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Keywords: Complex-valued metric space, multivalued mappings, α∗-admissible, closed ball.
2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

The Banach’s fixed point theorem [8] was also used to establish the existence of a unique solution
for a nonlinear integral equation. Moreover, this theorem plays an important role in several branches
of mathematics. For instance, it has been used to show the existence of solutions of nonlinear Volterra
integral equations, nonlinear integro-differential equations in Banach spaces and to show the convergence
of algorithms in computational mathematics. Because of its importance and usefulness for mathematical
theory, it has been become a very popular tool in solving existence problems in many directions. Several
authors have obtained various extensions and generalizations of Banach’s theorem by defining a variety
of contractive type conditions for self and non-self-mappings on metric spaces.

Nadler [19] extended Banach’s contraction principle to multivalued contraction mappings. Many
extensions of Nadler’s result have been derived in recent years. In 2011 Cho et al. [9] initiated the concept
of Housdorff distance function for the cone metric spaces and established some fixed point results.
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Azam et al. [7] introduced the concept of complex-valued metric spaces and proved some common
fixed point results for a pair of single-valued mappings. They explained that complex-valued metric
spaces form a special class of cone metric spaces. The results involving rational expressions which are
meaningless in cone metric spaces are discussed in complex-valued metric spaces. Subsequently, Abbas
et al. [1, 2], Klin-eam et al. [15], Rouzkard et al. [20], Sintunavarat et al. [22, 23], and Sitthikul et al.
[24], established common fixed point theorems satisfying certain rational expressions in complex-valued
metric spaces which generalize, unify and complement the results of Azam et al. [7]. For more details we
refer to the reader [3, 4, 6, 16, 17].

Recently Samet et al. [21] introduced the concepts α-admissible mappings and obtained fixed point
results for such mappings in complete metric spaces. In [11], Asl generalized the concept of α-admissible
by introducing coupled α-admissible and obtained some common fixed point results for self-mappings.
Very recently, Kutbi et al. [16] introduced α∗-ψ-contractive multivalued mappings and obtained some
fixed point results for such mappings in cone metric space. For more details in α-admissible mappings
and α∗-admissible multivalued mappings, we refer the reader to [5, 10, 12–14, 17, 18].

In this article, we define the notion of coupled α∗-admissible mappings for complex-valued metric
spaces and obtain common fixed points of mutivalued mappings in connection with Hausdorff distance
function for closed bounded subsets of complex-valued metric spaces. Let C be the set of complex
numbers and z1, z2 ∈ C. Define a partial order - on C as follows:

z1 - z2 if and only if Re (z1) 6 Re (z2) , Im (z1) 6 Im (z2) .

It follows that z1 - z2 if one of the following conditions is satisfied:

(i) Re (z1) = Re (z2) , Im (z1) < Im (z2) ,
(ii) Re (z1) < Re (z2) , Im (z1) = Im (z2) ,

(iii) Re (z1) < Re (z2) , Im (z1) < Im (z2) ,
(iv) Re (z1) = Re (z2) , Im (z1) = Im (z2) .

In particular, we will write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied and we will write
z1 ≺ z2 if only (iii) is satisfied. Note that

0 - z1 � z2 =⇒ |z1| < |z2| , z1 � z2, z2 ≺ z3 =⇒ z1 ≺ z3.

Definition 1.1. Let X be a non-empty set. Suppose that a mapping d : X×X→ C satisfies:

1. 0 - d(x,y), for all x,y ∈ X and d(x,y) = 0 if and only if x = y;
2. d(x,y) = d(y, x) for all x,y ∈ X;
3. d(x,y) - d(x, z) + d(z,y) for all x,y, z ∈ X.

Then d is called a complex-valued metric on X, and (X,d) is called a complex-valued metric space. Given
a subset P of C, we define a partial ordering � with respect to P and P = {z ∈ C : z � 0}. A point x ∈ X is
called interior point of a set A ⊆ X whenever there exists 0 ≺ r ∈ C such that

B(x, r) = {y ∈ X : d(x,y) ≺ r} ⊆ A,

where B(x, r) is an open ball. Then B(x, r) = {y ∈ X : d(x,y) � r} is a closed ball in the context of complex-
valued metric space.

A point x ∈ X is called a limit point of A whenever for every 0 ≺ r ∈ C,

B(x, r)∩ (Ar {x}) 6= φ.

A is called open whenever each element of A is an interior point of A. Moreover, a subset B ⊆ X is
called closed whenever each limit point of B belongs to B. The family

F = {B(x, r) : x ∈ X, 0 ≺ r}
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is a sub-basis for a Hausdorff topology τ on X.
Let xn be a sequence in X and x ∈ X. If for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for

all n > n0, d(xn, x) ≺ c, then {xn} is said to be convergent, {xn} converges to x and x is the limit point
of {xn} . We denote this by limn→∞ xn = x, or xn −→ x, as n → ∞. If for every c ∈ C with 0 ≺ c there
is n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c, then {xn} is called a Cauchy sequence in (X,d).
If every Cauchy sequence is convergent in (X,d), then (X,d) is called a complete complex-valued metric
space. We require the following lemmas.

Lemma 1.2 ([7]). Let (X,d) be a complex-valued metric space and let {xn} be a sequence in X. Then {xn} converges
to x if and only if |d(xn, x)|→ 0 as n→∞.

Lemma 1.3 ([7]). Let (X,d) be a complex-valued metric space and let {xn} be a sequence in X. Then {xn} is a
Cauchy sequence if and only if |d(xn, xn+m)|→ 0 as n→∞.

