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Abstract

In this paper, an iterative algorithm investigated for m-accretive and inverse-strongly accretive operators. Also, a weak
convergence theorem for the sum of two accretive operators is established in a real uniformly convex and q-uniformly smooth
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1. Introduction

Let C be a nonempty closed and convex subset of a Hilbert space H and let T : C→ 2H be a maximal
monotone operator. The corresponding zero problem of operator T is to find x̄ ∈ C such that 0 ∈ Tx̄. An
efficient method for solving the problem is the proximal point algorithm, proposed by Martinet [16, 17]
and generalized by Rockafellar [22, 23]. In the case that operator T can be decomposed into the sum
of two monotone operators, that is, T = A+ B, where A and B are monotone operators, the problem is
reduced to as follows:

find x̄ ∈ C such that 0 ∈ (A+B)x̄. (1.1)

The solution set of (1.1) is denoted by (A+ B)−1(0). In this paper, we will focus our attention on prob-
lem (1.1), which is very general in the sense that it includes, as special cases, convexly constrained lin-
ear inverse problems, split feasibility problem, convexly constrained minimization problems, fixed point
problems, variational inequalities, Nash equilibrium problem in noncooperative games and others; see,
for instance, [2, 3, 9, 10, 19] and the references therein.

Because of their importance, forward-backward splitting methods, which were proposed by Passty
[18], and, in a dual form for convex programming, by Han and Lou [13], for solving (1.1) have been
studied extensively recently; see, for instance, [4, 15, 20, 21, 25] and the references therein. However,
most of them are established in the framework of Hilbert spaces. The main reasons are that their iterative
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algorithms in the framework of Hilbert spaces are based on the good properties of resolvent operators of
monotone operators, but these properties are not available in the framework of general Banach spaces.

The aim of this paper is to present a forward-backward splitting method for solving (1.1) in the
framework of real Banach spaces. The main tool in this article is Xu’s inequalities and the framework of
the spaces is real uniformly convex and q-uniformly smooth Banach spaces. The paper is organized in
the following way. In Section 2, we present the preliminaries that are needed in our work. In Section 3,
we present a theorem of weak convergence for m-accretive and inverse-strongly accretive operators. In
Section 4, some sub-results are presented in the framework of real Hilbert spaces.

2. Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. Let w : R+ → R+, where R+ denotes
the set of nonnegative real numbers, be a continuous strictly increasing function such that w(0) = 0 and
lims→∞w(s) = ∞, we associate with it a possibly multivalued generalized duality map Jg : E → 2E

∗

defined as Jg(x) := {y ∈ E∗ : y(x) = ‖x‖w(‖x‖),w(‖x‖) = ‖y‖}, for all x ∈ E. In this paper, we use the
generalized duality map associated with the gauge function w(t) = tq−1 for q > 1,

Jq := {y ∈ E∗ : 〈y, x〉 = ‖x‖q, ‖y‖ = ‖x‖q−1}, ∀x ∈ E.

In particular, g(t) = t, we write J for Jg and call J the normalized duality mapping.
Let SE = {x ∈ E : ‖x‖ = 1}. E is said to be smooth or said to be have a Gâteaux differentiable norm if

and only if the limit
lim
t→0

(‖x+ ty‖− ‖x‖)/t

exists for each x,y ∈ SE. E is said to be uniformly smooth or said to have a uniformly Fréchet differentiable
norm if the limit is attained uniformly for x,y ∈ SE. E is said to have a uniformly Gâteaux differentiable
norm if for each y ∈ SE, the limit is attained uniformly for all x ∈ SE.

Let ME : [0, 1)→ [0, 1) be the modulus of smoothness of E defined by

Mt
E = sup{

‖x+ y‖+ ‖x− y‖− 2
2

: x ∈ SE, ‖y‖ 6 t}.

A Banach space E is said to be uniform smoothness if ME(t) → 0 as t → 0. Let q > 1. A Banach space
E is said to be a q-uniformly smooth Banach, if and only if there exists a fixed constant c > 0 such that
ME(t) 6 ctq. It is known that E is uniformly smooth if and only if the norm of E is uniformly Fréchet
differentiable. If E is a q-uniform smoothness Banach space, then q 6 2 and E is uniformly smooth,
and hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is Fréchet
differentiable.

Recall that the modulus of convexity of E is defined by

εE(δ) = inf{1 − ‖x+ y
2
‖ : ‖x− y‖ > δ, ‖x‖ 6 1, ‖y‖ 6 1}, ∀δ ∈ [0, 2].

