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Abstract

In this paper, some new integral representations are proved for several weighted hypergeometric functions introduced
recently in [J. E. Restrepo, A. Kılıçman, P. Agarwal, O. Altun, Adv. Difference Equ., 2017 (2017), 11 pages]. Besides, some new
subclasses of weighted hypergeometric functions containing the Djrbashian Cauchy type kernel are introduced. The series rep-
resenting the considered hypergeometric functions are convergent out of some sets of zero ω-capacity, and these hypergeometric
functions have finite boundary values everywhere on |z| = 1, out of zero ω-capacity sets. c©2017 All rights reserved.
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1. Introduction

The analysis of extensions and generalizations of hypergeometric functions is a well-known, contem-
porary investigation field (see, e.g., [1, 12, 15–17]). For introducing the considered in this paper weighted
hypergeometric functions, we recalled the weighted extension [14] of Euler’s beta-function:

B
(α,β)
ω (x,y) =

∫ 1

0
tx−1(1 − t)y−1ω(α,β)(zt,u, v)dt, (1.1)

where Re x > 0, Re y > 0, while α,β, z,u, v are real or complex parameters and ω(α,β)(zt,u, v) is a func-
tion of the class Ω, which means that the integral (1.1) is absolutely convergent for α,β, z,u, v changing in
several, fixed regions. Note that these regions can be different while considering different functions. For

instance, if ω(t,p, 0) = e
−p
t(1−t) with Re p > 0 and t ∈ [0, 1], then Bω(x,y) becomes the extension of Euler’s

beta-function considered by Chaudhry et al. [3] (see also the recent paper [14]).
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2. ω-weighted hypergeometric functions

In this paper, we deal with the weighted versions of the Gauss hypergeometric function 2F1, the Ap-
pell hypergeometric function F2, the generalized Gauss hypergeometric function Fω and the generalized
confluent hypergeometric function 1F

ω
1 , which all are introduced in [14]. We shall recall the definitions

of these functions, and again assume that m ∈ N, ω(α,β) ∈ Ω, B(x,y) is the classical beta function with
Re x, Rey > 0, and (α)n is the Pochhammer’s symbol:

(α)n =
Γ(α+n)

Γ(α)
, (α)0 = 1.

Now, let us define our ω-weighted extended hypergeometric functions.

Definition 2.1. The ω-weighted extended Gauss hypergeometric function is

2F1(a,b; c; z;ω) :=

∞∑
n=0

(a)n(b)n
(b−m)n

B
(α,β)
ω (b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!
,

where |z| < 1 and m < Re b < Re c.

Definition 2.2. The ω-weighted extended Appell hypergeometric function is

F2(a,b, c;d, e; x,y;ω) : =

∞∑
n,k=0

(a)n+k(b)n(c)k
(b−m)n(e)k

B
(α,β)
ω (b−m+n,d− b+m)

B(b−m,d− b+m)

xn

n!
yk

k!

=

∞∑
n,k=0

(a)n+k(b)n(c)k
(d)n(c−m)k

B
(α,β)
ω (c−m+ k, e− c+m)

B(c−m, e− c+m)

xn

n!
yk

k!
,

where |x|+ |y| < 1, m < Re b < Re d, and m < Re c < Re e.

One can be convinced that the above defined functions become those of [11] for ω(t,p, 0) = e
−p
t(1−t) and

Re p > 0, while for ω ≡ 1 these functions become the well-known Gauss hypergeometric function 2F1 and
the Appell function F2, respectively.

Definition 2.3. The ω-weighted generalized Gauss hypergeometric function is

Fω(a,b; c; z) =
∞∑
n=0

(a)n
B
(α,β)
ω (b+n, c− b)
B(b, c− b)

zn

n!
,

where |z| < 1 and Re c > Re b > 0.

Definition 2.4. The ω-weighted generalized confluent hypergeometric function is

1F
ω
1 (b; c; z) =

∞∑
n=0

B
(α,β)
ω (b+n, c− b)
B(b, c− b)

zn

n!
,

where |z| < 1 and Re c > Re b > 0.