2. Main results

Let (X,d) be a complex-valued metric space. We denote nonempty, closed, and bounded subset of
X by CB (X). From now on, we denote s (z1) = {z2 ∈ C : z1 � z2} for z1 ∈ C, and s (a,B) = ∪

b∈B
s (d (a,b)) = ∪

b∈B
{z ∈ C : d (a,b) � z} for a ∈ X and B ∈ CB (X) . For A,B ∈ CB (X) we denote

s (A,B) =
(
∩
a∈A

s (a,B)
)
∩
(
∩
b∈B

s (b,A)
)

.

Lemma 2.1. Let (X,d) be a complex-valued metric space.

(1) Let p,q ∈ C. If p � q, then s(q) ⊂ s(p).
(2) Let x ∈ X and A ∈ N(X). If θ ∈ s(x,A), then x ∈ A.
(3) Let q ∈ P and let A,B ∈ CB(X) and a ∈ A. If q ∈ s(A,B), then q ∈ s(a,B) for all a ∈ A or q ∈ s(A,b) for

all b ∈ B.
(4) Let q ∈ P and let λ > 0, then λs(q) ⊆ s(λq).

Remark 2.2. Let (X,d) be a complex-valued metric space. If C = R, then (X,d) is a metric space. Moreover
for A,B ∈ CB(X), H(A,B) = inf s(A,B) is the Hausdorff distance induced by d.

Definition 2.3. Let (X,d) be a complex-valued metric space and CB(X) be a collection of nonempty closed
and bounded subsets of X. Let T : X→ CB(X) be a multivalued map. For x ∈ X, and A ∈ CB(X), define

Wx(A) = {d(x,a) : a ∈ A}.

Thus for x,y ∈ X
Wx(Ty) = {d(x,u) : u ∈ Ty}.

Definition 2.4. Let (X,d) be a complex-valued metric space. A non-empty subset A of X is called bounded
from below if there exists some z ∈ C, such that z � a for all a ∈ A.

Definition 2.5. Let (X,d) be a complex-valued metric space. A multivalued mapping F : X→ 2C is called
bounded from below if for x ∈ X there exists zx ∈ C such that zx � u for all u ∈ Fx.

Definition 2.6. Let (X,d) be a complex-valued metric space. The multivalued mapping T : X → CB(X)
said to have lower bound property (l.b property) on (X,d), if for any x ∈ X, the multivalued mapping
Fx : X→ 2C defined by,

Fx(Ty) =Wx(Ty)

is bounded from below. That is, for x,y ∈ X there exists an element lx(Ty) ∈ C such that

lx(Ty) � u

for all u ∈Wx(Ty), where lx(Ty) is called lower bound of T associated with (x,y).
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Definition 2.7. Let (X,d) be a complex-valued metric space. The multivalued mapping T : X → CB(X)
said to have the greatest lower bound property (g.l.b property) on (X,d), if the greatest lower bound of
Wx(Ty) exists in C for all x,y ∈ X. We denote d(x, Ty) by the g.l.b of Wx(Ty). That is,

d(x, Ty) = inf{d(x,u) : u ∈ Ty}.

Definition 2.8. Let S, T : X −→ CB (X), and let α : X × X → [0,+∞). One says that S, T are coupled
α∗-admissible if α(x,y) > 1 implies α∗(Sx, Ty) > 1 for all x,y ∈ X, where

α∗(Sx, Ty) = inf{α(x,y) : x ∈ Sx,y ∈ Ty}.

Theorem 2.9. Let S, T : X −→ CB (X) be coupled α∗-admissible mappings with g.l.b property on complete complex-
valued metric space (X,d), x0 ∈ X and 0 ≺ r ∈ C. If S and T satisfy

λd (x,y) +
µd (x,Sx)d (y, Ty) + γd (y,Sx)d (x, Ty)

1 + d (x,y)
∈ α∗(Sx, Ty)s (Sx, Ty) (2.1)

for all x,y ∈ B(x0, r), then
(1 − k)r ∈ s(x0,Sx0), (2.2)

where λ,µ and γ are non-negative real numbers with k = λ
1−µ < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Sx∗ ∩ Tx∗.

Proof. Let x0 be an arbitrary point in X. From (2.2), we have

(1 − k)r ∈ s(x0,Sx0), (1 − k)r ∈ ∪
x∈Sx0

s (d (x0, x1)) .

As Sx0 ∈ CB (X) , so is non-empty then there exists some x1 ∈ Sx0 such that

(1 − k)r ∈ s (d (x0, x1)) .

From the definition, we get
d (x0, x1) � (1 − k)r,

which implies that
|d (x0, x1) | 6 (1 − k)|r|. (2.3)

Thus x1 ∈ B(x0, r). Since α(x0, x1) > 1 and the pair {S, T } is coupled α∗-admissible, so a∗(Sx0, Tx1) > 1.
From (2.1), we get

λd (x0, x1) +
µd (x0,Sx0)d (x1,Tx1) + γd (x1,Sx0)d (x0,Tx1)

1 + d (x0, x1)
∈ a∗(Sx0, Tx1)s (Sx0, Tx1) .

By lemma 4(3), we have

λd (x0, x1) +
µd (x0,Sx0)d (x1,Tx1) + γd (x1,Sx0)d (x0,Tx1)

1 + d (x0, x1)
∈ a∗(Sx0, Tx1) s (x1, Tx1) .

By the definition there exists some x2 ∈ Tx1, such that

λd (x0, x1) +
µd (x0,Sx0)d (x1,Tx1) + γd (x1,Sx0)d (x0,Tx1)

1 + d (x0, x1)
∈ a∗(Sx0, Tx1)s (d(x1, x2)).

