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Abstract
We investigate the global asymptotic stability and Naimark-Sacker bifurcation of the difference equation

xn+1 =
F

bxnxn−1 + cx
2
n−1 + f

, n = 0, 1, · · · ,

with non-negative parameters and nonnegative initial conditions x−1, x0 such that bx0x−1 + cx
2
−1 + f > 0. By using fixed point

theorem for monotone maps we find the region of parameters where the unique equilibrium is globally asymptotically stable.
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1. Introduction and preliminaries

In this paper we investigate the global dynamics of the following difference equation

xn+1 =
F

bxnxn−1 + cx
2
n−1 + f

= H(xn, xn−1), n = 0, 1, · · · , (1.1)

where
F,b, c, f ∈ (0,∞) ,

and the initial conditions x−1 and x0 are arbitrary nonnegative real numbers. Equation (1.1) is the special
case of a general second order quadratic fractional equation of the form

xn+1 =
Ax2
n +Bxnxn−1 +Cx

2
n−1 +Dxn + Exn−1 + F

ax2
n + bxnxn−1 + cx

2
n−1 + dxn + exn−1 + f

, n = 0, 1, · · · , (1.2)
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with nonnegative parameters and initial conditions such that A+B+C > 0, a+ b+ c+ d+ e+ f > 0 and
ax2
n + bxnxn−1 + cx

2
n−1 + dxn + exn−1 + f > 0 ,n = 0, 1, · · · . Several global asymptotic results for some

special cases of (1.2) were obtained in [4–6, 15]. The systematic theory of the linear fractional difference
equation

xn+1 =
Dxn + Exn−1 + F

dxn + exn−1 + f
, n = 0, 1, · · · , (1.3)

with nonnegative parameters and initial conditions such that D+ E+ F > 0, d+ e+ f > 0 and

dxn + exn−1 + f > 0, n = 0, 1, · · · ,

was presented in [7] where it was shown that (1.3) does not exhibit Naimark-Sacker bifurcation and
can only exhibit either conservative chaos or period doubling bifurcation, see [7, 10, 11]. In the case of
quadratic fractional difference equation (1.2) we showed that Naimark-Sacker bifurcation is very common,
see [12]. First systematic study of global dynamics of a special case of (1.2) where A = C = D = a = c =
d = 0 was performed in [1, 2].

The global attractivity result in [7, 9], which is the fixed point theorem for monotone maps that will
be used here is the following result.

Theorem 1.1. Assume that the difference equation

xn+1 = G(xn, . . . , xn−k), n = 0, 1, · · · ,

where G is nondecreasing functions in all its arguments has the unique equilibrium x ∈ I, where I is an invariant
interval, that is G : Ik+1 → I. Then x is globally asymptotically stable.

In this paper we perform the local stability analysis of the unique equilibrium and give the nec-
essary and sufficient conditions for the equilibrium to be locally asymptotically stable, a repeller or a
non-hyperbolic equilibrium. The local stability analysis indicates that some possible dynamic scenarios
for (1.1) include Naimark-Sacker bifurcation. We apply Theorem 1.1 in the part of the region of local
asymptotic stability to obtain global asymptotic stability result. In the complement of the parametric
region where the equilibrium is locally stable the equilibrium becomes repeller with two characteristic
values to be complex conjugate numbers and on the boundary of this region two characteristic values are
complex conjugate numbers on the unit circle. We show that in this case (1.1) exhibits Naimark-Sacker
bifurcation resulting in the existence of locally stable periodic solution of unknown period.

2. Linearized stability analysis

In this section we present the local stability of the unique positive equilibrium of (1.1).
In view of the above restriction on the initial conditions of (1.1), the equilibrium points of (1.1) are the

positive solutions of the equation

x =
F

(b+ c) x2 + f
,

or equivalently
(b+ c)x3 + fx− F = 0. (2.1)

By Descartes rule of sign (2.1) has the unique positive solution x given as

x = 3

√
1

2(b+c)

(
F+

√
F2 + 4f3

27(b+c)

)
− f

3(b+c) 3

√√√√ 1
2(b+c)

(
F+

√
F2+

4f3

27(b+c)

) . (2.2)

Now we investigate the stability of the positive equilibrium of (1.1). Set

H(u, v) =
F

buv+ cv2 + f
,

and observe that
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H′u(u, v) =
−bFv

(buv+ cv2 + f)
2 , H′v(u, v) =

−F (bu+ 2cv)

(buv+ cv2 + f)
2 .