3. Main results

In this section, we prove the main results of the present paper. We start by some integral representation
theorems.

Theorem 3.1. The following integral representations are true:

B(b−m, c− b+m) 2F1(a,b; c; z;ω)

=

∫ 1

0
tb−m−1(1 − t)c−b+m−1ω(α,β)(zt,u, v)2F1(a,b;b−m; zt)dt,

(3.1)
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B(c−m, e− c+m) F2(a,b, c;d, e; x,y;ω)

=

∫ 1

0
tc−m−1(1 − t)e−c+m−1ω(α,β)(zt,u, v)F2(a,b, c;d, c−m; x,yt)dt,

(3.2)

Fω(a,b; c; z) =
1

B(b, c− b)

∫ 1

0
tb−1(1 − t)c−b−1ω(α,β)(tz,u, v)2F1(a,b;b; zt)dt, (3.3)

where 2F1(a,b; c; z) and F2(a,b, c;d, e; x,y) are defined in [2, p. 1 and pp. 73-74].

Proof. The representations (3.1), (3.2), and (3.3) follow by Definitions 2.1, 2.2, 2.3, and formula (1.1) for the
function B(α,β)

ω .

Before proceeding to the proofs of some other integral representation theorems, we recall some defi-
nitions and statements from [6, 7].

Everywhere below, a function ω(t) is said to be of the class Ω0, if

(i) ω(t) > 0 and is continuous and nondecreasing in [0, 1),

(ii) ω(0) = 1 and
∫ 1

0
ω(t)dt < +∞,

(iii) ω(t) satisfies the Lipschitz condition at the point t = 0.

Djrbashian’s Cauchy type kernel (see [7] or [6, p. 76]) is the function

Cω(z) :=

+∞∑
k=0

zk

∆k
, ∆0 = 1, ∆k = k

∫ 1

0
tk−1ω(t)dt (k = 1, 2, . . .). (3.4)

Note that for any ω(t) ∈ Ω0, the function Cω(z) is holomorphic in the unit disc D = {z ∈ C : |z| < 1}, and
in the particular case ω(x) = (1 − x)α (−1 < α < 0) it becomes the 1 + α order of the ordinary Cauchy
kernel:

Cω(z) =
1

(1 − z)1+α := Cα(z), Cω(z)
∣∣∣
ω≡1

=
1

1 − z
, z ∈ D.

Besides, the corresponding Schwartz type kernel is

Sω(z) := 2Cω(z) − 1 = 1 + 2
+∞∑
k=1

zk

∆k
, z ∈ D, (3.5)

and
Sω(z)

∣∣∣
ω(x)=(1−x)α

=
2

(1 − z)1+α − 1 := Sα(z), Sω(z)
∣∣∣
ω≡1

=
1 + z

1 − z
, z ∈ D.

Definition 3.2. Let E ⊂ [0, 2π] be a Borel measurable set (B-set) and ω ∈ Ω0. It is said that E is of positive
ω-capacity, i.e., Cω(E) > 0, if there exists a nonnegative B-measure µ supported and finite on E and such
that

S1 ≡ lim
r→1−0

max
06ϕ62π

∫ 2π

0
|Cω(rei(ϕ−θ))|dµ(θ) < +∞.

If there is no such a measure, i.e., if S1 = ∞ for any nonnegative B-measure supported on E, then E is
said to be of zero ω-capacity, i.e., Cω(E) = 0.

One can see that Cω(E) = 0, if E is a countable set (see [6, p. 94]). Further, it is easy to see that for
ω(x) = (1 − x)α (−1 < α < 0) the ω-capacity becomes Frostman’s well-known α-capacity [8–10] (see also
[6, 7]).
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Assuming that ω ∈ Ω0, we shall use the following operators (see [5, Lemma 1.1], also [6, 7]) formally
defined on functions u(z) given in D:

Lω1u(z) := −

∫ 1

0
u(zt)dω1(t), where ω1(t) =

∫ 1

t

ω(x)

x
dx,

and
Lωu(z) = u(0) + Lω1U(z), where U(z) = |z|

∂

∂|z|
u(z), z ∈ D.