By the definition and Lemma 2.1 (4), we get

a∗(Sx0, Tx1)d(x1, x2) � λd (x0, x1) +
µd (x0,Sx0)d (x1,Tx1) + γd (x1,Sx0)d (x0,Tx1)

1 + d (x0, x1)
.
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By using the greatest lower bound property (g.l.b property) of S and T , we get

a∗(Sx0, Tx1)d(x1, x2) � λd (x0, x1) +
µd (x0, x1)d (x1,x2) + γd (x1, x1)d (x0,x2)

1 + d (x0, x1)
.

Hence

0 ≺ d(x1, x2) � a∗(Sx0, Tx1)d(x1, x2) � λd (x0, x1) +
µd (x0, x1)d (x1,x2)

1 + d (x0, x1)
,

which implies that

|d(x1, x2)| 6 λ|d (x0, x1) |+
µ|d (x0, x1) ||d (x1,x2) |

|1 + d (x0, x1) |
= λ|d (x0, x1) |+ µ|d (x1,x2) ||

d (x0, x1)

1 + d (x0, x1)
|,

|d(x1, x2)| 6 λ|d (x0, x1) |+ µ|d (x1,x2) |.

Thus
|d(x1, x2)| 6 k|d (x0, x1) | ,

where k = λ
1−µ < 1. From (2.3), we have

|d(x1, x2)| 6 k|d (x0, x1) | 6 k(1 − k)|r|.

Consider

|d(x0, x2)| 6|d (x0, x1) |+ |d(x1, x2)| 6 (1 − k)|r|+ k(1 − k)|r| = (1 − k)(1 + k)|r| 6 (1 − k2)|r|.

Thus x2 ∈ B(x0, r). Since α(x1, x2) > 1 and the pair {S, T } is coupled α∗-admissible, so a∗ (Tx1,Sx2) > 1.
From (2.1), we get

λd (x1, x2) +
µd (x1, Tx1)d (x2,Sx2) + γd (x1,Sx2)d (x2,Tx1)

1 + d (x1, x2)
∈ a∗ (Tx1,Sx2) s (Tx1,Sx2) .

By Lemma 2.1 (3), we have

λd (x1, x2) +
µd (x1, Tx1)d (x2,Sx2) + γd (x1,Sx2)d (x2,Tx1)

1 + d (x1, x2)
∈ a∗ (Tx1,Sx2) s (x2,Sx2) .

By the definition there exists some x3 ∈ Sx2, such that

λd (x1, x2) +
µd (x1, Tx1)d (x2,Sx2) + γd (x1,Sx2)d (x2,Tx1)

1 + d (x1, x2)
∈ a∗ (Tx1,Sx2) s (d (x2, x3)) .

By the definition and Lemma 2.1 (4), we get

a∗ (Tx1,Sx2)d (x2, x3) � λd (x1, x2) +
µd (x1, Tx1)d (x2,Sx2) + γd (x1,Sx2)d (x2,Tx1)

1 + d (x1, x2)
.

By using the greatest lower bound property (g.l.b property) of S and T , we get

a∗ (Tx1,Sx2)d (x2, x3) � λd (x1, x2) +
µd (x1, x2)d (x2, x3) + γd (x1, x3)d (x2,x2)

1 + d (x1, x2)
.

Hence

0 ≺ d (x2, x3) � a∗ (Tx1,Sx2)d (x2, x3) � λd (x1, x2) +
µd (x1, x2)d (x2, x3)

1 + d (x1, x2)
,

which implies that

|d (x2, x3) | 6 λ|d (x1, x2) |+ µ|d (x2, x3) |
|d (x1, x2) |

|1 + d (x1, x2) |
.
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Thus
|d (x2, x3) | 6 k|d (x1, x2) |,

where k = λ
1−µ < 1. As

|d(x0, x3)| 6|d (x0, x1) |+ |d(x1, x2)|+ |d (x2, x3) | 6 (1 − k)|r|+ k(1 − k)|r|+ k2(1 − k)|r| = (1 − k3)|r| 6 |r|,

so x3 ∈ B(x0, r). Continuing in this way, we can construct a sequence {xn} in B(x0, r) such that for n =
0, 1, 2, . . .

α(x2n, x2n+1) > 1 and α(x2n+1, x2n+2) > 1

with
|d (x2n, x2n+1) | 6 k

2n|d (x0,x1) | and |d (x2n+1, x2n+2) | 6 k
2n+1|d (x0,x1) |,

where k = λ
1−µ < 1 and x2n+1 ∈ Sx2n and x2n+2 ∈ Tx2n+1.

Now inductively, we can construct a sequence {xn} in X such that for n = 0, 1, 2, . . .

α(xn, xn+1) > 1 and |d (xn, xn+1) | 6 k
n|d (x0,x1) |. (2.4)

Without loss of generality assume that we take m > n. Then by (2.4) and the triangle inequality, we get

|d(xn, xm)| 6 |d(xn, xn+1)|+ |d(xn+1, xn+2)|+ · · ·+ |d(xm−1, xm)|

6 [kn + kn+1 + · · ·+ km−1]|d (x0, x1) | 6 [
kn

1 − k
]|d (x0, x1) |

and so
|d(xn, xm)| 6

kn

1 − k
|d (x0, x1) | −→ 0 as m,n −→∞.