If x denotes an equilibrium point of (1.1), then the linearized equation associated with (1.1) about the
equilibrium point x is

zn+1 = szn + tzn−1,

where
s = H′u(x, x) and t = H′v(x, x).

Theorem 2.1. The unique equilibrium point x of (1.1) given by (2.2) is

(i) locally asymptotically stable if f3 >
c3F2

(b+ 2c)2 ;

(ii) a repeller if f3 <
c3F2

(b+ 2c)2 ;

(iii) a non-hyperbolic point of elliptic type if f3 =
c3F2

(b+ 2c)2 .

Proof. A straightforward calculation yields

s = H′u(x, x) =
−bFx(

(b+ c) x2 + f
)2 =

−bx3

F
< 0,

and

t = H′v(x, x) =
−F (b+ 2c) x(
(b+ c) x2 + f

)2 =
−(b+ 2c) x3

F
< 0.

Thus s− t > 0 and
s2 − (1 − t)2 = (s+ t− 1) (s− t+ 1) < 0,

i.e.,
|s| < |1 − t| .

The unique equilibrium point x is a non-hyperbolic point of elliptic type for t = −1. Eigenvalues are
given by

λ1,2 =
−b± i

√
4 (b+ 2c)2 − b2

2 (b+ 2c)
, (2.3)

and so |λ1,2| = 1. Hence, for

t = −1⇔ −(b+ 2c) x3

F
= −1⇔ x = 3

√
F

b+ 2c
.

Thus

(b+ c)
F

b+ 2c
+ f 3

√
F

b+ 2c
− F = 0⇔ f3 =

c3F2

(b+ 2c)2 ,

so

x = 3

√
F

b+ 2c
=

√
f

c
and f = c

(
3

√
F

b+ 2c

)2

.

Then

s =
−bx3

F
=

−b

F

F

b+ 2c
= −

b

b+ 2c
,
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and
λ2 +

b

b+ 2c
λ+ 1 = 0,

which solutions are given with (2.3). If f3 >
c3F2

(b+ 2c)2 the equilibrium point x is locally asymptotically

stable (t ∈ (−1, 0)), and if f3 <
c3F2

(b+ 2c)2 the equilibrium point x is a repeller (t < −1). Finally, if

f3 =
c3F2

(b+ 2c)2 , then |λ1,2| = 1.

3. Global asymptotic stability

In this section we give global asymptotic stability result for (1.1). We show that the unique equilib-
rium point is globally asymptotically stable in the subregion of the parametric region of local asymptotic
stability.

Theorem 3.1. The unique equilibrium point x of (1.1) is globally asymptotically stable if the following condition
holds

f3 >
1
4
(b+ c)F2. (3.1)

Proof. Every solution of (1.1) satisfies the fourth order difference equation

xn+1 = H(xn, xn−1) = H(H(xn−1, xn−2),H(xn−2, xn−3)) = H1(xn−1, xn−2, xn−3), n = 0, 1, · · · , (3.2)

where H1 is increasing function in all its arguments. Simplifying the right hand side of (3.2) we obtain

xn+1 =
FD(xn−1, xn−2)D(xn−2, xn−3)

2

bF2D(xn−2, xn−3) + cF2D(xn−1, xn−2) + fD(xn−1, xn−2)D(xn−2, xn−3)2 , (3.3)

where
D(u, v) = buv+ v2 + f.

The equilibrium solution of (3.3) satisfies the equation(
(b+ c)F2 + f((b+ c)x2 + f)2) x− F((b+ c)x2 + f)2 = 0. (3.4)

Since the left hand side of (3.4) can be factored as(
(b+ c)x3 + fx− F

) (
(b+ c)fx2 − (b+ c)Fx+ f2) ,

we conclude that the equilibrium solutions of (3.3) are either equilibrium solutions of (1.1) or the solutions
of the quadratic equation

(b+ c)fx2 − (b+ c)Fx+ f2 = 0. (3.5)

Equation (3.5) has no real solution under the condition (3.1). Now in view of the fact that [0, Ff ] is an
invariant interval for H and so for H1, an application of Theorem 1.1 completes the proof.

