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Abstract
In this paper, Whitham–Broer–Kaup (WBK) equations with time-dependent coefficients are exactly solved through Hirota’s

bilinear method. To be specific, the WBK equations are first reduced into a system of variable-coefficient Ablowitz–Kaup–
Newell–Segur (AKNS) equations. With the help of the AKNS equations, bilinear forms of the WBK equations are then given.
Based on a special case of the bilinear forms, new one-soliton solutions, two-soliton solutions, three-soliton solutions and the
uniform formulae of n-soliton solutions are finally obtained. It is graphically shown that the dynamical evolutions of the
obtained one-, two- and three-soliton solutions possess time-varying amplitudes in the process of propagations. c©2017 All
rights reserved.
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1. Introduction

In nonlinear science, many physical phenomena such as fluid dynamics, plasma physics and nonlinear
optics are often related to nonlinear partial differential equations (PDEs). Researchers often investigate
solutions of such nonlinear PDEs (see for examples [17–21]) to gain more insight into these physical
phenomena for further applications. Since the celebrated Korteweg–de Vries (KdV) equation was exactly
solved by Gardner et al. [13], finding exact solutions of nonlinear PDEs has gradually developed into one
of the most important and significant directions and many effective methods have been proposed such as
the inverse scattering method [1, 61, 66, 69], Hirota’s bilinear method [15], Bäcklund transformation [33],
Darboux transformation [31, 47, 64], Painlevé expansion [46, 59, 60], homogeneous balance method [44],
subsidiary equation method [12, 22, 67, 68], first integral method [4], residual power series method [23],
and the exp-function method [14, 55, 56].

As a direct method, Hirota’s bilinear method [15] proposed in 1971 has been widely used to construct
multi-soliton solutions of many nonlinear PDEs like those in [5, 16, 29, 32, 45, 62, 63, 65]. Besides, Hi-
rota’s bilinear method [15] and Darboux transformation [31] are two of the most powerful techniques for
constructing rogue-wave solutions [6, 28, 50] of nonlinear PDEs. The key step of Hirota’s bilinear method
is to convert the given nonlinear PDE into the so-called bilinear form. For such bilinear forms, there is
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no general rule to follow and one often tries to take some transformations like rational transformation or
logarithmic transformation. Recently, Hirota’s bilinear method was extended in a uniform way to all the
nonlinear PDEs contained in the isospectral AKNS hierarchy [10], the variable-coefficient KdV hierarchy
[58] and the modified KdV (mKdV) hierarchy [72]. When the inhomogeneities of media and nonunifor-
mities of boundaries are taken into account, the variable-coefficient PDEs could describe more realistic
physical phenomena than their constant-coefficient counterparts. Therefore, how to generalize the existing
methods to construct exact solutions especially soliton solutions [42, 43] of nonlinear PDEs with variable
coefficients is worthy of exploring. In the present paper, we shall extend Hirota’s bilinear method to con-
struct new multi-soliton solutions of the following new WBK equations with time-dependent coefficients
[30]:

ut + γ1(t)uux + γ2(t)vx + γ3(t)uxx = 0, (1.1)

vt + γ4(t)uxv+ γ4(t)uvx − γ5(t)vxx + γ6(t)uxxx = 0, (1.2)

where γi(t) (i = 1, 2, · · · , 6) are arbitrary smooth functions of t, which represent different dispersion
and dissipation forces. Given different γi(t) (i = 1, 2, · · · , 6), equations (1.1) and (1.2) convert into some
well-known equations. If γi(t) = hi (i = 1, 2, · · · , 6) are all constants, then (1.1) and (1.2) become the
generalized WBK equations [30]:

ut + h1uux + h2vx + h3uxx = 0, (1.3)

vt + h4uxv+ h4uvx − h5vxx + h6uxxx = 0. (1.4)

When γ1(t) = γ2(t) = γ4(t) = −1, γ3(t) = γ5(t) = 1/2 and γ6(t) = 0, equations (1.1) and (1.2) give the
approximate equations for long water waves [51]:

ut − uux − vx +
1
2
uxx = 0, (1.5)

vt − (uv)x −
1
2
vxx = 0. (1.6)

When γ1(t) = γ2(t) = γ4(t) = 1, γ3(t) = γ5(t) = β and γ6(t) = α are all constants, equations (1.1) and
(1.2) transform into the WBK equations in shallow water [52]:

ut + uux + vx +βuxx = 0, (1.7)

vt + (uv)x +αuxxx −βvxx = 0. (1.8)