This implies that {xn} is a Cauchy sequence in B(x0, r). Since X is complete and B(x0, r) is a closed subspace
of X, so there exists u ∈ B(x0, r) such that xn −→ u as n −→ ∞. We now show that u ∈ Tu and u ∈ Su.
Since α(x2n,u) > 1 for all n and the pair {S, T } is coupled α∗-admissible, so α∗(Sx2n, Tu) > 1 for all n.
From (2.1), we have

λd (x2n,u) +
µd (x2n,Sx2n)d (u, Tu) + γd (u,Sx2n)d (x2n, Tu)

1 + d (x2n,u)
∈ α∗(Sx2n, Tu)s (Sx2n, Tu) .

By Lemma 2.1 (3), we have

λd (x2n,u) +
µd (x2n,Sx2n)d (u, Tu) + γd (u,Sx2n)d (x2n, Tu)

1 + d (x2n,u)
∈ α∗(Sx2n, Tu)s (x2n+1, Tu) .

By the definition there exists some un ∈ Tu such that

λd (x2n,u) +
µd (x2n,Sx2n)d (u, Tu) + γd (u,Sx2n)d (x2n, Tu)

1 + d (x2n,u)
∈ α∗(Sx2n, Tu)s(d (x2n+1,un)).

By the definition and Lemma 2.1 (4), we get

α∗(Sx2n, Tu)d (x2n+1,un) � λd (x2n,u) +
µd (x2n,Sx2n)d (u, Tu) + γd (u,Sx2n)d (x2n, Tu)

1 + d (x2n,u)
.

By using the greatest lower bound property (g.l.b property) of S and T , we have

α∗(Sx2n, Tu)d (x2n+1,un) � λd (x2n,u) +
µd (x2n, x2n+1)d (u,un) + γd (u, x2n+1)d (x2n,un)

1 + d (x2n,u)
.
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Since α∗(Sx2n, Tu) > 1, so we get

0 ≺ d (x2n+1,un) � λd (x2n,u) +
µd (x2n, x2n+1)d (u,un) + γd (u, x2n+1)d (x2n,un)

1 + d (x2n,u)
. (2.5)

Since
d(u,un) � d(u, x2n+1) + d(x2n+1,un),

using (2.5), we get

d(u,un) � d(u, x2n+1) + λd (x2n,u) +
µd (x2n, x2n+1)d (u,un) + γd (u, x2n+1)d (x2n,un)

1 + d (x2n,u)
,

|d(u,un)| 6 |d(u, x2n+1)|+ λ|d(u, x2n+1)|+
µ|d (x2n, x2n+1) ||d (u,un) |+ γ|d (u, x2n+1) ||d (x2n,un) |

|1 + d (x2n,u) |
.

Taking the limit as n −→ ∞, we get |d(u,un)| −→ 0 as n −→ ∞. By Lemma 1.2 we have un −→ u as
n −→ ∞. Since Tu is closed, so u ∈ Tu. Similarly, it follows that u ∈ Su. Thus S and T have a common
fixed point.

Remark 2.10. The conclusion remains true if condition (2.2) is replaced by

(1 − k)r ∈ s(x0, Tx0).

By setting γ = 0 in Theorem 2.9, we get the following corollary.

Corollary 2.11. Let S, T : X −→ CB (X) be coupled α∗-admissible mappings with g.l.b property on complete
complex-valued metric space (X,d), x0 ∈ X and 0 ≺ r ∈ C. If S and T satisfy

λd (x,y) +
µd (x,Sx)d (y, Ty)

1 + d (x,y)
∈ α∗(Sx, Ty)s (Sx, Ty)

for all x,y ∈ B(x0, r), then
(1 − k)r ∈ s(x0,Sx0),

where λ and µ are non-negative real numbers with k = λ
1−µ < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Sx∗ ∩ Tx∗.

By setting S = T in Theorem 2.9, we get the following corollary.

Corollary 2.12. Let T : X −→ CB (X) be α∗-admissible mapping with g.l.b property on complete complex-valued
metric space (X,d), x0 ∈ X and 0 ≺ r ∈ C. If T satisfies

λd (x,y) +
µd (x, Tx)d (y, Ty) + γd (y, Tx)d (x, Ty)

1 + d (x,y)
∈ α∗(Tx, Ty)s (Tx, Ty)

for all x,y ∈ B(x0, r), then
(1 − k)r ∈ s(x0, Tx0),

where λ,µ, and γ are non-negative real numbers with k = λ
1−µ < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Tx∗.

By setting γ = µ = 0 in Theorem 2.9, we get the following corollary.
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Corollary 2.13. Let S, T : X −→ CB (X) be coupled α∗-admissible mappings with g.l.b property on complete
complex-valued metric space (X,d), x0 ∈ X and 0 ≺ r ∈ C. If S and T satisfy

λd (x,y) ∈ α∗(Sx, Ty)s (Sx, Ty)

for all x,y ∈ B(x0, r), then
(1 − k)r ∈ s(x0,Sx0),

where λ is non-negative real number with k = λ < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r) such that
α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as n→ +∞,
then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Sx∗ ∩ Tx∗.

Now we give an example to support our above result.

Example 2.14. Let X = [0,∞). Define d : X×X→ C by

d(x,y) = |x− y| eiθ, θ = tan−1 |
y

x
|.

Then (X,d) is a complex-valued metric space. Considering x0 = 1
2 and r = 1

2 , then B(x0, r) = [0, 1] and

α(x,y) =
{

1, if x,y ∈ [0, 1],
3
2 , otherwise.

Consider the mappings S, T : X→ CB(X) defined by

Sx =

{
[0, 1

5x], if x,y ∈ [0, 1],
[2x, 3x], otherwise,

and

Tx =

{
[0, 1

10x], if x,y ∈ [0, 1],
[3x, 4x], otherwise.