Remark 3.2. By Theorem 2.1 the equilibrium point x is locally asymptotically stable if

f3 >
c3F2

(b+ 2c)2 , (3.6)

and by Theorem 3.1 the equilibrium point x is globally asymptotically stable if the condition (3.1) holds.
It can be shown that condition (3.1) implies (3.6), that is global asymptotic stability implies the local. We
conjecture that the converse is true.

Conjecture 3.3. The equilibrium point x of (1.1) is globally asymptotically stable if it is locally asymptot-
ically stable.
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4. Naimark-Sacker bifurcation for equation (1.1)

In this section we consider bifurcation of a fixed point of a map associated to (1.1) in the case where
the eigenvalues are complex conjugate numbers on the unit circle.

The Naimark-Sacker bifurcation occurs for a discrete system depending on a parameter, λ, with a fixed
point whose Jacobian matrix has a pair of complex conjugate eigenvalues µ(λ), µ̄(λ) which cross the unit
circle transversally at λ = λ0

For the sake of completeness we include the Naimark-Sacker bifurcation theorem of the interior fixed
point. See [3, 8, 13, 14, 16] for detailed description and especially [13] for the detailed proof of the result.

Theorem 4.1 (Poincare-Andronov-Hopf bifurcation or Naimark-Sacker bifurcation for maps). Let

F : R×R2 → R2 : (λ, x)→ F(λ, x),

be a C4 map depending on real parameter λ satisfying the following conditions:

(i) F(λ, 0) = 0 for λ near some fixed λ0;

(ii) DF(λ, 0) has two non-real eigenvalues µ(λ) and µ(λ) for λ near λ0 with |µ(λ0)| = 1;

(iii) d
dλ |µ(λ)| = d(λ0) 6= 0 at λ = λ0;

(iv) µk(λ0) 6= 1, for k = 1, 2, 3, 4.

Then there is a smooth λ-dependent change of coordinate bringing f into the form

F(λ, x) = F(λ, x) +O(||x||5),

and there are smooth functions a(λ),b(λ) and ω(λ) so that in polar coordinates the function F(λ, x) is given by(
r

θ

)
=

(
|µ(λ)|r− a(λ)r3

θ+ω(λ) + b(λ)r2

)
. (4.1)

If a(λ0) > 0, then there is a neighborhood U of the origin and a δ > 0 such that for |λ− λ0| < δ and x0 ∈ U, then
ω-limit set of x0 is the origin if λ < λ0 and belongs to a closed invariant C1 curve Γ(λ) encircling the origin if
λ > λ0. Furthermore, Γ(λ0) = 0.

If a(λ0) < 0, then there is a neighborhood U of the origin and a δ > 0 such that for |λ− λ0| < δ and x0 ∈ U,
then α-limit set of x0 is the origin if λ > λ0 and belongs to a closed invariant C1 curve Γ(λ) encircling the origin if
λ < λ0. Furthermore, Γ(λ0) = 0.

Consider a general map F (λ, x) that has a fixed point at the origin with complex eigenvalues µ(λ) =
α(λ) + iβ(λ) and µ(λ) = α(λ) − iβ(λ) satisfying (α(λ))2 + (β(λ))2 = 1 and β(λ) 6= 0. By transforming the
linear part of such a map into Jordan normal form, we may assume F to have the following form near the
origin

F (λ, x) =
(
α(λ) −β(λ)
β(λ) α(λ)

)(
x1
x2

)
+

(
g1 (λ, x1, x2)

g2 (λ, x1, x2)

)
.