E is said to be uniformly convex if εE(0) = 0, and ε(δ) > 0 for all 0 < δ 6 2. It is known that a Hilbert
space is 2-uniformly convex, while Lp is max{2,p}-uniformly convex for every p > 1.

Typical examples of both uniformly convex and uniformly smooth Banach spaces are Lp, where p > 1.
More precisely, Lp is min{p, 2}-uniformly smooth for p > 1.

Recall that a Banach space E is said to be strictly convex if and only if ‖x+ y‖ < 2 for all x,y ∈ SE
with x 6= y.

Let T be a mapping on E. The fixed point set of T is denoted by F(T). Recall that T is said to be
contractive iff there exists a constant κ ∈ (0, 1) such that

‖Tx− Ty‖ 6 κ‖x,y‖, ∀x,y ∈ C.
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We know that the sequence generated in the Picard iterative algorithm xn+1 = Txn converges to the
unique fixed point of T .

Recall that T is said to be nonexpansive iff

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ C.

For the class of nonexpansive mappings, their fixed point sets may be empty.

Example 2.1 ([1]). Let H = L1[0, 1] and let C := {f ∈ L1[0, 1] :
∫1

0 f(x)dx = 1, 0 6 f 6 2}. Define ‖f‖1 =∫1
0 |f(t)|dt. Then C is weakly compact and convex.

(Tf)(t) =

{
min{2f(2t), 2}, 0 6 t 6 1

2 ,
min{2f(2t− 1) − 2, 0}, 1

2 < t 6 1.

Then T is a nonexpansive mapping C→ C without a fixed point.

Example 2.2 ([1]). Let H = l1, i.e., all sequences {xn} such that
∑

|xn| <∞
‖xn‖1 =

∑
|xn|.

Let T : l1 → l1 be the shift operator Txn = (0, x1, x2, · · · ),

C := {{xn} : xn > 0, ‖xn‖1 = 1}.

Then T : C→ C is a nonexpansive mapping without a fixed point.

It is known if C is convex bounded and closed, then the set of fixed points is not empty. Iterative
methods are efficient to study fixed point problems of nonexpansive mappings; see [11, 24, 28] and
the references therein. If H is a Banach space instead of a Hilbert space, then we have the following
approximate fixed point result. Let C be a bounded closed convex subset of a Banach space, and T : C→ C

is nonexpansive, then T has an approximate fixed point, i.e., there exists a sequence xn ∈ C such that
‖Txn − xn‖ → 0. Indeed, for each 1 > λ > 0, define Tλx = Tλx. Then λ‖x− y‖ > ‖Tλx− Tλy‖. Using
Banach contractive principle, there exists xλ ∈ C such that Tλxλ = xλ. Now

‖Txλ − xλ‖ = ‖Txλ − Tλxλ‖ = ‖Txλ − Tλxλ‖ 6 (1 − λ)‖xλ‖ → 0.

Then T has an approximate fixed point.
However, for the class of nonexpansive mappings, Picard iterative algorithm fails to converge for

nonexpansive mappings even with fixed points. Mann iterative algorithm has been recently investigated
to study fixed point problems of nonexpansive mappings. The convex combination between nonexpansive
mappings and the identity mapping improves the regularization of the original nonexpansive mappings.
Recall that the Mann’s iterative process generates a sequence {xn} in the manner

x0 ∈ C, xn+1 = αnTxn + (1 −αn)xn, ∀n > 0,

where {αn} is a sequence in (0, 1).
We have the following celebrated result. Let H be a Hilbert space and let C be a closed and convex

subset of H. Let T : C → C be a nonexpansive mapping with a nonempty fixed point set. Let {xn}

be a sequence generated in the Mann’s iterative process. Assume that
∑∞
n=0 αn(1 − αn) = ∞. Then

{xn} converges weakly to a point in F(T). We also remark here that the above result is still valid in the
framework of uniformly convex Banach spaces with a Fréchet differentiable norm.

Let I denote the identity operator on E. An operator A ⊂ E× E with domain D(A) = {z ∈ E : Az 6= ∅}
and range R(A) = ∪{Az : z ∈ D(A)} is said to be accretive if, for t > 0 and x,y ∈ D(A),

‖x− y‖ 6 ‖x− y+ t(u− v)‖, ∀u ∈ Ax, v ∈ Ay.
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A is said to be φ-strongly accretive if, for x,y ∈ D(A), there exists a jq(x1 − x2) ∈ Jq(x1 − x2) such that

〈u− v, jq(x− y)〉 > φ(‖x− y‖)‖x− y‖, ∀u ∈ Ax, v ∈ Ay.