It is not difficult to see that

Lω[rk] = rk∆k, r ∈ [0, 1], k = 0, 1, 2, . . . , (3.6)

Lωu(z)
∣∣
u(z)≡1 = 1, z ∈ D,

besides, by (3.4) and (3.6)

LωCω(z) =
1

1 − z
, z ∈ D.

For finding some conditions in the terms of ω-capacity, which provide the convergence of the series
representing some of the considered weighted hypergeometric functions, we define two special Ω-sets.

Definition 3.3. Under the assumption that {zn}∞1 ⊂ D\{0} is an arbitrary sequence numerated in the order
of nondecreasing modulus, Ω∗({zn}∞1 ) is the set of the functions

ω(t, zne−iθ,p) = Re {Cω1(zne
−iθ)}e

−p
t(1−t) (1 − |zn|)/(a+ 1)n,

where n ∈N, θ ∈ [0, 2π], Re p > 0, a ∈ C \ Z− (Z− is the set of negative integers) and ω1 ∈ Ω0.
For a single point 0 6= z ∈ D, Ω∗(z) is the set of the functions

ω(n)(t, ze−iθ,p) = Re {Cω1(ze
−iθ)}e

−p
t(1−t) /(a+ 1)n,

where the parameters are as above.

For proving the next theorem, recall the following well-known representation:

Bp(x,y) =
∫ 1

0
tx−1(1 − t)y−1e

−p
t(1−t)dt,

where Re x > 0, Re y > 0 and Re p > 0 (see [11, p. 3611]).

Theorem 3.4. If ω ∈ Ω∗({zn}∞1 ) and m < Re b < Re c, then for all ϑ ∈ [0, 2π], except a set E ⊂ [0, 2π] with
Cω1(E) = 0, the sum

2F1(a,b; c; z;ω) =

∞∑
n=0

Re {Cω1(zne
−iθ)}

(1 − |zn|)(a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!
(3.7)

is absolutely and uniformly convergent in the closed unit disc |z| 6 1.

Proof. Note that by Definition 2.1 in [11] for any m < Re b < Re c, the series

2F1(a,b; c; z;p) =
∞∑
n=0

(a)n(b)n
(b−m)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!

is absolutely and uniformly convergent in |z| < 1. Hence, the sum
∞∑
n=0

(1 − |zn|)(a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!

is absolutely and uniformly convergent in |z| < 1. Further, one can see that the modulus of Bp(b−m+
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n, c− b+m) is bounded by the classical beta-function B(b−m+n, c− b+m). Besides,

Γ(z) = lim
n→+∞ n!nz−1

(z)n
.

Hence, the following asymptotic relation is true:

(a)n(b)n
(b−m)n(a+ 1)nn!

B(b−m+n, c− b+m) =
Γ(b−m)Γ(c− b+m)

Γ(c)

(a)n(b)n
(c)n(a+ 1)nn!

≈ Γ(b−m)Γ(c− b+m)

Γ(c)

n!na−1

Γ(a)

n!nb−1

Γ(b)

Γ(c)

n!nc−1
Γ(a+ 1)
n!na

1
n!

=
Γ(b−m)Γ(c− b+m)a

Γ(b)

1
nc−b+1n!

as n→∞.

Consequently, for |z| = 1 and some constant 0 < M < +∞,∣∣∣∣∣
∞∑
n=1

(1 − |zn|)(a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!

∣∣∣∣∣
6M

∣∣∣∣Γ(b−m)Γ(c− b+m)a

Γ(b)

∣∣∣∣ ∞∑
n=1

1
n1+Re {c−b} < +∞,

since Re c− Reb > 0. Now, the desired result holds by Theorem 2.2 in [6, p. 94].