Then the coefficient a(λ0) of the cubic term in (4.1) in polar coordinates is equal to

a (λ0) = Re

(
(1 − 2µ (λ0))µ (λ0)

2

1 − µ (λ0)
ξ11ξ20

)
+

1
2
|ξ11|

2 + |ξ02|
2 − Re

(
µ (λ0)ξ21

)
, (4.2)

where

ξ20 = 1
8

(
∂2g1(0,0)
∂x2

1
− ∂2g1(0,0)

∂x2
2

+ 2∂
2g2(0,0)
∂x1∂x2

+ i
(
∂2g2(0,0)
∂x2

1
− ∂2g2(0,0)

∂x2
2

− 2∂
2g1(0,0)
∂x1∂x2

))
, (4.3)
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ξ11 = 1
4

(
∂2g1(0,0)
∂x2

1
+ ∂2g1(0,0)

∂x2
2

+ i
(
∂2g2(0,0)
∂x2

1
+ ∂2g2(0,0)

∂x2
2

))
, (4.4)

ξ02 = 1
8

(
∂2g1(0,0)
∂x2

1
− ∂2g1(0,0)

∂x2
2

− 2∂
2g2(0,0)
∂x1∂x2

+ i
(
∂2g2(0,0)
∂x2

1
− ∂2g2(0,0)

∂x2
2

+ 2∂
2g1(0,0)
∂x1∂x2

))
, (4.5)

and
ξ21 = 1

16

(
∂3g1
∂x3

1
+ ∂3g1
∂x1∂x

2
2
+ ∂3g2
∂x2

1∂x2
+ ∂3g2
∂x3

2
+ i
(
∂3g2
∂x3

1
+ ∂3g2
∂x1∂x

2
2
− ∂3g1
∂x2

1∂x2
− ∂3g1
∂x3

2

))
. (4.6)
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Figure 1: Bifurcation diagrams in (F, x) plane for b = 1.2, c = 1, f = 1.9, generated by Dynamica 3 [8].
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Figure 2: Phase portraits when F = 7 < F0 (c = 1, f = 1.9,b = 1.2 < 2/3 + cos((1/3) arctan
√

107/53), x−1 = x0 = 1.4 (green),
x−1 = x0 = 3.1 (red), generated by Dynamica 3 [8].
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Figure 3: Phase portraits when F = 9 > F0 (c = 1, f = 1.9,b = 1.2 < 2/3 + cos((1/3) arctan
√

107/53), x−1 = x0 = 1.4 (green)
x−1 = x0 = 3.1 (red), generated by Dynamica 3 [8].

Theorem 4.2. Assume that b, c, f > 0 and

F0 =
f
√
f (b+ 2c)
c
√
c

and x =

√
f√
c

.

(i) If 0 < b <
(

2
3 + 4 cos 1

3

(
arctan 1

53

√
107
))
c, then there is a neighborhood U of the equilibrium point x and

a ρ > 0 such that for |F− F0| < ρ and x0, x−1 ∈ U, thenω-limit set of solution of (1.1), with initial condition
x0, x−1 is the equilibrium point x if F < F0 and belongs to a closed invariant C1 curve Γ (F0) encircling the
equilibrium point x if F > F0. Furthermore, Γ (F0) = 0.

(ii) If b >
(

2
3 + 4 cos 1

3

(
arctan 1

53

√
107
))
c, then there is a neighborhood U of the equilibrium point x and a

ρ > 0 such that for |F− F0| < ρ and x0, x−1 ∈ U, then α-limit set of x0, x−1 is the equilibrium point x
if F > F0 and belongs to a closed invariant C1 curve Γ (F0) encircling the equilibrium point x if F < F0.
Furthermore, Γ (F0) = 0.

Proof. In order to apply Theorem 4.1 we make a change of variable yn = xn − x. Then, the new equation
is given by

yn+1 =
F

b (yn + x) (yn−1 + x) + c (yn−1 + x)
2 + f

− x.

Set
un = yn−1 and vn = yn, for n = 0, 1, · · · ,
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and write
un+1 = vn,
vn+1 = F

b(vn+x)(un+x)+c(un+x)
2+f

− x,

}
(4.7)

where

F (u, v) =

(
v

F

b(v+x)(u+x)+c(u+x)2+f
− x

)
.