It is clear that every φ-strongly accretive operator is accretive. It follows from Kato [14] that A is accretive
if and only if, for x,y ∈ D(A), there exists jq(x1 − x2) such that

〈u− v, jq(x− y)〉 > 0.

An accretive operator A is said to be m-accretive if R(I+ rA) = E for all r > 0. In a real Hilbert space, an
operator A is m-accretive if and only if A is maximal monotone. In this paper, we use A−1(0) to denote
the set of zeros of A.

For an accretive operator A, we can define a firmly nonexpansive single-valued mapping JAr : R(I+
rA)→ D(A) by JAr = (I+ rA)−1 for each r > 0, which is called the resolvent operator of A.

Recall that a single-valued operator A : E → E is said to be α-strongly accretive if there exists a
constant α > 0 and some jq(x− y) ∈ Jq(x− y) such that

〈Ax−Ay, jq(x− y)〉 > α‖x− y‖q, ∀x,y ∈ E.

A : E → E is said to be α-inverse strongly accretive if there exist a constant α > 0 and some jq(x− y) ∈
Jq(x− y) such that

〈Ax−Ay, jq(x− y)〉 > α‖Ax−Ay‖q, ∀x,y ∈ E.

The following lemmas also play an important role in this article.

Lemma 2.3 ([25]). Let E be a real q-uniformly smooth Banach space. Then the following inequality holds: (‖x+
y‖q − ‖x‖q)/q 6 〈y, Jq(x+ y)〉 and

(‖x+ y‖q − ‖x‖q −Kq‖y‖q)/q 6 〈y, Jq(x)〉, ∀x,y ∈ E,

where Kq is some positive constant.

Lemma 2.4 ([21]). Let E be a real Banach space and let C be a nonempty closed and convex subset of E. Let
A : C→ E be a single-valued operator and let B : E→ 2E be an m-accretive operator. Then

(A+B)−1(0) = F(JBa(I− aA)),

where JBa is the resolvent operator of B for a > 0.

Lemma 2.5 ([27]). Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space E is uniformly convex if
and only if there exists a continuous strictly increasing convex function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such
that (

ap(1 − a) + (1 − a)pa
)
ϕ(‖x− y‖) 6 a‖x‖p + (1 − a)‖y‖p − ‖ax+ (1 − a)y‖p

for all x,y ∈ {x ∈ E : ‖x‖ 6 r} and a ∈ [0, 1].

Lemma 2.6 ([7]). Let E be a real uniformly convex Banach space and let C be a nonempty closed convex and
bounded subset of E. Then there is a strictly increasing and continuous convex function ψ : [0,∞) → [0,∞) with
ϕ(0) = 0 such that, for every Lipschitzian continuous mapping T : C → C and for all x,y ∈ C and t ∈ [0, 1], the
following inequality holds:

Lψ−1(‖x− y‖− L−1‖Tx− Ty‖
)
> ‖T(tx+ (1 − t)y) − (tTx+ (1 − t)Ty)‖,

where L > 1 is the Lipschitz constant of T .
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Lemma 2.7 ([6]). Let C be a nonempty convex closed subset of be a uniformly convex Banach space. If T : C→ C

is nonexpansive, then we have the following implication{
xn ⇀ z,
xn − Txn → 0,

=⇒ Tz = z.

Lemma 2.8 ([12]). Let E be a uniformly convex Banach space. Let E∗ be the dual space of E with the Kadec-Klee
property. Assume that {xn} is a bounded sequence such that the limit ‖q1xn − q3 + (1 − a)q2‖ exists as n → ∞
for all q ∈ [0, 1] and q2,q3 ∈ ωw(xn), where ωw(xn) := {x : ∃xni ⇀ x} denotes the weak ω-limit set of {xn}.
Then ωw(xn) is a singleton set.

