy
(s) = 0 for all s ∈ [0,b].

At this stage, we conclude that it is of great interest to study the obtained Euler- Lagrange equations
shown in the above example, where we have composition of right and left type fractional derivatives. For
such a composition in the classical fractional case together with the action of the Q-operator we refer to
[22].

Finally, we solve the above fractional Euler-Lagrange equations for certain potential functions with
α = 1

2 , and B(α) = 1.

• We consider the free particle case V ≡ 0: the Euler-Lagrange equations will be reduced to

(ABRDαb
ABC
0 Dαy)(t) = 0.

By applying ABIαb to both sides we reach at

(ABC0 Dαy)(t) = 0.

Then, by Remark 3.4 with B(α) = 1 for simplicity (otherwise B(α)→ 1 as α→ 1), we conclude that

y(t) = c1 +
αtα−1

B(α)Γ(α)
,

and hence using y(0) = A, the solution becomes

y(t) = y(0) +
αtα−1

B(α)Γ(α)
.

We remark here that as α→ 1, we get the classical case.

• Let V(y) = cy2/2. Then, the fractional Euler-Lagrange equations become (ABRDαb
ABC
0 Dαy)(t) =

cy(t). Then, applying ABIαb and AB0 Iα, respectively together with use of (3.5), we reach at the integral
equation

y(t) = y(0) + c(AB0 Iα ABIαby)(t).

Notice that, when α tends to 1 we get the classical result.
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