We prove that all the conditions of our Corollary 2.13 are satisfied only for x,y ∈ B(x0, r).

If x,y ∈ [0, 1]. The contractive condition of main theorem is trivial for the case when x = y = 0.
Suppose without any loss of generality that all x,y are nonzero and x < y. Then

d (x,y) = |y− x| eiθ, d (x,Sx) =
∣∣∣x− x

5

∣∣∣ eiθ, d (y, Ty) =
∣∣∣y− y

10

∣∣∣ eiθ,

d (y,Sx) =
∣∣∣y− x

5

∣∣∣ eiθ, d (x, Ty) =
∣∣∣x− y

10

∣∣∣ eiθ,

and
s (Sx, Ty) = s

(∣∣∣x
5
−
y

10

∣∣∣ eiθ) .

Clearly for λ = 1
5 , we have ∣∣∣x

5
−
y

10

∣∣∣ 6 1
5
|y− x| .

Thus
λd (x,y) ∈ α∗(Sx, Ty)s (Sx, Ty) .

Hence all the conditions of our main theorem are satisfied and 0 is a common fixed point of S and T .
Now we prove that the contractive condition is not satisfied for x,y 6∈ B(x0, r) and for any value of λ.

We suppose x = 2 and y = 3, then

α∗(Sx, Ty)s (Sx, Ty) = 8eiθ � eiθ � λd(x,y)

so
λd (x,y) 6∈ α∗(Sx, Ty)s (Sx, Ty) .
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Theorem 2.15. Let S, T : X −→ CB (X) be coupled α∗-admissible mappings with g.l.b property on complete
complex-valued metric space (X,d), x0 ∈ X and 0 ≺ r ∈ C. If S and T satisfy

ad(x,Sx) + bd(y, Ty) + c
d (x,Sx)d (y, Ty)

1 + d (x,y)
∈ α∗(Sx, Ty)s (Sx, Ty) (2.6)

for all x,y ∈ B(x0, r), then
(1 − l)r ∈ s(x0,Sx0), (2.7)

where a,b, and c are non-negative real numbers with l = a
1−b−c < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → v as
n→ +∞, then α(xn, v) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Sx∗ ∩ Tx∗.

Proof. Let x0 be an arbitrary point in X. From (2.7), one can easily prove that

|d (x0, x1) | 6 (1 − l)|r|. (2.8)

Thus x1 ∈ B(x0, r). Since α(x0, x1) > 1 and the pair {S, T } is coupled α∗-admissible, so a∗(Sx0, Tx1) > 1.
From (2.6), we get

ad(x0,Sx0) + bd(x1, Tx1) + c
d (x0,Sx0)d (x1, Tx1)

1 + d (x0, x1)
∈ a∗(Sx0, Tx1)s (Sx0, Tx1) .

By Lemma 2.1 (3), we have

ad(x0,Sx0) + bd(x1, Tx1) + c
d (x0,Sx0)d (x1, Tx1)

1 + d (x0, x1)
∈ a∗(Sx0, Tx1)s (x1, Tx1) .

By the definition, we can take x2 ∈ Tx1 such that

ad(x0,Sx0) + bd(x1, Tx1) + c
d (x0,Sx0)d (x1, Tx1)

1 + d (x0, x1)
∈ a∗(Sx0, Tx1)s(d (x1, x2)).

By the definition and Lemma 2.1 (4), we get

a∗(Sx0, Tx1)d (x1, x2) � ad(x0,Sx0) + bd(x1, Tx1) + c
d (x0,Sx0)d (x1, Tx1)

1 + d (x0, x1)
.

By using the greatest lower bound property (g.l.b property) of S and T , we get

a∗(Sx0, Tx1)d (x1, x2) � ad(x0, x1) + bd(x1, x2) + c
d (x0, x1)d (x1, x2)

1 + d (x0, x1)
.

Hence

0 ≺ d (x1, x2) � ad(x0, x1) + bd(x1, x2) + c
d (x0, x1)d (x1, x2)

1 + d (x0, x1)
,

which implies that

|d (x1, x2) | 6 a|d(x0, x1)|+ b|d(x1, x2)|+ c
|d (x0, x1) ||d (x1, x2) |

|1 + d (x0, x1) |
,

since |d(x0, x1)| < |1 + d(x0, x1)|, so we have

|d (x1, x2) | 6 a|d(x0, x1)|+ b|d(x1, x2)|+ c|d (x1, x2) |, |d (x1, x2) | 6 l|d(x0, x1)|,
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where l = a
(1−b−c) < 1. From (2.8), we get

|d (x1, x2) | 6 l(1 − l)|r|.

Consider

|d(x0, x2)| 6 |d (x0, x1) |+ |d(x1, x2)| 6 (1 − l)|r|+ k(1 − l)|r| = (1 − l)(1 + l)|r| 6 (1 − l2)|r|.

Thus x2 ∈ B(x0, r). Since α(x1, x2) > 1 and the pair {S, T } is coupled α∗-admissible, so a∗ (Tx1,Sx2) > 1.
From (2.6), we get

ad (x1, Tx1) + bd (x2,Sx2) + c
d (x1, Tx1)d (x2,Sx2)

1 + d (x1, x2)
∈ a∗ (Tx1,Sx2) s (Tx1,Sx2) .

By Lemma 2.1 (3), we have

ad (x1, Tx1) + bd (x2,Sx2) + c
d (x1, Tx1)d (x2,Sx2)

1 + d (x1, x2)
∈ a∗ (Tx1,Sx2) s (x2,Sx2) .