When γ1(t) = γ4(t) = 2, γ2(t) = γ6(t) = −1/2 and γ3(t) = γ5(t) = 0, equations (1.1) and (1.2)
degenerate into the Boussinesq–Burgers (BB) equations [25]:

ut + 2uux −
1
2
vx = 0, (1.9)

vt −
1
2
uxxx + 2(uv)x = 0. (1.10)

When γ1(t) = γ2(t) = 1, γ3(t) = γ5(t) = 0 and γ6(t) = 1, equations (1.1) and (1.2) change into the
variant Boussinesq equations [51]:

ut + uux + vx = 0, (1.11)

vt + (uv)x + uxxx = 0. (1.12)

When γ1(t) = γ2(t) = γ4(t) = 2α(t), γ3(t) = γ5(t) = −α(t), γ6(t) = 0, equations (1.1) and (1.2) turn
into the variable-coefficient Broer–Kaup (BK) equations [53]:

uxt −α(t)[uxxx − 2(uux)x − 2vxx] = 0, (1.13)

vt +α(t)[vxx + 2(uv)x] = 0. (1.14)

In 2014, Liu and Liu [30] obtained some symmetries and similarity reductions of (1.3) and (1.4) by apply-
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ing direct symmetry method. Based on the obtained symmetries, Liu and Liu [30] obtained some new
solutions including rational solutions, hyperbolic function solutions, trigonometric function solutions and
Jacobi elliptic function solutions of (1.1) and (1.2). As far as we know, there are no multi-soliton solutions
and other solutions of (1.1), (1.2), (1.3), (1.4) have been reported. By using the extend homogeneous bal-
ance method, Yan and Liu [51] obtained trigonometric function solutions, n-resonance plane solitary wave
solutions and non-traveling wave solutions of (1.5) and (1.6) and (1.11) and (1.12).

In recent years, most researchers focus on the constant-coefficient WBK (1.7) and (1.8). More specif-
ically, Yan and Zhang [52] obtained solitary wave solutions, periodic wave solutions and the combined
formal solitary wave solutions by introducing Riccati equation and a new generalized transformation.
Chen and Wang [7] obtained many trigonometric periodic and hyperbolic function solutions, trigono-
metric periodic and rational function solutions, hyperbolic and rational function solutions by proposing
multiple Riccati equations rational expansion method. Zhang [57] obtained solitary wave solutions, peri-
odic wave solutions and combined formal solitary wave solutions by using an improved Riccati equations
method. Chen et al. [9] obtained a series of exact solutions which include rational form solitary wave
solution, rational form triangular periodic wave solutions and rational wave solutions as special cases
by presenting elliptic equation rational expansion method. Mohebbi et al. [34] obtained numerical so-
lutions by proposing numerical schemes which are based on the fourth-order time-stepping schemes in
combination with discrete Fourier transform. Shen et al. [40] obtained solitary wave solutions, kink wave
solutions and periodic wave solutions by using bifurcation method. El-Sayed and Kaya [11] obtained
explicit and numerical traveling wave solutions containing blow-up solutions and periodic solutions by
using a decomposition method. Chen et al. [8] obtained more types of traveling wave solutions includ-
ing polynomial, exponential, solitary wave, rational, triangular periodic, Jacobi and Weierstrass doubly
periodic solutions by proposing a generalized method. Xu and Li [49] obtained some singular traveling
wave solutions by improving an auxiliary equation method. Jiao and Zhang [24] obtained exact traveling
wave solutions by proposing an extended method with a more general transformation. Xie et al. [48] ob-
tained four pairs of solutions which contain blow-up solutions and periodic solutions by using hyperbolic
function method and Wu elimination method. Mohyud-Din et al. [35] obtained explicit and numerical
traveling wave solutions which contain blow-up solutions and periodic solutions by using homotopy per-
turbation method. Rafei and Daniali [36] obtained explicit traveling wave solutions including blow-up
and periodic solutions by using variational iteration method. Song et al. [41] obtained kink-shaped so-
lutions, blow-up solutions, periodic blow-up solutions and solitary wave solutions by using bifurcation
method and qualitative theory of dynamic systems. Arshad et al. [2] obtained traveling wave solutions
in the form of solitons, bell and anti-bell periodic, bright and dark solitary wave by applying a modified
extended direct algebraic method. Lin et al. [27] obtained multi-soliton solutions by means of Wronskian
technique and symbolic computation.