Then F (u, v) has the unique fixed point (0, 0). The Jacobian matrix of F (u, v) is given by

JF (u, v) =

(
0 1

−F(b(v+x)+2c(u+x))

(b(v+x)(u+x)+c(u+x)2+f)
2

−Fb(u+x)

(b(v+x)(u+x)+c(u+x)2+f)
2

)
,

and its value at the zero equilibrium is

J0 = JF (0, 0) =

(
0 1

−F(b+2c)x

(bx2+cx2+f)
2

−Fbx

(bx2+cx2+f)
2

)
=

(
0 1

−(b+2c)
F x3 −b

F x
3

)
.

The eigenvalues are µ (F) and µ (F) where

µ (F) =
−bx3 ± i

√
x3 (4F (b+ 2c) − b2x3)

2F
,

and
4F (b+ 2c) − b2x3 = 4

(
(b+ c) x3 + fx

)
(b+ 2c) − b2x3 > 0.

Then we have that

F

(
u

v

)
=

(
0 1

−(b+2c)
F x3 −b

F x
3

)(
u

v

)
+

(
f1 (F,u, v)
f2 (F,u, v)

)
,

and

f1 (F,u, v) = 0,

f2 (F,u, v) =
F

b (v+ x) (u+ x) + c (u+ x)2 + f
+

(b+ 2c)u
F

x3 +
bv

F
x3 − x.

Let

F0 =
f
√
f (b+ 2c)
c
√
c

.

For F = F0 we obtain

x =

√
f√
c

, x3 =
F0

b+ 2c
.

The eigenvalues of J0 are µ (F0) and µ (F0) where

µ (F0) =
−b+ i

√
(3b+ 4c) (b+ 4c)
2 (b+ 2c)

, |µ (F0)| = 1.

The eigenvectors corresponding to µ (F0) and µ (F0) are v (F0) and v (F0) where

v (F0) =

(
−b− i

√
(3b+ 4c) (b+ 4c)
2 (b+ 2c)

, 1

)
.
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Then

|µ (F0)| = 1,

µ2 (F0) = −
8bc+ b2 + 8c2

2 (b+ 2c)2 − ib

√
(3b+ 4c) (b+ 4c)

2 (b+ 2c)2 ,

µ3 (F0) = b
6bc+ b2 + 6c2

(b+ 2c)3 − i
2c (b+ c)

√
(3b+ 4c) (b+ 4c)

(b+ 2c)3 ,

µ4 (F0) =
64bc3 + 32b2c2 − b4 + 32c4

2 (b+ 2c)4 + i

(
8bc+ b2 + 8c2

)
b
√

(3b+ 4c) (b+ 4c)

2 (b+ 2c)4 ,

and µk (F0) 6= 1 for k = 1, 2, 3, 4.
For F = F0 and x =

√
f√
c

we get

F

(
u

v

)
=

(
0 1

−1 −b
b+2c

)(
u

v

)
+

(
h1 (u, v)
h2 (u, v)

)
,

and

h1 (u, v) = f1 (F0,u, v) = 0,
h2 (u, v) = f2 (F0,u, v)

=

√
c

(
2c

5
2u3+b2√fu2+b2√fv2+2c2√fu2+bc

3
2u3+b2√cuv2+b2√cu2v+3bc

√
fu2+3bc

3
2u2v+b2√fuv+2bc

√
fuv

)
(b+2c)

(
c2u2+bf+2cf+2c

3
2
√
fu+b

√
c
√
fu+b

√
c
√
fv+bcuv

) .

Hence, for F = F0 system (4.7) takes the form(
un+1
vn+1

)
=

(
0 1

−1 −b
b+2c

)(
un
vn

)
+

(
h1 (un, vn)
h2 (un, vn)

)
.

For (
un
vn

)
= P

(
ξn
ηn

)
,

where

P =

(
−b

2(b+2c)

√
(3b+4c)(b+4c)

2(b+2c)
1 0

)
, P−1 =

(
0 1

2(b+2c)√
(3b+4c)(b+4c)

b√
(3b+4c)(b+4c)

)
,

system (4.7) is equivalent to its normal form

(
ξn+1
ηn+1

)
=

 − b
2(b+2c) −

√
(3b+4c)(b+4c)

2(b+2c)√
(3b+4c)(b+4c)

2(b+2c) − b
2(b+2c)

( ξn
ηn

)
+ P−1H

(
P

(
ξn
ηn

))
,

where

H

(
u

v

)
:=

(
h1 (u, v)
h2 (u, v)

)
.