By the definition there exists some x3 ∈ Sx2, such that

ad (x1, Tx1) + bd (x2,Sx2) + c
d (x1, Tx1)d (x2,Sx2)

1 + d (x1, x2)
∈ a∗ (Tx1,Sx2) s (d (x2, x3)) .

By the definition and Lemma 2.1 (4), we get

a∗ (Tx1,Sx2)d (x2, x3) � ad (x1, Tx1) + bd (x2,Sx2) + c
d (x1, Tx1)d (x2,Sx2)

1 + d (x1, x2)
.

By using the greatest lower bound property (g.l.b property) of S and T , we get

a∗ (Tx1,Sx2)d (x2, x3) � ad (x1, x2) + bd (x2, x3) + c
d (x1, x2)d (x2, x3)

1 + d (x1, x2)
.

Hence

0 ≺ d (x2, x3) � ad (x1, x2) + bd (x2, x3) + c
d (x1, x2)d (x2, x3)

1 + d (x1, x2)
,

which implies that

|d (x2, x3) | 6 a|d (x1, x2) |+ b|d (x2, x3) |+ c
|d (x1, x2) |

|1 + d (x1, x2) |
|d (x2, x3) |.

Thus
|d (x2, x3) | 6 l|d (x1, x2) |,

where l = a
1−b−c < 1. Consider

|d(x0, x3)| 6 |d (x0, x1) |+ |d(x1, x2)|+ |d (x2, x3) | 6 (1 − l)|r|+ l(1 − l)|r|+ l2(1 − l)|r| = (1 − l3)|r| 6 |r|.

So x3 ∈ B(x0, r). Continuing in this way, we can construct a sequence {xn} in B(x0, r) such that for n =
0, 1, 2, . . .

α(x2n, x2n+1) > 1 and α(x2n+1, x2n+2) > 1

with
|d (x2n, x2n+1) | 6 l

2n|d (x0,x1) | and |d (x2n+1, x2n+2) | 6 l
2n+1|d (x0,x1) |,

where l = a
1−b−c < 1 and x2n+1 ∈ Sx2n and x2n+2 ∈ Tx2n+1.
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Now inductively, we can construct a sequence {xn} in X such that for n = 0, 1, 2, . . .

α(xn, xn+1) > 1 and |d (xn, xn+1) | 6 l
n|d (x0,x1) |.

The proof of {xn} is a Cauchy sequence in B(x0, r) is similar as in Theorem 2.9. Since X is complete and
B(x0, r) is a closed subspace of X, so there exists υ ∈ B(x0, r) such that xn −→ u as n −→ ∞. We now
show that υ ∈ Tυ and υ ∈ Sυ. Since α(x2n,υ) > 1 for all n and the pair {S, T } is coupled α∗-admissible, so
α∗(Sx2n, Tυ) > 1 for all n. From (2.6), we get

ad(x2n,Sx2n) + bd(υ, Tυ) + c
d (x2n,Sx2n)d (υ, Tυ)

1 + d (x2n,υ)
∈ α∗(Sx2n, Tυ)s (Sx2n, Tυ) .

By Lemma 2.1 (3), we have

ad(x2n,Sx2n) + bd(υ, Tυ) + c
d (x2n,Sx2n)d (υ, Tυ)

1 + d (x2n,υ)
∈ α∗(Sx2n, Tυ)s

(
x2n+1 , Tυ

)
.

By the definition, there exists some υn ∈ Tυ such that

ad(x2n,Sx2n) + bd(υ, Tυ) + c
d (x2n,Sx2n)d (υ, Tυ)

1 + d (x2n,υ)
∈ α∗(Sx2n, Tυ)s(d (x2n+1,υn)).

By the definition and Lemma 2.1 (4), we get

α∗(Sx2n, Tυ)d (x2n+1,υn) � ad(x2n,Sx2n) + bd(υ, Tυ) + c
d (x2n,Sx2n)d (υ, Tυ)

1 + d (x2n,υ)
.

By using the greatest lower bound property (g.l.b property) of S and T , we get

α∗(Sx2n, Tυ)d (x2n+1,υn) � ad(x2n, x2n+1) + bd(υ,υn) + c
d (x2n, x2n+1)d (υ,υn)

1 + d (x2n,υ)
.

Hence

0 ≺ d (x2n+1,υn) � ad(x2n, x2n+1) + bd(υ,υn) + c
d (x2n, x2n+1)d (υ,υn)

1 + d (x2n,υ)
.

Now by using the triangular inequality, we get

d(υ,υn) � d(υ, x2n+1) + d(x2n+1,υn) � d(υ, x2n+1) + ad(x2n, x2n+1) + bd(υ,υn)

+ c
d (x2n, x2n+1)d (υ,υn)

1 + d (x2n,υ)
,

(1 − b)|d(υ,υn)| 6 |d(υ, x2n+1)|+ a|d(x2n, x2n+1)|+ c|
d (x2n, x2n+1)d (υ,υn)

1 + d (x2n,υ)
|,

|d(υ,υn)| 6
1

(1 − b)
|d(υ, x2n+1)|+

a

(1 − b)
|d(x2n, x2n+1)|+

c

(1 − b)

|d (x2n, x2n+1) ||d (υ,υn) |
|1 + d (x2n,υ) |

.

By letting n −→∞ in above inequality, we get

|d(υ,υn)| −→ 0 as n −→∞.

By Lemma 1.2, we have υn −→ υ as n −→ ∞. Since Tυ is closed, so υ ∈ Tυ. Similarly, it follows that
υ ∈ Sυ. Thus S and T have a common fixed point.