With the help of Riccati equation and its some special solutions, Khalfallah [25] obtained hyperbolic
function solutions and rational solutions of (1.9) and (1.10). By using the compatibility method, Yan and
Zhou [53] obtained many explicit solutions of the Boussinesq–Burgers (1.13) and (1.14), which include
solutions expressed by error function, Bessel function, exponential function and Airy function. As a
special case of Zhang and Zhang’s work in [70], n-soliton solutions of the variable-coefficient BK (1.13)
and (1.14) can be reached.

The rest of the paper is organized as follows. In Section 2, we first take appropriate transformations
to reduce (1.1) and (1.2) into the variable-coefficient AKNS equations. Then the variable-coefficient AKNS
equations are bilinearized so that we arrive at the bilinear forms of (1.1) and (1.2). In Section 3, starting
from a special case of the obtained bilinear forms, we construct one-soliton, two-soliton, and three-soliton
solutions of (1.1) and (1.2). Based on the obtained soliton solutions, we then summarize a uniform formula
for the explicit n-soliton solutions of (1.1) and (1.2). In addition, some spatial structures and propagations
of the obtained one-, two- and three-soliton solutions are shown by figures. In Section 4, we conclude this
paper.
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2. Bilinearization

For (1.1) and (1.2), we have the following Theorem 2.1.
Theorem 2.1. Suppose that

u = a0
Ax

A
, (2.1)

v = −a2
0
γ1(t)

γ2(t)
AB+ a0

a0γ1(t) − 2γ3(t)

2γ2(t)

(
−
A2
x

A2 +
Axx

A

)
, (2.2)

where a0 is an arbitrary constant, A and B are smooth functions of x and t, the time-dependent-coefficient WBK
(1.1) and (1.2) reduce then into the variable-coefficient AKNS equations:

At =
1
2
a0γ1(t)(2A2B−Axx), (2.3)

Bt =
1
2
a0γ1(t)(−2AB2 +Bxx), (2.4)

under the constraints

γ4(t) = γ1(t), γ5(t) = γ3(t), γ6(t) =
a2

0γ
2
1(t) − 4γ2

3(t)

4γ2(t)
, (2.5)

γ′3(t) =
γ′1(t)γ3(t)

γ1(t)
, γ′2(t) =

γ′1(t)γ2(t)

γ1(t)
. (2.6)

Proof. We take the following transformations

u = a(t)(lnA)x, (2.7)

v = b(t)(lnA)xx + c(t)AB, (2.8)

and substitute (2.7) and (2.8) into (1.1) and (1.2), here a(t), b(t) and c(t) are functions of t to be deter-
mined. A direct computation tells that if

a(t) = a0, b(t) = a0
a0γ1(t) − 2γ3(t)

2γ2(t)
, c(t) = −a2

0
γ1(t)

γ2(t)
,

then (1.1) and (1.2) reduce into (2.3) and (2.4) under the constrains (2.5) and (2.6). Thus, the proof is
end.

For the bilinear forms of (1.1) and (1.2), we have the following Theorem 2.2.
Theorem 2.2. Let (2.5) and (2.6) hold, the time-dependent-coefficient WBK (1.1) and (1.2) possess the bilinear
forms

Dtg · f =
1
2
a0γ1(t)

[
−D2

xg · f+
g

f
(D2
xf · f+ 2gh)

]
, (2.9)

Dth · f =
1
2
a0γ1(t)

[
D2
xh · f−

h

f
(D2
xf · f+ 2gh)

]
, (2.10)

where f = f(x, t), g = g(x, t), h = h(x, t), Dx and Dt are Hirota’s differential operators defined by

Dmx D
n
t F(x, t) ·G(x, t) = (∂x − ∂x ′)

m(∂t − ∂t ′)
nF(x, t) ·G(x ′, t ′)|x ′=x,t ′=t.

Proof. In view of (2.3) and (2.4), we suppose that

A =
g

f
, B =

h

f
, (2.11)

Equations (2.3) and (2.4) are then converted into

fgt − ftg =
1
2
a0γ1(t)

(
−gxxf+ 2gxfx + fxxg−

2f2xg
f

+
2g2h

f

)
,

fht − fth =
1
2
a0γ1(t)

(
fhxx − 2fxhx − fxxh+

2f2xh
f

−
2gh2

f

)
,

the bilinear forms of which are namely (2.9) and (2.10). It is easy to see from (2.1), (2.2) and (2.11) that if
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we take the transformations

u = a0
gxf− fxg

fg
,

v = −a2
0
γ1(t)

γ2(t)

gh

f2 + a0
a0γ1(t) − 2γ3(t)

2γ2(t)

(
f2
x

f2 −
g2
x

g2 −
fxx

f
+
gxx

g

)
,

then (1.1) and (1.2) are converted into the bilinear forms (2.9) and (2.10). We complete the proof.