3. Main results

Theorem 3.1. Let C be a nonempty convex and closed subset of a real uniformly convex and q-uniformly smooth
Banach space E. Let Kq be the smooth constant E. Let B : Dom(B) ⊂ C → 2E be an m-accretive operator and let
A : C → E be an α-inverse strongly accretive operator. Assume (B+A)−1(0) 6= ∅. Let {xn} be a sequence defined
by: x0 ∈ C and {

zn ≈ (I+ rnB)
−1(xn − rnAxn),

xn+1 = (1 −αn)zn +αnxn, ∀n > 0,

where the criterion for the approximate computation of zn is ‖(I+ rnB)−1(xn − rnAxn) − zn‖ 6 en, and {αn}

and {rn} are real sequences satisfying the following restrictions:
∑∞
i=0 en < ∞, 0 6 αn 6 α < 1, and 0 < r 6

Kqr
q−1
n 6 r ′ < qα. Then {xn} converges weakly to some zero of B+A.

Proof. First, we show iterative sequence {xn} is bounded. Fixing p ∈ (A+B)−1(0), one finds

‖xn+1 − p‖ 6 αn‖xn − p‖+ (1 −αn)‖zn − p‖
6 (1 −αn)‖JBrn(xn − rnAxn) − zn‖+ (1 −αn)‖JBrn(xn − rnAxn) − p‖+αn‖xn − p‖
6 (1 −αn)‖(xn − rnAxn) − (p− rnA)p‖+ (1 −αn)‖en‖+αn‖xn − p‖.

From Lemma 2.3 and the restriction imposed on {rn}, one has

‖(I− rnA)x− (I− rnA)y‖q 6 Kqr
q
n‖Ax−Ay‖q + ‖x− y‖q − qrn〈Ax−Ay, Jq(x− y)〉

6 Kqr
q
n‖Ax−Ay‖q + ‖x− y‖q − qrnα‖Ax−Ay‖q

= (Kqr
q−1
n − qα)rn‖Ax−Ay‖q + ‖x− y‖q 6 ‖x− y‖q.

Hence, we have
‖xn+1 − p‖ 6 ‖xn − p‖+ ‖en‖.

Since
∑∞
i=0 en < ∞, we find that the limit of ‖xn − p‖ exists as n → ∞, in particular, {xn} is a bounded

sequence. Putting yn = JBrn(xn − rnAxn), we find from Lemma 2.5 that∥∥yn − p+ ((I− rnA)xn − (I− rnA)p)
∥∥q = 2q‖1

2
(yn − p) +

1
2
(
(I− rnA)xn − (I− rnA)p

)∥∥q
6 2q−1‖yn − p‖q + 2q−1‖(I− rnA)xn − (I− rnA)p‖q

−ϕ
(
‖(yn − p) −

(
(I− rnA)xn − (I− rnA)p

)
‖
)

6 2q‖(I− rnA)xn − (I− rnA)p‖q

−ϕ
(
‖(yn − p) −

(
(I− rnA)xn − (I− rnA)p

)
‖
)

.



H. Zhao, S. Y. Cho, J. Nonlinear Sci. Appl., 10 (2017), 4099–4108 4104

Since B is an m-accretive operator, we find that

‖yn − p‖q 6
∥∥∥rn

2

(xn − rnAxn − yn
rn

−
(I− rnA)p− p

rn

)
+ yn − p

∥∥∥q
=
∥∥(yn − p) + (I− rnA)xn − (I− rnA)p

2

∥∥q
= ‖1

2
(yn − p) +

1
2
(
(I− rnA)xn − (I− rnA)p

)∥∥q
6 ‖xn − p‖q − (αq−Kqr

q−1
n )rn‖Axn −Ap‖q

−
1

2q
ϕ
(
‖(yn − p) −

(
(I− rnA)xn − (I− rnA)p

)
‖
)

.

Since ‖ · ‖q is a convex function, we find that

‖xn+1 − p‖q 6 (1 −αn)‖zn − p‖q +αn‖xn − p‖q

6 (1 −αn)‖yn − p+ zn − yn‖q +αn‖xn − p‖q

6 (1 −αn)
(
‖yn − p‖q + q〈zn − yn, Jq(zn − p)〉

)
+αn‖xn − p‖q

6 (1 −αn)‖yn − p‖q + q〈zn − yn, Jq(zn − p)〉+αn‖xn − p‖q

6 (1 −αn)‖yn − p‖q + q‖en‖‖zn − p‖q−1 +αn‖xn − p‖q

6 ‖xn − p‖q − (1 −αn)
1

2q
ϕ
(
‖(yn − p) −

(
(I− rnA)xn − (I− rnA)p

)
‖
)

− (1 −αn)(αq−Kqr
q−1
n )rn‖Axn −Ap‖q + q‖en‖‖zn − p‖q−1.

