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1. Introduction

Accretive and monotone operator equations have been one of the most active research areas of op-
timization theory and nonlinear functional analysis. As it is well-known, zero point theorems of accre-
tive and monotone operator can be deduced from existence theorems for differential equations, see, e.g.
[2, 9, 20, 22] and the references therein. One of efficient methods to solve the accretive and monotone
operator equations is the iterative method.

There are several significant classes of accretive and monotone operators which enjoy remarkable
properties not shared by all such operators. We refer, for example, to strong monotone operators, m-
accretive operators, maximal monotone operators and inverse-strongly accretive operators, see [4, 10, 11,
17] and the references therein. In particular, m-accretive operators are of utmost importance in nonlinear
functional analysis and optimization theory, see [1, 20, 23, 24] and the references therein. It is known that
every m-accretive operator, in the framework of Hilbert spaces, is maximal monotone. Let H be a real
Hilbert space with inner product 〈x,y〉 and induced norm ‖x‖ =

√
〈x, x〉 for x,y ∈ H. Let C be a nonempty

closed and convex subset of H. One known example of maximal mapping is ∂f, the subdifferential of a
convex proper closed function f : H→ Ω, where Ω := (−∞,∞], which is defined by

∂f(x) := {x∗ ∈ H : f(x) + 〈y− x, x∗〉 6 f(y), ∀y ∈ H}, ∀x ∈ H.

Rockafellar [21] proved that ∂f is a maximal monotone operator. It is easy to verify that 0 ∈ ∂f(v) if and
only if f(v) = minx∈H f(x). Another example is M+NC, where M is a single-valued maximal monotone
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mapping that is continuous on C, and NC is the normal cone mapping

NC(x) := {x∗ ∈ H : 〈x∗,y− x〉 6 0,∀y ∈ C},

for x ∈ C and is empty otherwise. Then, 0 ∈ Mx+NC(x) if and only if x ∈ C satisfies the variational
inequalities of 〈Mx,y− x〉 > 0 for all y ∈ C.

Fixed point theory of nonexpansive mappings has been applied to zero point problem of accretive
operators, see [8, 12, 15, 18] and the references therein. One of the most popular techniques for solving
the zero point problem goes back to the work of Browder [6]. The basic idea is to reduce the zero point
problem to a fixed point problem of operator JAr := (Id+ rA)−1, where r is a positive real number and Id
is the identity mapping, which is called the resolvent of A. Bruck [7] proposed a regularization iterative
algorithm and proved the strong convergence of the iterative algorithm.

In this paper, we are interested in finding iteratively a common solution of a zero point problem of
an accretive operator A and a fixed point problem of a nonexpansive mapping S via a viscosity approx-
imation method involving a τ-contractive mapping. Our results improve the corresponding results in
[8, 15, 17, 18].

2. Preliminaries

Let E be a Banach space and let E∗ be the dual space of E. Let C be a closed convex subset C of E.
Recall that C is said to have the normal structure if for each bounded closed convex subset D of C which
contains at least two points, there exists an element x of D which is not a diametral point of K, i.e.,

diam(D) > sup{‖x− y‖ : y ∈ D},

where diam(D) is the diameter of D. Let 〈·, ·〉 denote the pairing between E and E∗. The normalized
duality mapping J : E→ 2E

∗
is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E.

In the sequel, we use j to denote the single-valued normalized duality mapping.
Let SE = {x ∈ E : ‖x‖ = 1}. Recall that E is said to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x+ ty‖− ‖x‖
t

,

exists for each x,y ∈ SE. E is said to be uniformly smooth or said to be have a uniformly Fréchet
differentiable norm if the limit is attained uniformly for x,y ∈ SE. E is said to have a uniformly Gâteaux
differentiable norm if for each y ∈ UE, the limit is attained uniformly for all x ∈ SE. It is known that if
the norm of E is uniformly Gâteaux differentiable, then duality mapping J is single-valued and uniformly
norm to weak∗ continuous on each bounded subset of E.

Let Id denote the identity operator on E. An operator A ⊂ E× E with domain Dom(A) = {z ∈ E :
Az 6= ∅} and range Ran(A) = ∪{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A) and yi ∈ Axi,
i = 1, 2, there exists j(x1 − x2) ∈ J(x1 − x2) such that

〈y1 − y2, j(x1 − x2)〉 > 0.