3. Multi-soliton solutions

To construct multi-soliton solutions of (1.1) and (1.2) conveniently, we set

D2
xf · f+ 2gh = 0, (3.1)

the bilinear forms (2.9) and (2.10) are then reduced into

Dtg · f = −
1
2
a0γ1(t)D

2
xg · f, (3.2)

Dth · f =
1
2
a0γ1(t)D

2
xh · f. (3.3)

Based on the bilinear forms (3.2) and (3.3) under the condition (3.1), in what follows we construct
multi-soliton solutions of (1.1) and (1.2). For this purpose, we suppose that

f = 1 + ε2f(2) + ε4f(4) + . . . + ε2jf(2j) + · · · , (3.4)

g = εg(1) + ε3g(3) + . . . + ε2j+1g(2j+1) + · · · , (3.5)

h = εh(1) + ε3h(3) + . . . + ε2j+1h(2j+1) + · · · . (3.6)

Figure 1: Spatial structures of one-soliton solutions (3.18) and (3.19).

Substituting (3.4), (3.5), (3.6) into (3.1), (3.2), (3.3) and then collecting the coefficients of the same order
of ε yields a system of differential equations (SDEs)

g
(1)
t +

1
2
a0γ1(t)g

(1)
xx = 0, (3.7)
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h
(1)
t −

1
2
a0γ1(t)h

(1)
xx = 0, (3.8)

f
(2)
xx + g(1)h(1) = 0, (3.9)

g
(3)
t +

1
2
a0γ1(t)g

(3)
xx = −[Dt +

1
2
a0γ1(t)D

2
x]g

(1) · f(2), (3.10)

h
(3)
t −

1
2
a0γ1(t)h

(3)
xx = −[Dt −

1
2
a0γ1(t)D

2
x]h

(1) · f(2), (3.11)

2f(4)
xx = −D2

xf
(2) · f(2) − 2(g(1)h(3) + g(3)h(1)), (3.12)

g
(5)
t +

1
2
a0γ1(t)g

(5)
xx = −[Dt +

1
2
a0γ1(t)D

2
x](g

(1) · f(4) + g(3)f(2)), (3.13)

h
(5)
t −

1
2
a0γ1(t)h

(5)
xx = −[Dt −

1
2
a0γ1(t)D

2
x](h

(1) · f(4) + h(3)f(2)), (3.14)

f
(6)
xx = −D2

xf
(2) · f(4) − (g(1)h(5) + g(3)h(3) + g(5)h(1)), (3.15)

...

and so forth.
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Figure 2: Dynamical evolutions of one-soliton solution (3.18).

If let
g(1) = eξ1 , ξ1 = k1x−

1
2
a0k

2
1

∫
γ1(t)dt, (3.16)

h(1) = eη1 , η1 = l1x+
1
2
a0l

2
1

∫
γ1(t)dt, (3.17)
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be two solutions of (3.7) and (3.8), then from (3.9) we have

f(2) = eξ1+η1+θ13 , eθ13 = −
1

(k1 + l1)2 .
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Figure 3: Dynamical evolutions of one-soliton solutions (3.19).

It is easy to see that if g(3) = h(3) = f(4) = · · · = 0, then (3.10), (3.11), (3.12), (3.13), (3.14), (3.15) and
those unwritten ones in above SDEs all hold. In this case, (3.4), (3.5), (3.6) are truncated into finite terms.
Further selecting ε = 1 and writing

f1 = 1 + eξ1+η1+θ13 , g1 = eξ1 , h1 = eη1 ,

we then obtain one-soliton solutions of (1.1) and (1.2):

u = a0
k1 − l1e

ξ1+η1+θ13

1 + eξ1+η1+θ13
, (3.18)

v = −a0[2a0 − a0γ1(t) + 2γ3(t)]
eξ1+η1

2γ2(t)(1 + eξ1+η1+θ13)2 . (3.19)

In Figure 1, the spatial structures of one-soliton solutions (3.18) and (3.19) are shown, where the
parameters are selected as k1 = i, l1 = 0.05, a0 = 0.01, γ1(t) = 0.5e0.5t2

, γ2(t) = 2e0.5t2
, γ3(t) = e0.5t2

.
We use Figures 2 and 3 to describe the corresponding dynamical evolutions of one-soliton solutions (3.18)
and (3.19) at times t = −3, t = 0 and t = 3. It can be seen from Figures 1–3 that one-soliton solutions
(3.18) and (3.19) possess time-varying amplitudes in the process of propagations.