By taking c = 0 in Theorem 2.15, we get the following corollary.
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Corollary 2.16. Let S, T : X −→ CB (X) be coupled α∗-admissible mappings with g.l.b property on complete
complex-valued metric space (X,d), x0 ∈ X and 0 ≺ r ∈ C. If S and T satisfy

ad(x,Sx) + bd(y, Ty) ∈ α∗(Sx, Ty)s (Sx, Ty)

for all x,y ∈ B(x0, r), then
(1 − l)r ∈ s(x0,Sx0),

where a and b are non-negative real numbers with l = a
1−b < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Sx∗ ∩ Tx∗.

By Taking S = T in Theorem 2.15, we get the following corollary.

Theorem 2.17. Let T : X −→ CB (X) be α∗-admissible mapping with g.l.b property on complete complex-valued
metric space (X,d), x0 ∈ X and 0 ≺ r ∈ C. If T satisfies

ad(x, Tx) + bd(y, Ty) + c
d (x, Tx)d (y, Ty)

1 + d (x,y)
∈ α∗(Tx, Ty)s (Tx, Ty)

for all x,y ∈ B(x0, r), then
(1 − l)r ∈ s(x0, Tx0),

where a,b, and c are non-negative real numbers with l = a
1−b−c < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Tx∗.

The following corollaries follow from Theorem 2.9.

Corollary 2.18. Let S, T : X −→ CB (X) be coupled α∗-admissible mappings on complete metric space (X,d),
x0 ∈ X and 0 < r ∈ R. If S and T satisfy

α∗(Sx, Ty)H(Sx, Ty) 6 λd (x,y) +
µd (x,Sx)d (y, Ty) + γd (y,Sx)d (x, Ty)

1 + d (x,y)

for all x,y ∈ B(x0, r), then
d(x0,Sx0) 6 (1 − k)r,

where λ and µ are non-negative real numbers with k = λ
1−µ < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Sx∗ ∩ Tx∗.

Corollary 2.19. Let T : X −→ CB (X) be α∗-admissible mapping on complete metric space (X,d), x0 ∈ X and
0 < r ∈ R. If S and T satisfy

α∗(Tx, Ty)H(Tx, Ty) 6 λd (x,y) +
µd (x, Tx)d (y, Ty) + γd (y, Tx)d (x, Ty)

1 + d (x,y)

for all x,y ∈ B(x0, r), then
d(x0, Tx0) 6 (1 − k)r,

where λ and µ are non-negative real numbers with k = λ
1−µ < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Tx∗.

The following corollaries follow from Theorem 2.15.
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Corollary 2.20. Let S, T : X −→ CB (X) be coupled α∗-admissible mappings on complete metric space (X,d),
x0 ∈ X and 0 < r ∈ R. If S and T satisfy

α∗(Sx, Ty)H(Sx, Ty) 6 ad(x,Sx) + bd(y, Ty) + c
d (x,Sx)d (y, Ty)

1 + d (x,y)

for all x,y ∈ B(x0, r), then
d(x0,Sx0) 6 (1 − l)r,

where a,b, and c are non-negative real numbers with l = 1
1−b−c < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Sx∗ ∩ Tx∗.

Corollary 2.21. Let T : X −→ CB (X) be α∗-admissible mapping on complete metric space (X,d), x0 ∈ X and
0 < r ∈ R. If S and T satisfy

α∗(Tx, Ty)H(Tx, Ty) 6 ad(x, Tx) + bd(y, Ty) + c
d (x, Tx)d (y, Ty)

1 + d (x,y)

for all x,y ∈ B(x0, r), then
d(x0, Tx0) 6 (1 − l)r,

where a,b, and c are non-negative real numbers with l = 1
1−b−c < 1. Suppose that there exist x0 ∈ X, x1 ∈ B(x0, r)

such that α(x0, x1) > 1. Assume that if {xn} is a sequence in B(x0, r) such that α(xn, xn+1) > 1 and xn → u as
n→ +∞, then α(xn,u) > 1 for all n. Then, there exists a point x∗ in B(x0, r) such that x∗ ∈ Tx∗.

3. Applications

As an application, we prove the following homotopy result.

Theorem 3.1. Let (X,d) be a complete complex-valued metric space with U be an open subset of X. Let F :
[0, 1]× Ū → CB (X) be multivalued mapping with g.l.b property. Suppose there exists ζ̊ ∈ X and 0 ≺ r ∈ C such
that
(a) ζ /∈ [F(t, ζ)], for each ζ ∈ ∂U and each t ∈ [0, 1];
(b) F(t, ·) : Ū→ CB(X) be a multivalued mapping satisfying

λd(ζ, ζ́) +
µd (ζ, F(t, ζ))d

(
ζ́, F(t́, ζ́)

)
+ γd

(
ζ́, F(t, ζ)

)
d
(
ζ, F(t́, ζ́)

)
1 + d(ζ, ζ́)

∈ s(F(t, ζ), F(t́, ζ́))

and
(1 − k)r ∈ s(ζ̊, F(t̊, ζ̊)),

where k = λ
1−µ < 1;

(c) there exists a continuous increasing function ϕ : (0, 1]→ P ∪ {0} such that;

ϕ(s) −ϕ(t) ∈ s(F(s, ζ), F(t, ζ́)) and ϕ(s) ∈ ϕ(t)

for all s, t ∈ [0, 1] and each ζ ∈ Ū where P = {z ∈ C : z � 0}.