From Kato [13], we see that A is accretive if and only if for all λ > 0, (x1,y1) ∈ A and (x2,y2) ∈ A, we
have

‖x1 − x2‖ 6 ‖x1 − x2 + λ(y1 − y2)‖.

From the viewpoint of geometry, accretive operator A ⊂ E× E has the following properties: the range
of accretive operator I+ λA increases, that is, I+ λA is expansive. An accretive operator A is said to be
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m-accretive if Ran(I+ rA) = E for all r > 0. In a real Hilbert space, an operator A is m-accretive if and
only if A is maximal monotone. In this paper, we use A−1(0) to denote the set of zeros of A. Interest in
accretive operators stems mainly from their firm connection with equations of evolution, such as, heat,
wave or Schrödinger equations.

For an accretive operator A, we can define a nonexpansive mapping (Id + rA)−1 : Ran(I + rA) →
Dom(A), which is called the resolvent of A.

Let S : C → C be a mapping and its fixed point set is denoted by F(S). Recall that S is said to be
contractive if there exists a constant τ ∈ (0, 1) such that

‖Sx− Sy‖ 6 τ‖x− y‖, ∀x,y ∈ C.

We also call S is a τ-contraction. S is said to be strongly pseudocontraction if there exist a constant
τ ∈ (0, 1) and some j(x− y) ∈ J(x− y) such that

〈Sx− Sy, j(x− y)〉 6 α‖x− y‖2, ∀x,y ∈ C.

We also call S is a τ-strong pseudocontraction. S is said to be nonexpansive if

‖Sx− Sy‖ 6 ‖x− y‖, ∀x,y ∈ C.

One classical way to study nonexpansive mappings is to use contractions to approximate a nonexpan-
sive mapping. Take t ∈ (0, 1) and define a contraction ST ,t : C→ C by

ST ,tx = tT + (1 − t)Sx, ∀x ∈ C,

where T : C → C is a τ-contraction. Banach’s contraction mapping principle guarantees that ST ,t has a
unique fixed point xS,T ,t in C. That is,

xS,T ,t = tTxS,T ,t + (1 − t)SxS,T ,t.

Moudafi [15] proved that xS,T ,t converges strongly to a fixed point of S in the framework of Banach space.
For the results in the framework of Banach spaces, one refers to [5, 15, 16, 19] and the references therein.

Recently, Chang et al. [8] studied the following iterative scheme for accretive and nonexpansive
operators via a viscosity approximate method:

x0 ∈ C,
yn = βnxn + (1 −βn)S(Id+ rA)

−1xn,
xn+1 = αnf(xn) + (1 −αn)yn, ∀n > 0,

where r is a positive real number sequence, Id is the identity operator, {αn} and {βn} are two real number
sequences in (0, 1), f is a contraction, S is a nonexpansive mapping and A is an accretive operator. Under
some suitable restrictions imposed on the above sequences, they obtained a strong convergence theorem
of common solution to problems of Sx = x and Ax = 0.

Motivated by the above results, we investigate a zero point problem of an m-accretive operators and
a fixed point problem of a nonexpansive mapping via a viscosity approximation method in a nonsmooth
Banach space. We prove a strong convergence theorem of common solutions with mild restrictions im-
posed on the control sequences. It deserves to mention that control sequence {rn} is variable and the
framework of the space is general in our convergence theorem comparing with Chang-Lee-Chan’s results
[8]. To prove our main results, we need the following tools.

Lemma 2.1 ([22]). Let {xn} and {yn} be bounded sequences in a Banach space E and {βn} be a sequence in [0, 1]
with

0 < lim inf
n→∞ βn 6 lim sup

n→∞ βn < 1.
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Suppose that
xn+1 = (1 −βn)yn +βnxn, ∀n > 1,

and
lim sup
n→∞ (‖yn+1 − yn‖− ‖xn+1 − xn‖) 6 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.2 ([12]). In a Banach space E, there holds the inequality

‖x+ y‖2 6 ‖x‖2 + 2〈y, j(x+ y)〉, ∀x,y ∈ E,

where j(x+ y) ∈ J(x+ y).