We next construct two-soliton solutions of (1.1) and (1.2). Selecting

g(1) = eξ1 + eξ2 , ξi = kix−
1
2
a0k

2
i

∫
γ1(t)dt, (i = 1, 2),



S. Zhang, Z. Y. Wang, J. Nonlinear Sci. Appl., 10 (2017), 2324–2339 2331

h(1) = eη1 + eη2 , ηi = lix+
1
2
a0l

2
i

∫
γ1(t)dt, (i = 1, 2),

which satisfy (3.7) and (3.8), from (3.9), (3.10), (3.11), (3.12) we then have

f(2) = eξ1+η1+θ13 + eξ1+η2+θ14 + eξ2+η1+θ23 + eξ2+η2+θ24 ,

g(3) = eξ1+ξ2+η1+θ12+θ13+θ23 + eξ1+ξ2+η2+θ12+θ14+θ24 ,

h(3) = eξ1+η1+η2+θ13+θ14+θ34 + eξ2+η1+η2+θ23+θ24+θ34 ,

f(4) = eξ1+ξ2+η1+η2+θ13+θ14+θ34+θ23+θ24+θ34 ,

where
eθ12 = −(k1 − k2)

2, eθ34 = −(l1 − l2)
2, eθi(j+2) = −

1
(ki + lj)2 , (i, j = 1, 2).

Figure 4: Spatial structures of two-soliton solutions (3.20) and (3.21).

If g(5) = h(5) = f(6) = · · · = 0, then we can see that (3.13), (3.14), (3.15) and those unwritten ones in
above SDEs all hold. In this case, we truncate (3.4), (3.5), (3.6) into finite terms. We further select ε = 1
and write

g2 = eξ1 + eξ2 + eξ1+ξ2+η1+θ12+θ13+θ23 + eξ1+ξ2+η2+θ12+θ14+θ24 ,

h2 = eη1 + eη2 + eξ1+η1+η2+θ13+θ14+θ34 + eξ2+η1+η2+θ23+θ24+θ34 ,

f2 = 1 + eξ1+η1+θ13 + eξ1+η2+θ14 + eξ2+η1+θ23 + eξ2+η2+θ24

+ eξ1+ξ2+η1+η2+θ13+θ14+θ34+θ23+θ24+θ34 ,

and hence obtain two-soliton solutions of (1.1) and (1.2):

u = a0
g2xf2 − f2xg2

f2g2
, (3.20)

v = −a2
0
γ1(t)

γ2(t)

g2h2

f22
+ a0

a0γ1(t) − 2γ3(t)

2γ2(t)

(
f22x
f22

−
g2

2x
g2

2
−
f2xx
f2

+
g2xx

g2

)
. (3.21)

The spatial structures of two-soliton solutions (3.20) and (3.21) are shown in Figure 4 by selecting
the parameters as k1 = i, k2 = 0.3i, l1 = 4, l2 = −1.2, a0 = 0.008, γ1(t) = 0.5e0.5t2

, γ2(t) = 2e0.5t2
,

γ3(t) = e
0.5t2

. Figures 5 and 6 are used to describe the corresponding dynamical evolutions of two-soliton
solutions (3.20) and (3.21) at times t = −3, t = 0 and t = 3. Figures 4–6 show that two-soliton solutions
(3.20) and (3.21) possess time-varying amplitudes in the process of propagations.
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Figure 5: Dynamical evolutions of two-soliton solution (3.20).
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Figure 6: Dynamical evolutions of two-soliton solution (3.21).
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Similarly, we can determine three-soliton solutions of (1.1) and (1.2) as follows:

u = a0
g3xf3 − f3xg3

f3g3
, (3.22)

v = −a2
0
γ1(t)

γ2(t)

g3h3

f2
3

+ a0
a0γ1(t) − 2γ3(t)

2γ2(t)

(
f2

3x

f2
3
−
g2

3x

g2
3
−
f3xx

f3
+
g3xx

g3

)
, (3.23)

by

f3 = 1 + eξ1+η1+θ14 + eξ1+η2+θ15 + eξ1+η3+θ16 + eξ2+η1+θ24 + eξ2+η2+θ25

+ eξ2+η3+θ26 + eξ3+η1+θ34 + eξ3+η2+θ35 + eξ3+η3+θ36

+ eξ1+ξ2+η1+η2+θ12+θ14+θ15+θ24+θ25+θ45 + eξ1+ξ3+η1+η3+θ13+θ14+θ16+θ34+θ36+θ46

+ eξ1+ξ3+η2+η3+θ13+θ15+θ16+θ35+θ36+θ56 + eξ2+ξ3+η1+η2+θ23+θ24+θ25+θ34+θ35+θ45

+ eξ2+ξ3+η1+η3+θ23+θ24+θ26+θ34+θ36+θ46 + eξ2+ξ3+η2+η3+θ23+θ25+θ26+θ35+θ36+θ56

+ eξ1+ξ2+ξ3+η1+η2+η3+θ12+θ13+θ14+θ15+θ16+θ23+θ24+θ25+θ26+θ34+θ35+θ36+θ45+θ46+θ56 ,