Then F(0, ·) has a fixed point if and only if F(1, ·) has a fixed point.

Proof. Suppose F(0, ·) has a fixed point z, so z ∈ F(0, z). From (a), z ∈ U. Define

Q := {(t, ζ) ∈ [0, 1]×U : ζ ∈ F(ζ, t)}.

Clearly Q 6= φ. We define the partial ordering in Q as;

(t, ζ) - (s, ζ́)⇔ t 6 s and d(ζ, ζ́) � 2
1 − k

(ϕ(s) −ϕ(t)).

Let M be a totally ordered subset of Q and t̊ = sup{t : (t, ζ) ∈M}. Consider a sequence {(tn, ζn)n>0} in M
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such that, (tn, ζn) - (tn+1, ζn+1) and tn → t̊ as n→∞. Then for m > n, we have

d(ζm, ζn) �
2

1 − k
(ϕ(tm) −ϕ(tn))→ 0, as n,m→∞,

which implies that {ζn} is a Cauchy sequence. Since (X,d) is complete complex-valued metric space, so
there exists ζ̊ ∈ X, such that ζn → ζ̊. Choose n0 ∈ N, such that for all n > n0, we have

λd(ζn, ζ̊) +
µd (ζn, F(tn, ζn))d

(
ζ̊, F(t̊, ζ̊)

)
+ γd

(
ζ̊, F(tn, ζn)

)
d
(
ζn, F(t̊, ζ̊)

)
1 + d(ζn, ζ̊)

∈ s(F(tn, ζn), F(t̊, ζ̊)),

λd(ζn, ζ̊) +
µd (ζn, F(tn, ζn))d

(
ζ̊, F(t̊, ζ̊)

)
+ γd

(
ζ̊, F(tn, ζn)

)
d
(
ζn, F(t̊, ζ̊)

)
1 + d(ζn, ζ̊)

∈ s(ζn, F(t̊, ζ̊)),

since ζn ∈ F(tn, ζn). So there exists some ζk ∈ F(t̊, ζ̊), such that

d(ζn, ζk) � λd(ζn, ζ̊) +
µd (ζn, F(tn, ζn))d

(
ζ̊, F(t̊, ζ̊)

)
+ γd

(
ζ̊, F(tn, ζn)

)
d
(
ζn, F(t̊, ζ̊)

)
1 + d(ζn, ζ̊)

.

By using the greatest lower bound property (g.l.b property) of F, we get

d(ζn, ζk) � λd(ζn, ζ̊) +
γd

(
ζ̊, ζn

)
d (ζn, ζk)

1 + d(ζn, ζ̊)
,

which implies that

|d(ζn, ζk)| 6 λ|d(ζn, ζ̊)|+
γ|d

(
ζ̊, ζn

)
||d (ζn, ζk) |

|1 + d(ζn, ζ̊)|
,

since |1 + d(ζn, ζ̊)| > |d(ζn, ζ̊)|, so we have

|d(ζn, ζk)| 6 λ|d(ζn, ζ̊)|+ γ|d (ζn, ζk) |, |d(ζn, ζk)| 6
λ

1 − γ
|d(ζn, ζ̊)|.

Consider

|d(ζ̊, ζk)| 6 |d(ζ̊, ζn)|+ |d(ζn, ζk)| 6 |d(ζ̊, ζn)|+
λ

1 − γ
|d(ζn, ζ̊)|→ 0 for all n > n0.

Thus ζk → ζ̊ ∈ F(t̊, ζ̊) and hence ζ̊ ∈ U implies (t̊, ζ̊) ∈ Q. Thus (t, ζ) - (t̊, ζ̊) for all (t, ζ) ∈ M, this gives
that (t̊, ζ̊) is an upper bound of M. Hence by Zorn’s Lemma Q has maximal element (t̊, ζ̊). We claim t̊ = 1,
on the contrary suppose that t̊ 6 1, choose 0 ≺ r ∈ C, and t̊ 6 t, such that

B̄(ζ̊, r) ⊂ U, where r =
2

1 − k
(ϕ(t) −ϕ(t̊)).

Using (c), we have

ϕ(t) −ϕ(t̊) ∈ s(F(t, ζ), F(t̊, ζ̊)),
ϕ(t) −ϕ(t̊) ∈ s

(
ζ̊, F(t, ζ)

)
for all ζ̊ ∈ F(t̊, ζ̊).

So there exists some ζ ∈ F(t, ζ), such that

ϕ(t) −ϕ(t̊) ∈ s(d
(
ζ̊, ζ)

)
,

so that

d(ζ, ζ̊) � ϕ(t) −ϕ(t̊) � (1 − k)r

2
≺ (1 − k)r,



W. Shatanawi, et al., J. Nonlinear Sci. Appl., 10 (2017), 3381–3396 3395

which implies that
|d(ζ, ζ̊)| 6 (1 − k)|r|.

Also by using (b), we conclude that the mapping F(t, ·) : B̄(ζ̊, r) → CB(X) satisfies all assumptions of
Corollary 2.12 for all t ∈ [0, 1]. Hence for all t ∈ [0, 1] there exists ζ ∈ B̄(ζ̊, r) such that ζ ∈ F(t, ζ). Thus
(ζ, t) ∈ Q. Since

d(ζ, ζ̊) ≺ r = 2
1 − k

(ϕ(t) −ϕ(t̊)),

which implies (t̊, ζ̊) - (t, ζ) a contradiction, so t̊ = 1. Hence F(·, 1) has a fixed point. Conversely if F(1, ·)
has a fixed point, then on the same way we can prove that F(0, ·) has a fixed point.
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