Lemma 2.3 ([18]). Let E be a real reflexive Banach space with the uniformly Gâteaux differentiable norm and C be
a nonempty closed convex subset of E which has the normal structure. Let S : C → C be a nonexpansive mapping
with a fixed point and T : C → C be a fixed contraction with the coefficient τ ∈ (0, 1). Let {xS,T ,t} be a sequence
defined as follows

xS,T ,t = tTxt + (1 − t)SxS,T ,t,

where t ∈ (0, 1). Then {xt} converges strongly as t → 0 to a fixed point x∗ of S, which is the unique solution in
F(S) to the following variational inequality

〈Tx∗ − x∗, j(x∗ − p)〉 > 0, ∀p ∈ F(S).

Lemma 2.4 ([14]). Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying

an+1 6 (1 − tn)an + bn + cn, ∀n > 0,

where {tn} is a sequence in (0, 1). Assume that the following conditions are satisfied

(a)
∑∞
n=0 tn = ∞ and bn = o(tn);

(b)
∑∞
n=0 cn <∞.

Then limn→∞ an = 0.

Lemma 2.5 ([3]). Let E be a Banach space and A an m-accretive operator. For λ > 0 and µ > 0 and x ∈ E, we
have

Jλx = Jµ

(µ
λ
x+

(
1 −

µ

λ

)
Jλx
)

,

where Jλ = (I+ λA)−1 and Jµ = (I+ µA)−1.

3. Main results

Theorem 3.1. Let E be a real reflexive Banach space and let A be an m-accretive operators in E. Assume that
C := Dom(A) is convex and has the normal structure and E has a uniformly Gâteaux differentiable norm. Let
S : C→ C be a nonexpansive mapping with a nonempty fixed point set and T : C→ C be a τ-contractive mapping.
Let {αn} and {βn} be real number sequences in (0, 1). Let {xn} be a sequence generated in the following manner:

x0 ∈ C,
yn = βnS(Id+ rnA)

−1(ern + xn) + (1 −βn)xn,
xn+1 = αnTxn + (1 −αn)yn, ∀n > 0,

where {rn} is a positive real number sequence, {ern} is a bounded sequence in E, and Id is the identity operator.
Assume that the above control sequences satisfy the following restrictions:
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limn→∞ αn = 0,
∑∞
n=1 αn = ∞, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1, limn→∞ rn = r ∈ (0, R)+ and

F = (S(Id+ rA)−1) = A−1(0)∩ F(S) 6= ∅.
Then {xn} converges strongly to a common solution x̄ of problems Ax = 0 and Sx = x. Furthermore, x̄ is the unique
solution of generality variational inequality

〈f(x̄) − x̄, j(x̄− y)〉 > 0, ∀y ∈ F(S)∩A−1(0).

Proof. We first show that {xn} and {yn} are bounded sequences in C. Fixing p ∈ A−1(0) ∩ Fix(S), we see
that

‖yn − p‖ = ‖βnS(Id+ rnA)−1(ern + xn) + (1 −βn)xn − p‖
6 βn‖S(Id+ rnA)−1(ern + xn) − S(Id+ rnA)

−1p‖+ (1 −βn)‖xn − p‖
6 βn‖(Id+ rnA)−1(ern + xn) − (Id+ rnA)

−1p‖+ (1 −βn)‖xn − p‖
6 βn‖(ern + xn) − p‖+ (1 −βn)‖xn − p‖
6 ‖xn − p‖+ ‖ern‖.

Hence, we have

‖xn+1 − p‖ = ‖αnTxn + (1 −αn)yn − p‖
6 αn‖Txn − p‖+ (1 −αn)‖yn − p‖
6 αn‖Txn − Tp‖+ (1 −αn)‖yn − p‖+αn‖Tp− p‖

6 (1 −αn(1 − τ))‖xn − p‖+αn(1 − τ)
‖Tp− p‖

1 − τ
+ (1 −αn)‖ern‖

6 max{‖x0 − p‖,
‖Tp− p‖

1 − τ
}+ ‖ern‖.