Let

G

(
u

v

)
=

(
g1 (u, v)
g2 (u, v)

)
= P−1H

(
P

(
u

v

))
.

By straightforward calculation we obtain that

g1 (u, v) =
√
c

b+2cΛ (u, v) ,
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with

Λ (u, v) =
(b+2c)c

√
c(h(u,v))3+((b+c)(b+2c)

√
f+(b+3c)bu

√
c)(h(u,v))2+bu(bu

√
c+(b+2c)

√
f)h(u,v)+b2u2

√
f

c2(h(u,v))2+(bcu+(b+2c)
√
cf)h(u,v)+bu

√
cf+(b+2c)f

,

where
h (u, v) = v

√
(3b+4c)(b+4c)−bu

2(b+2c) ,

and
g2 (u, v) =

b√
(3b+ 4c) (b+ 4c)

g1 (u, v) .

Another straightforward calculation gives

∂2g1 (0, 0)
∂u2 =

b2√c (3b+ 5c)

2
√
f (b+ 2c)3 ,

∂2g1 (0, 0)
∂u∂v

=
bc

3
2
√
(3b+ 4c) (b+ 4c)

2
√
f (b+ 2c)3 ,

∂2g1 (0, 0)
∂v2 =

√
c (b+ 4c) (3b+ 4c) (b+ c)

2
√
f (b+ 2c)3 ,

∂3g1 (0, 0)
∂u3 = −

3b3c (5b+ 8c)

4f (b+ 2c)4 ,

∂3g1 (0, 0)
∂u∂v2 =

b2c (3b+ 4c) (b+ 4c)

4f (b+ 2c)4 ,

∂3g1 (0, 0)
∂u2∂v

= −
b2c (3b+ 8c)

√
16bc+ 3b2 + 16c2

4f (b+ 2c)4 ,

∂3g1 (0, 0)
∂v3 = −

3bc
(√

16bc+ 3b2 + 16c2
)3

4f (b+ 2c)4 .

By using (4.2), (4.3), (4.4), (4.5), and (4.6) for λ0 = F0, x1 = u and x2 = v we obtain

ξ11 =

√
c
(
3b2 + 6bc+ 4c2

)
4
√
f (b+ 2c)2

(
1 + i

b√
(3b+ 4c) (b+ 4c)

)
,

ξ20 =
1
8

(
−2
(√
c
)3

(3b+ 2c)

(b+ 2c)2√f
+ i

(
−b
(√
c
)3 (32bc+ 10b2 + 24c2

)
√

16bc+ 3b2 + 16c2
√
f (b+ 2c)3

))
,

ξ20 = −
c

3
2

(
(3b+ 2c)

√
3b2 + 16bc+ 16c2 + ib (6c+ 5b)

)
4
√
f (b+ 2c)2√3b2 + 16bc+ 16c2

,

ξ02 =
−c

3
2

√
f (b+ 2c)3

(
(b+ c)2 + i

(
b
(
b2 − 2c2

)
2
√

3b2 + 16bc+ 16c2

))
,

ξ21 =
bc

8f (b+ 2c)4

(
−b
(
8bc+ 3b2 + 4c2)+ i( (b+2c)(80bc2+38b2c+3b3+48c3)√

3b2+16bc+16c2

))
,

(1 − 2µ (F0))µ (F0)
2

1 − µ (F0)
=

−(3b+4c)(10bc+b2+12c2)+i(10bc+5b2+4c2)
√

3b2+16bc+16c2

2(b+2c)2(3b+4c)
,

ξ11ξ20 =
−
(
6bc+ 3b2 + 4c2

)
2f (b+ 2c)4

(
c2(20bc2+12b2c+b3+8c3)

2(3b+4c)(b+4c) + i
bc2 (b+ c)√

16bc+ 3b2 + 16c2

)
,
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Re

(
(1 − 2µ (F0))µ (F0)

2

1 − µ (F0)
ξ11ξ20

)
=
c2
(
6bc+ 3b2 + 4c2

) (
26bc+ 11b2 + 12c2

)
8f (b+ 2c)3 (b+ 4c) (3b+ 4c)