g3 = eξ1 + eξ2 + eξ3 + eξ1+ξ2+ξ3+η1+η2+θ12+θ13+θ14+θ15+θ23+θ24+θ25+θ34+θ35+θ45

+ eξ1+ξ2+ξ3+η1+η3+θ12+θ13+θ14+θ16+θ23+θ24+θ26+θ34+θ36+θ46

+ eξ1+ξ2+ξ3+η2+η3+θ12+θ13+θ15+θ16+θ23+θ25+θ26+θ35+θ36+θ56

+ eξ1+ξ2+η1+θ12+θ14+θ24 + eξ1+ξ2+η2+θ12+θ15+θ25 + eξ1+ξ2+η3+θ12+θ16+θ26

+ eξ1+ξ3+η1+θ13+θ14+θ34 + eξ1+ξ3+η2+θ13+θ15+θ35 + eξ1+ξ3+η3+θ13+θ16+θ36

+ eξ2+ξ3+η1+θ23+θ24+θ34 + eξ2+ξ3+η2+θ23+θ25+θ35 + eξ2+ξ3+η3+θ23+θ26+θ36 ,

h3 = eη1 + eη2 + eη3 + eξ1+ξ2+η1+η2+η3+θ12+θ14+θ15+θ16+θ24+θ25+θ26+θ45+θ46+θ56

+ eξ1+ξ3+η1+η2+η3+θ13+θ14+θ15+θ16+θ34+θ35+θ36+θ45+θ46+θ56

+ eξ2+ξ3+η1+η2+η3+θ23+θ24+θ25+θ26+θ34+θ35+θ36+θ45+θ46+θ56

+ eξ1+η1+η2+θ14+θ15+θ45 + eξ2+η1+η2+θ24+θ25+θ45 + eξ3+η1+η2+θ34+θ35+θ45

+ eξ1+η1+η3+θ14+θ16+θ46 + eξ2+η1+η3+θ24+θ26+θ46 + eξ3+η1+η3+θ34+θ36+θ46

+ eξ1+η2+η3+θ15+θ16+θ56 + eξ2+η2+η3+θ25+θ26+θ56 + eξ3+η2+η3+θ35+θ36+θ56 ,

where
ξi = kix−

1
2
a0k

2
i

∫
γ1(t)dt, ηi = lix+

1
2
a0l

2
i

∫
γ1(t)dt, (i = 1, 2, 3),

eθij = −(ki − kj)
2, (i < j = 2, 3),

eθi(j+n) = −
1

(ki + lj)2 , (i, j = 1, 2, 3),

eθ(i+n)(j+n) = −(li − lj)
2, (i < j = 2, 3).

Selecting k1 = i, k2 = 0.3i, k3 = 2i, l1 = 2, l2 = 1, l3 = −1.5, a0 = 0.005, γ1(t) = 0.5e0.5t2
, γ2(t) = 2e0.5t2

and γ3(t) = e0.5t2
, we show in Figure 7 the spatial structures of three-soliton solutions (3.22) and (3.23).

In Figures 8 and 9, the corresponding dynamical evolutions of three-soliton solutions (3.22) and (3.23) are
described at times t = −3, t = 0 and t = 3. From Figures 7–9 we can see that three-soliton solutions (3.22)
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and (3.23) possess time-varying amplitudes in the process of propagations.

Figure 7: Spatial structures of bright and dark three-soliton solutions (3.22) and (3.23).

-40 -20 20 40
x

0.05

0.10

0.15

u

t = −3

-40 -20 20 40
x

0.1

0.2

0.3

0.4

0.5

u

-40 -20 20 40
x

0.05

0.10

0.15

0.20

0.25

u

t = 0 t = 3

Figure 8: Dynamical evolutions of three-soliton solution (3.22).