Since
∑∞
n=0 ern <∞, we find that {xn} is bounded, so is {yn}. From Lemma 2.5, one has

‖(Id+rnA)−1(ern + xn) − (Id+ rn+1A)
−1(ern+1 + xn+1)‖

= ‖(Id+ rnA)−1(ern + xn) − (Id+ rnA)
−1( rn

rn+1
(ern+1 + xn+1)

+ (1 −
rn

rn+1
)(Id+ rn+1A)

−1(ern+1 + xn+1)
)
‖

6 ‖ rn
rn+1

(ern+1 + xn+1)

+ (1 −
rn

rn+1
)(Id+ rn+1A)

−1(ern+1 + xn+1) − (ern + xn)‖

6 ‖ rn
rn+1

(ern+1 + xn+1 − ern − xn)

+
rn+1 − rn
rn+1

(
(Id+ rn+1A)

−1(ern+1 + xn+1) − (ern + xn)
)
‖

6 ‖(ern+1 + xn+1 − ern − xn) +
rn+1 − rn
rn+1

Ωn‖

6 ‖xn+1 − xn‖+
|rn+1 − rn|

rn+1
‖Ωn‖+ ‖ern+1‖+ ‖ern‖,

(3.1)

where Ωn = (Id+ rn+1A)
−1(ern+1 + xn+1) − ern+1 − xn+1. Putting zn =

xn+1−(1−βn)xn
βn

, we have

zn+1 − zn =
xn+2 − (1 −βn+1)xn+1

βn+1
−
xn+1 − (1 −βn)xn

βn

=
αn+1(Txn+1 − yn+1) + yn+1 − (1 −βn+1)xn+1

βn+1
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−
αn(Txn − yn) + yn − (1 −βn)xn

βn

=
αn+1(Txn+1 − yn+1) +βn+1S(Id+ rn+1A)

−1(ern+1 + xn+1)

βn+1

−
αn(Txn − yn) +βnS(Id+ rnA)

−1(ern + xn)

βn

= αn+1
Txn+1 − yn+1

βn+1
−αn

Txn − yn
βn

+ S(Id+ rn+1A)
−1(ern+1 + xn+1) − S(Id+ rnA)

−1(ern + xn).

This in turn implies that

‖zn+1 − zn‖ 6 αn+1
‖Txn+1 − yn+1‖

βn+1
+αn

‖Txn − yn‖
βn

+ ‖S(Id+ rn+1A)
−1(ern+1 + xn+1) − S(Id+ rnA)

−1(ern + xn)‖

6 αn+1
‖Txn+1 − yn+1‖

βn+1
+αn

‖Txn − yn‖
βn

+ ‖(Id+ rn+1A)
−1(ern+1 + xn+1) − (Id+ rnA)

−1(ern + xn)‖.

(3.2)

Combining (3.1) with (3.2), one sees that

‖zn+1 − zn‖− ‖xn+1 − xn‖ 6 αn+1
‖Txn+1 − yn+1‖

βn+1
+αn

‖Txn − yn‖
βn

+
|rn+1 − rn|

rn+1
‖Ωn‖+ ‖ern+1‖+ ‖ern‖.

From the restrictions imposed on the control sequences, we have

lim sup
n→∞

(
‖zn+1 − zn‖− ‖xn − xn+1‖

)
6 0.

By virtue of Lemma 2.1, we have
lim
n→∞ ‖zn − xn‖ = 0.

This implies that
lim
n→∞ ‖xn+1 − xn‖ = 0,

and
lim
n→∞ ‖yn − xn‖ = 0.

In view of S(Id+ rnA)−1(ern + xn) − xn = yn−xn
βn

and using the restriction imposed on {βn}, one has

lim
n→∞ ‖S(Id+ rnA)−1(ern + xn) − xn‖ = 0. (3.3)

Since

‖S(Id+rnA)−1xn − xn‖
6 ‖S(Id+ rnA)−1xn − S(Id+ rnA)

−1(ern + xn)‖+ ‖S(Id+ rnA)−1(ern + xn) − xn‖
6 ‖(Id+ rnA)−1xn − (Id+ rnA)

−1(ern + xn)‖+ ‖S(Id+ rnA)−1(ern + xn) − xn‖
6 ‖S(Id+ rnA)−1(ern + xn) − xn‖+ ‖ern‖,
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we find from (3.3) that
lim
n→∞ ‖S(Id+ rnA)−1xn − xn‖ = 0. (3.4)

From Lemma 2.5, we obtain that

‖(Id+rnA)−1(xn) − (Id+ rA)−1(xn)‖

= ‖(Id+ rA)−1( r
rn
xn + (1 −

r

rn
)(Id+ rnA)

−1xn
)
− (Id+ rA)−1xn‖

6 ‖
( r
rn
xn + (1 −

r

rn
)(Id+ rnA)

−1xn
)
− xn‖

6 ‖(1 −
r

rn
)((Id+ rnA)

−1xn − xn)‖.