Theorem 3.5. If ω ∈ Ω∗({zn}∞1 ) and 0 < Re b < Re c, then for all ϑ ∈ [0, 2π], except a set E ⊂ [0, 2π] with
Cω1(E) = 0, the sum

Fω(a,b; c; z) =
∞∑
n=0

Re {Cω1(zne
−iθ)}

(1 − |zn|)(a)n
(a+ 1)n

Bp(b+n, c− b)
B(b, c− b)

zn

n!
(3.8)

is absolutely and uniformly convergent in |z| 6 1.

Proof. In [4] (see also [13]) it is proved that for Re p > 0 and Re c > Re b > 0, the series

Fp(a,b; c; z) =
∞∑
n=0

(a)n
Bp(b+n, c− b)
B(b, c− b)

zn

n!

is absolutely and uniformly convergent in |z| < 1. Hence, also the sum

∞∑
n=0

(1 − |zn|)(a)n
(a+ 1)n

Bp(b+n, c− b)
B(b, c− b)

zn

n!

is absolutely and uniformly convergent in |z| < 1. Besides, the modulus of Bp(b+n, c− b) is bounded by
B(b+n, c− b), and hence

(a)n
(a+ 1)n

B(b+n, c− b)
1
n!

=
Γ(c− b)Γ(b)

Γ(c)

(a)n(b)n
(a+ 1)n(c)n

1
n!

≈ Γ(c− b)Γ(b)
Γ(c)

n!na−1

Γ(a)

n!nb−1

Γ(b)

Γ(a+ 1)
n!na

Γ(c)

n!nc−1
1
n!

=
Γ(c− b)a

Γ(a)

1
nc−b+1n!

.

Consequently, the series ∞∑
n=0

(1 − |zn|)(a)n
(a+ 1)n

Bp(b+n, c− b)
B(b, c− b)

zn

n!

is absolutely and uniformly convergent in |z| 6 1, and the desired result follows by Theorem 2.2 in [6].
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Remark 3.6. In the same way, the statement of Theorem 3.5 can be proved for the ω-weighted generalized
confluent hypergeometric function 1F

ω
1 with Rea > 1.

Remark 3.7. In formula (3.7), the factor (a+ 1)n in the denominator helps to prove the statement on the
convergence over |z| = 1. Obviously the convergences of Theorems 3.4 and 3.5 in |z| < 1 can be proved in
absence of (a+ 1)n in denominators of the sums.

The next two theorems establish that the functions 2F1(a,b; c; z;ω), Fω(a,b; c; z), and 1F
ω
1 belong to

the class Uω (ω ∈ Ω0) defined in [6, p. 37], which permits to write them as some Schwarz type integrals
with measures of bounded variation.

Theorem 3.8. If ω ∈ Ω∗({zn}∞1 ) and m < Re b < Re c, then

2F1(a,b; c; reiϕ;ω) =
1

2π

∫ 2π

0
Re Sω(rei(ϕ−λ))dσ(λ), r ∈ [0, 1), ϕ ∈ [0, 2π], (3.9)

where σ(λ) is a function of bounded variation on [0, 2π] and some finite non-tangential boundary values

lim
z→eiϕ

2F1(a,b; c; z;ω)

exist for all ϕ ∈ [0, 2π], except a set of zero ω-capacity.

Proof. Applying the operator Lω (ω ∈ Ω0) to the representation (3.7) of 2F1(a,b; c; z;ω) and using formula
(3.6), we obtain

Lω
[

2F1(a,b; c; z;ω)
]
=

∞∑
n=0

Re {Cω1(zne
−iθ)}

(1 − |zn|)(a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn∆n

n!
.

Hence, similar to the proof of Theorem 3.4 we get∣∣∣∣∫ 2π

0
Lω

[
2F1(a,b; c; reiϕ;ω)

]
dϕ

∣∣∣∣
6 2π

∫ 1

0
ω(t)dt

∞∑
n=0

∣∣∣∣ (a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

∣∣∣∣ 1
(n− 1)!

< +∞.