Generally speaking, if we take

g(1) = eξ1 + eξ2 + · · ·+ eξn , ξi = ki −
1
2
a0k

2
i

∫
γ1(t)dt,

h(1) = eη1 + eη2 + · · ·+ eηn , ηi = li +
1
2
a0l

2
i

∫
γ1(t)dt,

fn =
∑
µ=0,1

Z1(µ)e

2n∑
i=1
µiξi

+

2n∑
16i<j

µiµjθij,
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Figure 9: Dynamical evolutions of three-soliton solution (3.23).

gn =
∑
µ=0,1

Z2(µ)e

2n∑
i=1
µiξi

+

2n∑
16i<j

µiµjθij,

hn =
∑
µ=0,1

Z3(µ)e

2n∑
i=1
µiξi

+

2n∑
16i<j

µiµjθij,

ξi = kix−
1
2
a0k

2
i

∫
γ1(t)dt, ηi = lix+

1
2
a0l

2
i

∫
γ1(t)dt, (i = 1, 2, · · · ,n),

ξn+j = ηj, (j = 1, 2, · · · ,n),

eθi(j+n) = −
1

(ki + lj)2 , (i, j = 1, 2, · · · ,n),

eθij = −(ki − kj)
2, eθ(i+n)(j+n) = −(li − lj)

2, (i < j = 2, 3, · · · ,n),

we can give uniform formulae of n-soliton solutions of (1.1) and (1.2) as follows:

u = a0
gnxfn − fnxgn

fngn
, (3.24)

v = −a2
0
γ1(t)

γ2(t)

gnhn

f2
n

+ a0
a0γ1(t) − 2γ3(t)

2γ2(t)

(
f2
nx

f2
n

−
g2
nx

g2
n

−
fnxx

fn
+
gnxx

gn

)
, (3.25)

where the summation
∑
µ=0,1 refers to all possible combinations of each µi = 0, 1 for i = 1, 2, · · · ,n, and

Z1(µ), Z2(µ) and Z3(µ) denote that when we select all the possible combinations µj (j = 1, 2, · · · , 2n) the
following conditions hold, respectively:
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n∑
j=1

µj =

n∑
j=1

µn+j,
n∑
j=1

µj =

n∑
j=1

µn+j + 1,
n∑
j=1

µj + 1 =

n∑
j=1

µn+j.

To the best of our knowledge, the obtained one-soliton solutions (3.18) and (3.19), two-soliton solutions
(3.20) and (3.21), three-soliton solutions (3.22) and (3.23) and n-soliton solutions (3.24) and (3.25) are new,
they have not been reported in literature.

4. Conclusions

Based on (3.2) and (3.3), a special case of the bilinear forms (2.9) and (2.10) under the condition (3.1),
we have successfully extended Hirota’s bilinear method to the new time-dependent-coefficient WBK (1.1)
and (1.2). As a result, new one-soliton solutions (3.18) and (3.19), two-soliton solutions (3.20) and (3.21),
three-soliton solutions (3.22) and (3.23) and the uniform formulae of n-soliton solutions (3.24) and (3.25)
are obtained. For the existing solutions in [2, 7–9, 11, 24, 25, 27, 30, 34–36, 40, 41, 48, 49, 51–53, 57, 70],
some of them can be recovered as special cases of the results obtained in the present study. Here we take
the following solutions [48]

u = −k
√
α+β2cothk(x− λt+ c) + λ, (4.1)

v = −2k2
√
α+β2(β+

√
α+β2)csch2k(x− λt+ c) + λ, (4.2)

as the first example. In this case, we select γ1(t) = 1, γ2(t) = 1, γ3(t) = β, a0 = 2
√
α+β2, k1 =

k+ λ/(2
√
α+β2), l1 = k− λ/(2

√
α+β2) and set the integration constants of (3.16) and (3.17) as ln 4k2/λ,

then a direct computation shows that the one-soliton solutions (3.18) and (3.19) arrive at solutions (4.1)
and (4.2). In the second example, we select γ1(t) = 1, γ2(t) = 1, γ3(t) = β, a0 = −2

√
α+β2, k1 = 4,

l1 = −2 and set the integration constants of (3.16) and (3.17) as −θ13/6
√

2, then the one-soliton solutions
(3.18) and (3.19) give the known solutions [27]

u = 2
√

2[tanh(x+ 6
√

2t) − 3],

v = −8(
√

2 − 2)sech2(x+ 6
√

2t).