It follows that
lim
n→∞ ‖(Id+ rnA)−1(xn) − (Id+ rA)−1(xn)‖ = 0. (3.5)

Since
‖xn−S(Id+ rA)−1(xn)‖

6 ‖xn − S(Id+ rnA)
−1(xn)‖+ ‖S(Id+ rnA)−1(xn) − S(Id+ rA)

−1(xn)‖
6 ‖xn − S(Id+ rnA)

−1(xn)‖+ ‖(Id+ rnA)−1(xn) − (Id+ rA)−1(xn)‖,

we see from (3.4) and (3.5) that

lim
n→∞ ‖xn − S(Id+ rA)−1(xn)‖ = 0. (3.6)

Since mapping tf + (1 − t)S(Id + rA)−1 is contractive, it has a unique fixed point. Next we use xt to
denote the unique fixed point of tf+ (1 − t)S(Id+ rA)−1, that is,

xt = tf(xt) + (1 − t)S(Id+ rA)−1xt, ∀t ∈ (0, 1).

From Lemma 2.3, we find that xt → x̄, where x̄ = ProjF(S)∩M−1(0)f(x̄), that is, x̄ is the unique solution of
generality variational inequality

〈f(x̄) − x̄, j(x̄− y)〉 > 0, ∀y ∈ F(S)∩A−1(0).

Next, we prove
lim sup
n→∞ 〈f(x̄) − x̄, j(xn − x̄)〉 6 0, (3.7)

For all t ∈ (0, 1), we see that

‖xt − xn‖2 = (1 − t)〈S(Id+ rA)−1xt − xn, j(xt − xn)〉+ t〈f(xt) − xn, j(xt − xn)〉
= (1 − t)

(
〈S(Id+ rA)−1xt − S(Id+ rA)

−1xn, j(xt − xn)〉
+ 〈S(Id+ rA)−1xn − xn, j(xt − xn)〉

)
+ t〈f(xt) − xt, j(xt − xn)〉+ t〈xt − xn, j(xt − xn)〉

6 (1 − t)
(
‖xt − xn‖2 + ‖S(Id+ rA)−1xn − xn‖‖xt − xn‖

)
+ t〈f(xt) − xt, j(xt − xn)〉+ t‖xt − xn‖2

6 ‖xt − xn‖2 + (1 − t)‖S(Id+ rA)−1xn − xn‖‖xt − xn‖+ t〈f(xt) − xt, j(xt − xn)〉.

It follows that

〈xt − f(xt), j(xt − xn)〉 6
1 − t

t
‖S(Id+ rA)−1xn − xn‖‖xt − xn‖, ∀t ∈ (0, 1).
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It follows from (3.6) that
lim sup
n→∞ 〈xt − f(xt), j(xt − xn)〉 6 0. (3.8)

Since xt → Q(u) as t→ 0 and the fact that j is strong to weak∗ uniformly continuous on bounded subsets
of E, we from (3.8) see that

lim sup
n→∞ 〈f(x̄) − x̄, j(xn − x̄)〉 6 0,

that is, (3.7) holds.
Finally, we show that xn → x̄ as n→∞. Using Lemma 2.2, we find that

‖xn+1 − x̄)‖2 = ‖(1 −αn)(yn − x̄) +αn(f(xn) − x̄)‖2

6 (1 −αn)
2‖yn − x̄‖2 + 2αn〈f(xn) − x̄, j(xn+1 − x̄)〉

6 (1 −αn)
2‖yn − x̄‖2 + 2αn‖f(xn) − f(x̄)‖‖xn+1 − x̄‖+ 2αn〈f(x̄) − x̄, j(xn+1 − x̄)〉

6 (1 −αn)
2‖yn − x̄‖2 + 2αnτ‖xn − x̄‖‖xn+1 − x̄‖+ 2αn〈f(x̄) − x̄, j(xn+1 − x̄)〉.

(3.9)

On the other hand, we have

‖yn − x̄‖ = ‖(1 −βn)(xn − x̄) +βn(S(Id+ rnA)
−1(ern + xn) − x̄)‖

6 (1 −βn)‖xn − x̄‖+βn‖S(Id+ rnA)−1(ern + xn) − S(Id+ rnA)
−1x̄‖

6 (1 −βn)‖xn − x̄‖+βn‖(Id+ rnA)−1(ern + xn) − (Id+ rnA)
−1x̄‖

6 (1 −βn)‖xn − x̄‖+βn‖(ern + xn) − x̄‖
6 ‖xn − x̄‖+ ‖ern‖.