It follows from the restrictions imposed on {αn} and {rn} that

lim
n→∞ ‖Ap−Axn‖ = 0 (3.1)

and
lim
n→∞ ‖yn − xn + rn(Axn −Ap)‖ = 0. (3.2)

Note the fact
‖yn − xn‖ 6 ‖yn + rn(Axn − rnAp) − xn‖+ rn‖Axn −Ap‖.

It follows from (3.1) and (3.2) that

lim
n→∞ ‖JBrn(xn − rnAxn) − xn‖ = 0. (3.3)

Notice that〈
rn(xn − JBr (I− rA)xn) − r(xn − JBrn(I− rnA)xn), Jq

(
JBr (I− rA)xn − JBrn(I− rnA)xn

)〉
> 0.

Hence, we find that

‖xn − Jrn(I− rnA)xn‖‖Jr(I− rA)xn − JBrn(I− rnA)xn‖
q−1

>
rn − r

rn
〈xn − JBrn(I− rnA)xn, Jq

(
JBr (I− rA)xn − JBrn(I− rnA)xn

)
〉

> ‖JBr (I− rA)xn − JBrn(I− rnA)xn‖
q.

This implies that ‖JBr (I− rA)xn − JBrn(I− rnA)yn‖ 6 ‖xn − JBrn(I− rnA)xn‖. It follows that

‖JBr (I− rA)xn − xn‖ 6 ‖JBr (I− rA)xn − JBrn(I− rnA)xn‖+ ‖Jrn(I− rnA)xn − xn‖
6 2‖Jrn(I− rnA)xn − xn‖.
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From (3.3), we arrive at

lim
n→∞ ‖JBr (xn − rAxn) − xn‖ = 0.

Define mappings Tn : C→ C by

Tn := αnI+ (1 −αn)J
B
rn
(I− rnA), ∀x ∈ C,

where I is the identity mapping and set

Sn,m = Tn+m−1Tn+m−2 · · · Tn, ∀n,m > 1.

Then Sn,m is nonexpansive and Sn,mxn = xn+m. For all t ∈ [0, 1] and n,m > 1, put

an(t) = ‖u− txn − (1 − t)v‖,
and

bn,m = ‖Sn,m(txn + (1 − t)v) − (txn+m + (1 − t)v)‖,
where v and u are in (A+B)−1(0). Using Lemma 2.6, we find that

bn,m 6 ψ−1(‖xn − v‖− ‖Sn,mxn − Sn,mv‖
)

= ψ−1(‖xn − v‖− ‖xn+m − v− Sn,mv+ v‖
)

6 ψ−1(‖v− xn‖− (‖xn+m − v‖− ‖Sn,mv− v‖)
)
.

(3.4)

It follows that {bn,m} converges uniformly to zero as n→∞ for all m > 1. It also follows from (3.4) that

an+m(t) = ‖txn+m − u+ (1 − t)v‖
6 bn,m + ‖u− Sn,m(txn + (1 − t)v)‖
6 bn,m + ‖Sn,m(txn + (1 − t)v) − Sn,mu‖+ ‖Sn,mu− u‖
6 bn,m + an(t) + ‖Sn,mu− u‖.

Taking lim sup as m→∞ and then the lim inf as n→∞, we find that

lim sup
n→∞ an(t) 6 lim inf

n→∞ an(t).

This proves that limn→∞ an(t) for any t ∈ [0, 1]. In view of Lemma 2.6, we see that ωw(xn) ⊂ (A +
B)−1(0). This implies from Lemma 2.7 that ωw(xn) is a singleton set. This completes the proof.

If αn = 0, then Theorem 3.1 is reduced to the following.

Corollary 3.2. Let C be a nonempty convex and closed subset of a real uniformly convex and q-uniformly smooth
Banach space E. Let Kq be the smooth constant E. Let B : Dom(B) ⊂ C → 2E be an m-accretive operator and let
A : C → E be an α-inverse strongly accretive operator. Assume (B+A)−1(0) 6= ∅. Let {xn} be a sequence defined
by: x0 ∈ C and

xn+1 ≈ (I+ rnB)
−1(xn − rnAxn),

where the criterion for the approximate computation of xn+1 is ‖(I+ rnB)−1(xn − rnAxn) − xn+1‖ 6 en, and
{rn} is a real sequence satisfying the following restrictions:

∑∞
i=0 en < ∞, 0 < r 6 rn 6 r ′ < 2α. Then {xn}

converges weakly to some zero of A+B.