Thus, 2F1(a,b; c; r;ω) belongs to the class Uω, which by Theorem 1.5 in [6, p. 37] implies the representa-
tion (3.9). Besides, (3.5) and Theorem 2.5 in [6, p. 112] imply that 2F1(a,b; c; z;ω) has finite non-tangential
boundary values for all ϑ ∈ [0, 2π], except a set of zero ω-capacity.

Theorem 3.9. If ω ∈ Ω∗({zn}∞1 ) and 0 < Re b < Re c, then

Fω(a,b; c; reϕ) =
1

2π

∫ 2π

0
Re Sω(rei(ϕ−λ))dσ(λ), r ∈ [0, 1), ϕ ∈ [0, 2π], (3.10)

where σ(λ) is a function of bounded variation on [0, 2π], and some finite non-tangential boundary values

lim
z→eiϕ

Fω(a,b; c; reϕ)

exist for all ϕ ∈ [0, 2π], except a set of zero ω-capacity.

Proof. Applying the operator Lω with ω ∈ Ω0 to the representation (3.8) and formula (3.6), we get

Lω
[
Fω(a,b; c; z)

]
=

∞∑
n=0

Re {Cω1(zne
−iθ)}

(1 − |zn|)(a)n
(a+ 1)n

Bp(b+n, c− b)
B(b, c− b)

zn∆n

n!
.
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Consequently, as in the proof of Theorem 3.5 we get∣∣∣∣∣
∫ 2π

0
Lω

[
Fω(a,b; c; reiϕ)

]
dϕ

∣∣∣∣∣ 6 2π
∫ 1

0
ω(t)dt

∞∑
n=0

∣∣∣∣ (a)n
(a+ 1)n

Bp(b+n, c− b)
B(b, c− b)

∣∣∣∣ 1
(n− 1)!

< +∞.

Therefore, Fω(a,b; c; z) belongs to the class Uω, and hence the representation (3.10) follows by Theorem
1.5 in [6]. Further, the existence of the finite non-tangential boundary values for all ϕ ∈ [0, 2π], except a
set of zero ω-capacity follows by Theorem 2.5 in [6].

Remark 3.10. Using Remark 3.6, an analog of Theorem 3.9 can be established for the function 1F
ω
1 .

The next two theorems give a boundary property of some integrals of the functions 2F1(a,b; c; z;ω)
and Fω(a,b; c; z), which are in the terms of ω-capacity.

Theorem 3.11. If ω ∈ Ω∗(z), m < Re b < Re c and σ(θ) is an absolutely continuous measure on [0, 2π], then
the integral

2IF1(a,b; c; reϕ;ω) :=
1

2π

∫ 2π

0
2F1

(
a,b; c; reiϕ;ω(n)(t, rei(ϕ−ϑ),p)

)
dσ(θ), 0 < r 6 1,

has finite boundary values for all ϕ ∈ [0, 2π], except a set E ⊂ [0, 2π] of zero ω1-capacity.

Proof. Note that for z = reiϕ (0 < r 6 1, ϕ ∈ [0, 2π]),

2IF1(a,b; c; z;ω) =
1

2π

∫ 2π

0
Re {Cω1(ze

−iθ)}dσ(θ)×
∞∑
n=0

(a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!
.

By Theorem 3.4, this series is absolutely and uniformly convergent in |z| 6 1 (since
∣∣1 − |zn|

∣∣ 6 2,n ∈ N)
and the integral is defined for all ϑ ∈ [0, 2π], except a set E1 ⊂ [0, 2π] with Cω1(E1) = 0. As σ(θ) is
absolutely continuous on [0, 2π], by Theorem 2.5 in [6] we get

lim
r→1−0

1
2π

∫ 2π

0
Re {Cω1(re

i(ϕ−θ))}dσ(θ) =
1

2π

∫ 2π

0
Re {Cω1(e

i(ϕ−θ))}dσ(θ),

for any ϕ ∈ [0, 2π], except a set E2 ⊂ [0, 2π] of zero ω1-capacity. This completes the proof, since the
equalities Cω1(E1) = 0 and Cω1(E2) = 0 imply Cω1(E1 ∪ E2) = 0.