(3.10)

Substituting (3.10) into (3.9), we find that

‖xn+1 − x̄‖2 6 (1 −αn)
2‖xn − x̄‖2 + (1 −αn)

2‖ern‖(‖ern‖+ 2‖xn − x̄‖) + 2αnτ‖xn − x̄‖‖xn+1 − x̄‖
+ 2αn〈f(x̄) − x̄, j(xn+1 − x̄)〉

6 (1 −αn)
2‖xn − x̄‖2 + ‖ern‖(‖ern‖+ 2‖xn − x̄‖) +αnτ(‖xn − x̄‖2 + ‖xn+1 − x̄‖2)

+ 2αn〈f(x̄) − x̄, j(xn+1 − x̄)〉
6
(
1 −αn(2 − τ) +α2

n

)
‖xn − x̄‖2 + ‖ern‖(‖ern‖+ 2‖xn − x̄‖) +αnτ‖xn+1 − x̄‖2

+ 2αn〈f(x̄) − x̄, j(xn+1 − x̄)〉.

This implies that

‖xn+1 − x̄‖2 6
1 −αn(2 − τ) +α2

n

1 −αnτ
‖xn − x̄‖2 +

1
1 −αnτ

‖ern‖(‖ern‖+ 2‖xn − x̄‖)

+
2αn

1 −αnτ
〈f(x̄) − x̄, j(xn+1 − x̄)〉.

Using Lemma 2.4, we can obtain the desired conclusion easily.

Remark 3.2. Theorem 3.1 improves the corresponding results in Chang et al. [8] in the following aspects.

(i) The framework of the space is extended to the case of nonsmooth Banach spaces.

(ii) Control sequence {rn} is variable with the iteration.

(iii) Control sequences {αn} and {βn} are simpler.

From Theorem 3.1, we obtain the following result immediately.
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Corollary 3.3. Let E be a real reflexive Banach space and let A be an m-accretive operators in E. Assume that
C := Dom(A) is convex and has the normal structure and E has a uniformly Gâteaux differentiable norm. Let
T : C → C be a τ-contractive mapping. Let {αn} and {βn} be real number sequences in (0, 1). Let {xn} be a
sequence generated in the following manner:

x0 ∈ C,
yn = βn(Id+ rnA)

−1(ern + xn) + (1 −βn)xn,
xn+1 = αnTxn + (1 −αn)yn, ∀n > 0,

where {rn} is a positive real number sequence, {ern} is a bounded sequence in E, and Id is the identity operator.
Assume that the above control sequences satisfy the following restrictions:
limn→∞ αn = 0,

∑∞
n=1 αn = ∞, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1, limn→∞ rn = r ∈ (0, R)+ and

A−1(0) 6= ∅.
Then {xn} converges strongly to a common solution x̄ of problems Ax = 0 and Sx = x. Furthermore, x̄ is the

unique solution of generality variational inequality

〈f(x̄) − x̄, j(x̄− y)〉 > 0, ∀y ∈ A−1(0).

Corollary 3.4. Let E be a real reflexive Banach space and let A be an m-accretive operators in E. Assume that
C := Dom(A) is convex and has the normal structure and E has a uniformly Gâteaux differentiable norm. Let
S : C → C be a nonexpansive mapping with a nonempty fixed point set. Let {αn} and {βn} be real number
sequences in (0, 1). Let {xn} be a sequence generated in the following manner:

x0 ∈ C,
yn = βnS(Id+ rnA)

−1(ern + xn) + (1 −βn)xn,
xn+1 = αnx+ (1 −αn)yn, ∀n > 0,

where x is a fixed element in C, {rn} is a positive real number sequence, {ern} is a bounded sequence in E, and Id is
the identity operator. Assume that the above control sequences satisfy the following restrictions:
limn→∞ αn = 0,

∑∞
n=1 αn = ∞, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1, limn→∞ rn = r ∈ (0, R)+ and

F = (S(Id+ rA)−1) = A−1(0)∩ F(S) 6= ∅.
Then {xn} converges strongly to a common solution x̄ of problems Ax = 0 and Sx = x. Furthermore, x̄ is the

unique solution of generality variational inequality

〈x− x̄, j(x̄− y)〉 > 0, ∀y ∈ F(S)∩A−1(0).
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