,

1
2
|ξ11|

2 =
c
(
3b2 + 6bc+ 4c2

)2

8f (b+ 2c)2 (3b+ 4c) (b+ 4c)
,

ξ02 =
−c

3
2

√
f (b+ 2c)3

(
(b+ c)2 + i

(
b
(
b2 − 2c2

)
2
√

3b2 + 16bc+ 16c2

))
,

|ξ02|
2 =

c3
(
28bc2 + 34b2c+ 13b3 + 8c3

)
4f (b+ 2c)3 (3b+ 4c) (b+ 4c)

,

Re
(
µ (F0)ξ21

)
= bc

8f(b+2c)4

(
b2(8bc+3b2+4c2)

2(b+2c) +
(80bc2+38b2c+3b3+48c3)

2

)
=
bc(14bc+3b2+12c2)

8f(b+2c)3 ,

ξ21 = bc

8f(b+2c)4

(
−b
(
8bc+ 3b2 + 4c2)+ i( (b+2c)(80bc2+38b2c+3b3+48c3)√

3b2+16bc+16c2

))
,

a (F0) =
c2
(
−3b3 + 6b2c+ 32bc2 + 24c3

)
8f (b+ 2c)3 (3b+ 4c)

.

So,
a (F0) = 0⇔ −3b3 + 6b2c+ 32bc2 + 24c3 = 0.

By substituting b = kc we obtain

−3 (kc)3 + 6 (kc)2 c+ 32 (kc) c2 + 24c3 = 0,

i.e.,

k3 − 2k2 −
32
3
k− 8 = 0.

By using Cardano’s substitution k = y+ 2
3 , we obtain

y3 − 12y−
424
27

= 0,

with the corresponding positive solution

y =
1
3

3
√

212 + 4i
√

107 +
1
3

3
√

212 − 4i
√

107.

The corresponding angle and modulus are

tanα =

√
107
53

,

α = arctan
1

53

√
107,

r =

√
(212)2 + (16) (107) = 216,

for which we obtain

y =
1
3

(
6
(

cos
α

3
+ i sin

α

3

))
+

1
3

(
6
(

cos
α

3
− i sin

α

3

))
= 4 cos

1
3
α,

and
k = y+

2
3
=

2
3
+ 4 cos

1
3
α.
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Hence,

a(F0) = 0 for b =

(
2
3
+ 4 cos

1
3

arctan
√

107
53

)
c.

Now

µ (F) =
−bx3 ± i

√
x3 (4F (b+ 2c) − b2x3)

2F
,

and so

µ (F)µ (F) =
(b+ 2c) x3

F
.

Thus

|µ (F)| =

√
(b+ 2c) x3

F
.

Differentiating the equilibrium equation

(b+ c) x3 + fx− F = 0,

with respect to F and solving for x′(F) we obtain

x′ (F) =
1

3 (b+ c) (x (F))2 + f
, x (F0) =

√
f

c
,

x′ (F0) =
1

3 (b+ c) fc + f
=

c

f (3b+ 4c)
.

By substituting x′(F) in the expression

d |µ (F)|

dF
=

1

2
√

(b+2c)x3

F

(
3 (b+ 2c) x2x′

F
−

(b+ 2c)x3

F2

)
, x = x (F) ,

we obtain that

d |µ (F)|

dF
(F0) =

1

2
√

(b+2c)
F0

· F0
(b+2c)


3 (b+ 2c)

(√
f
c

)2
c

f(3b+4c) − 1

F0

 ,

and
d |µ (F)|

dF
(F0) =

c

F0 (3b+ 4c)
=

c2√c
f
√
f(b+ 2c) (3b+ 4c)

> 0,

which completes the proof of theorem.

The visual illustration of Theorem 4.1 is given in Figures 1–3. Figure 1 shows the bifurcation diagram
for a parameter range where the Naimark-Sacker bifurcation takes the place. Figures 2 and 3 show the
transition from the global asymptotic stability of the equilibrium to the existence of a periodic solution.

Acknowledgment

This work was partially supported by the grant of the Ministry of Education and Science of the
Federation of Bosnia and Herzegovina.
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