Theorem 3.12. If ω ∈ Ω∗(z), 0 < Re b < Re c and σ(θ) is an absolutely continuous measure on [0, 2π], then the
integral

IFω(a,b; c; reϕ) :=
1

2π

∫ 2π

0
Fω(θ)(a,b; c; reiϕ)dσ(θ), 0 < r 6 1,

has finite boundary values for all ϕ ∈ [0, 2π], except a set E ⊂ [0, 2π] of zero ω1-capacity.

Proof. It is easy to verify that

IFω(a,b; c; z) =
1

2π

∫ 2π

0
Re {Cω1(ze

−iθ)}dσ(θ)×
∞∑
n=0

(a)n
(a+ 1)n

Bp(b+n, c− b)
B(b, c− b)

zn

n!
, z = reiϕ.

By Theorem 3.5 this series is absolutely and uniformly convergent on |z| 6 1 (since
∣∣1 − |zn|

∣∣ 6 2,n ∈ N)
and the integral is well-defined for all ϑ ∈ [0, 2π], except a set E1 ⊂ [0, 2π] with Cω1(E1) = 0. Consequently,
the proof holds by the absolute continuity of σ(θ), since by Theorem 2.5 in [6] the boundary values of the
above integral exist, except a set with Cω1(E2) = 0, and hence Cω1(E1 ∪ E2) = 0.

Remark 3.13. In the same way as Theorem 3.12 is proved, using Remark 3.6 one can prove that I1Fω1 has
finite boundary values for all ϕ ∈ [0, 2π], except a set E ⊂ [0, 2π] of zero ω1-capacity.
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4. Further results, observations and special cases

In this section we prove a convergence theorem similar to Theorems 3.4 and 3.5. Then, in Corollaries
4.2-4.5 we observe some special cases of the main results of the paper.

The following theorem proves that the extended Gauss hypergeometric function introduced in [11]
is absolutely and uniformly convergent in the unit disc, and even on its boundary, except a set of zero
ω-capacity.

Theorem 4.1. If ω ∈ Ω∗({zn}∞1 ) and there is some number 0 < ρ < 1 such that Re {Cω1(zne
−iθ)} > ρ > 0 for

any n ∈N and θ ∈ [0, 2π], and m < Re b < Re c, then the sum

2F1(a,b; c; z;p) =
∞∑
n=0

(a)n(b)n
(b−m)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!
, z = reiθ,

is absolutely and uniformly convergent on |z| 6 1 for all ϑ ∈ [0, 2π], except a set E ⊂ [0, 2π] with Cω1(E) = 0.

Proof. Note that for any 0 6 r < 1 and ϑ ∈ [0, 2π]

∣∣2F1(a,b; c; reiθ;p)
∣∣ 6 ∞∑

n=0

∣∣∣∣ (a)n(b)n(b−m)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

(reiθ)n

n!

∣∣∣∣
6

1
ρ

∞∑
n=0

Re {Cω1(zne
−iθ)}

∣∣∣∣ (a)n(b)n(b−m)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

∣∣∣∣ rnn!
.

Since
∣∣1− |zn|

∣∣ 6 2 and n ∈N, by Theorem 3.4 and Remark 3.7, the last series is absolutely and uniformly
convergent for any 0 6 r 6 1 and ϑ ∈ [0, 2π], except a set E ⊂ [0, 2π] with Cω1(E) = 0.

The next four corollaries hold by setting ω1(x) = 1 and ω1(x) = (1 − x)α (−1 < α < 0) (ω1 ∈ Ω0 in
both cases) in Definition 3.3 and Theorems 3.4, 3.5, 3.8, 3.9.