The third example is based on (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.11), (3.2) and (3.3). Setting γ1(t) = 1,
γ2(t) = 1, γ3(t) = β, a0 = −2

√
α+β2, from (2.1) and (2.2) we then have

u = −2
√
α+β2(lnA)x, (4.3)

v = −4(α+β2)AB+ 2
[
α+β(β+

√
α+β2)

]
(lnA)xx, (4.4)

where A and B satisfy the constant-coefficient AKNS equations

At = −
√
α+β2(2A2B−Axx), (4.5)

Bt = −
√
α+β2(−2AB2 +Bxx). (4.6)

In view of (2.11) and (3.1), we reduce (3.2) and (3.3) as

Dtg · f = −
√
α+β2D2

xg · f, (4.7)

Dth · f =
√
α+β2D2

xh · f. (4.8)

With the help of (2.11), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), we can obtain the following multi-soliton solu-
tions [27] expressed by double Wronskian determinants

u = −2
√
α+β2

[
ln

(
2

|N̂− 2; M̂|

|N̂− 1; M̂− 1|

)]
x

,
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v = 16(α+β2)
|N̂− 2; M̂|

|N̂− 1; M̂− 1|

|N̂− 2; M̂|

|N̂− 1; M̂− 1|
+ 2

[
α+β(β+

√
α+β2)

] [
ln

(
2

|N̂− 2; M̂|

|N̂− 1; M̂− 1|

)]
xx

,

under the linear Wronskian conditions

ϕjx = −kjϕj, ϕjt = −2
√
α+β2ϕjxx,

ψjx = kjψj, ψjt = 2
√
α+β2ψjxx, (j = 1, 2, · · · ,N+M+ 2),

where the double Wronskian determinant is defined as

WN,M(ϕ;ψ) = det(ϕ,∂ϕ, · · · ,∂N−1ϕ;ψ,∂ψ, · · · ,∂M−1ψ) = |N̂− 1; M̂− 1|,

with ϕ = (ϕ1,ϕ2, · · · ,ϕN+M+2)
T and ψ = (ψ1,ψ2, · · · ,ψN+M+2)

T .
In the procedure of extending Hirota’s bilinear method to (1.1) and (1.2), one of the key steps is to

reduce (1.1) and (1.2) to the bilinear forms (2.9) and (2.10) by the transformations (2.7), (2.8) and (2.11). It
is graphically shown that the dynamical evolutions of one-soliton solutions (3.18) and (3.19), two-soliton
solutions (3.20) and (3.21), three-soliton solutions (3.22) and (3.23) possess time-varying amplitudes as
Serkin et al. [37–39] reported in the process of propagations. Recently, fractional-order differential calculus
and its applications have attached much attention [3, 26, 54, 71]. How to construct multi-soliton solutions
of nonlinear PDEs with fractional derivatives through Hirota’s bilinear method is worthy of study.
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[46] J. Weiss, M. Tabor, G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys., 24 (1983),

522–526. 1
[47] X.-Y. Wen, A new integrable lattice hierarchy associated with a discrete 3× 3 matrix spectral problem: N-fold Darboux

transformation and explicit solutions, Rep. Math. Phys., 71 (2013), 15–32. 1
[48] F.-D. Xie, Z.-Y. Yan, H.-Q. Zhang, Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water

equations, Phys. Lett. A, 285 (2001), 76–80. 1, 4
[49] G.-Q. Xu, Z.-B. Li, Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations,

Chaos Solitons Fractals, 24 (2005), 549–556. 1, 4
[50] S.-W. Xu, K. Porsezian, J.-S. He, Y. Cheng, Multi-optical rogue waves of the Maxwell-Bloch equations, Romanian Rep.

Phys., 68 (2016), 316–340. 1
[51] Z.-L. Yan, X.-Q. Liu, Solitary wave and non-traveling wave solutions to two nonlinear evolution equations, Commun.

Theor. Phys. (Beijing), 44 (2005), 479–482. 1, 1, 1, 4
[52] Z.-Y. Yan, H.-Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation

in shallow water, Phys. Lett. A, 285 (2001), 355–362. 1, 1
[53] Z.-L. Yan, J.-P. Zhou, New explicit solutions of (1 + 1)-dimensional variable-coefficient Broer-Kaup system, Commun.

Theor. Phys. (Beijing), 54 (2010), 965–970. 1, 1, 4
[54] X.-J. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications, Elsevier/Academic

Press, Amsterdam, (2015). 4
[55] S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A, 365 (2007),

448–453. 1
[56] S. Zhang, Exact solutions of a KdV equation with variable coefficients via Exp-function method, Nonlinear Dynam., 52

(2008), 11–17. 1
[57] P. Zhang, New exact solutions to breaking soliton equations and Whitham-Broer-Kaup equations, Appl. Math. Comput.,

217 (2010), 1688–1696. 1, 4
[58] S. Zhang, B. Cai, Multi-soliton solutions of a variable-coefficient KdV hierarchy, Nonlinear Dynam., 78 (2014), 1593–

1600. 1
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