Corollary 4.2. If ω ∈ Ω∗({zn}∞1 ), m < Re b < Re c, and zn = rne
iϕn , then the series

2F1(a,b; c; z;ω) =

∞∑
n=0

1 − rn cos(θ−ϕn)
|1 − zne−iθ|2

(1 − |zn|)(a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!

and

2F1(a,b; c; z;ω) =

∞∑
n=0

Re {(1 − rne
i(θ−ϕn))(1+α)}

|1 − zne−iθ|2(1+α)
(1 − |zn|)(a)n(b)n
(b−m)n(a+ 1)n

Bp(b−m+n, c− b+m)

B(b−m, c− b+m)

zn

n!

are absolutely and uniformly convergent in |z| 6 1 for all ϑ ∈ [0, 2π], except some sets E1,E2 ⊂ [0, 2π] with
Cα(E1) = Cα(E2) = 0, where Cα is Frostman’s α-capacity.

Corollary 4.3. If ω ∈ Ω∗({zn}∞1 ), 0 < Re b < Re c, and zn = rne
iϕn , then the series

Fω(a,b; c; z) =
∞∑
n=0

1 − rn cos(θ−ϕn)
|1 − zne−iθ|2

(1 − |zn|)(a)n
(a+ 1)n

Bp(b+n, c− b)
B(b, c− b)

zn

n!

and

Fω(a,b; c; z) =
∞∑
n=0

Re {(1 − rne
i(θ−ϕn))(1+α)}

|1 − zne−iθ|2(1+α)
(1 − |zn|)(a)n

(a+ 1)n
Bp(b+n, c− b)
B(b, c− b)

zn

n!

are absolutely and uniformly convergent in |z| 6 1 for all ϑ ∈ [0, 2π], except some sets E1,E2 ⊂ [0, 2π] with
C(E1) = Cα(E2) = 0.
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The last two corollaries give some representations of the functions 2F1 and Fω by the Poisson integral.

Corollary 4.4. If ω ∈ Ω∗({zn}∞1 ) and m < Re b < Re c, then

2F1(a,b; c; reiϕ;ω) =
1

2π

∫ 2π

0

1 − r2

|1 − rei(ϕ−λ)|2
dσ(λ), r ∈ [0, 1), ϕ ∈ [0, 2π],

where σ(λ) is a function of bounded variation on [0, 2π] and some finite non-tangential boundary values

lim
z→eiϕ

2F1(a,b; c; reiϕ;ω)

exist for all ϕ ∈ [0, 2π], except a set of zero α-capacity.

Corollary 4.5. If ω ∈ Ω∗({zn}∞1 ) and 0 < Re b < Re c, then

Fω(a,b; c; reϕ) =
1

2π

∫ 2π

0
Re

1 − r2

|1 − rei(ϕ−λ)|2
dσ(λ), r ∈ [0, 1), ϕ ∈ [0, 2π],

where σ(λ) is a function of bounded variation on [0, 2π] and some finite non-tangential boundary values

lim
z→eiϕ

Fω(a,b; c; reϕ)

exist for all ϕ ∈ [0, 2π], except a set of zero α-capacity.

5. Conclusions

Some new classes of weighted hypergeometric functions containing Djrbashian’s Cauchy type kernel
can be used as a bridge to connect a branch of the theory of special functions to the apparatus of the
factorization theory of Dzhrbashyan and Zakharyan [6, 7]. The delicate notion of ω-capacity, which
becomes Frostman’s α-capacity in a particular case, can be used to describe the sets of rays, where the
series representing various general classes of weighted hypergeometric functions are convergent. Some
class of such hypergeometric functions can be written as Poisson integrals after application of the operator
Lω, which implies a description of the boundary values on |z| = 1 byω-capacities. Besides, it is possible to
describe the boundary behavior of the integrals of some other classes of general, weighted hypergeometric
functions in the terms of ω-capacity by means of some other techniques. The general results of the paper
possess a variety of interesting special cases.
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[7] M. M. Džrbašjan, Theory of factorization and boundary properties of functions meromorphic in the disk, Proceedings of
the International Congress of Mathematician, Vancouver, B. C., (1974), Canad. Math. Congress, Montreal, Que., 2
(1975), 197–202. 3, 3, 5
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