4. Applications

Theorem 4.1. Let C be a nonempty convex and closed subset of a real Hilbert space E. Let B : Dom(B) ⊂ C→ 2E

be a monotone operator and let A : C→ E be an α-inverse strongly monotone operator. Assume (B+A)−1(0) 6= ∅.
Let {xn} be a sequence defined by: x0 ∈ C and{

zn ≈ (I+ rnB)
−1(xn − rnAxn),

xn+1 = (1 −αn)zn +αnxn, ∀n > 0,

where the criterion for the approximate computation of zn is ‖(I+ rnB)−1(xn − rnAxn) − zn‖ 6 en, and {αn}
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and {rn} are real sequences satisfying the following restrictions:
∑∞
i=0 en < ∞, 0 6 αn 6 α < 1, and 0 < r 6

Kqr
q−1
n 6 r ′ < qα. Then {xn} converges weakly to some zero of A+B.

Let F be a bifunction of C× C into R, where R denotes the set of real numbers. We consider the
following equilibrium problem in the terminology of Blum and Oettli [5].

Find x ∈ C such that F(x,y) > 0, ∀y ∈ C.

In this paper, the set of such an x ∈ C is denoted by EP(F), i.e., EP(F) = {x ∈ C : F(x,y) > 0, ∀y ∈ C}.
To study the equilibrium problem, we assume that F satisfies the following conditions:

(C1) F is a monotone function;

(C2) F(x, x) = 0 for all x ∈ C;

(C3) for each x,y, z ∈ C, F(x,y) > lim supt↓0 F(tz+ (1 − t)x,y);

(C4) for each x ∈ C, y 7→ F(x,y) is lower semi-continuous and convex.

Lemma 4.2 ([26]). Let F be a bifunction from C×C to R which satisfies (C1), (C2), (C3), and (C4), and let BF be
a multivalued mapping of H into itself defined by

BFx =

{
{z ∈ H : 〈y− x, z〉 6 F(x,y), ∀y ∈ C}, x ∈ C,
∅, x /∈ C.

Then BF is a maximal monotone operator with domain D(BF), which is in C and EP(F) = B−1
F (0).

Corollary 4.3. Let E be a real Hilbert space and let C be a closed convex subset of E. Let F be a bifunction from
C×C to R which satisfies (C1), (C2), (C3), and (C4) and let BF be defined in Lemma 4.2. Let {xn} be a sequence
generated in the following manner: x0 ∈ C and{

zn ≈ (I+ rnBF)
−1,

xn+1 = (1 −αn)zn +αnxn, ∀n > 0,

where the criterion for the approximate computation of zn is ‖(I+ rnBF)−1 − zn‖ 6 en, and {αn} and {rn} are
real sequences satisfying the following restrictions:

∑∞
i=0 en < ∞, 0 6 αn 6 α < 1, and 0 < r 6 rn 6 r ′ < 2α.

Then {xn} converges weakly to some zero of EP(F).

Consider the optimization problem minx∈C f(x), where f : H → R is a convex and differentiable
function. Assume that the solution set Ω of the problem is not empty and let Ω denote its set of solutions.
The gradient projection algorithm is popular to solve the problem. It is known that the minimization
problem is equivalent to the variational inequality problem

〈∇y− x, f(x)〉 > 0, ∀y ∈ C.

It is also known that if ∇f is 1
α -Lipschitz continuous, then it is also α-inverse strongly monotone. By

taking A = ∇f, we find the following result immediately.

Corollary 4.4. Let E be a real Hilbert space and let C be a closed convex subset of E. Assume that f : H → R

is convex and differentiable with 1
α -Lipschitz continuous gradient ∇f such that Ω 6= ∅. Let {xn} be a sequence

generated in the following manner: x0 ∈ C and{
zn ≈ ProjC(xn − rn∇f(xn)),
xn+1 = (1 −αn)zn +αnxn, ∀n > 0,

where the criterion for the approximate computation of zn is ‖ProjC(xn − rn∇f(xn)) − zn‖ 6 en, and {αn} and
{rn} are real sequences satisfying the following restrictions:

∑∞
i=0 en < ∞, 0 6 αn 6 α < 1, and 0 < r 6 rn 6

r ′ < 2α. Then {xn} converges weakly to some solution of Ω.
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Let H1 and H2 be two Hilbert spaces. Let C be a nonempty closed convex subset of H1 and let Q be a
nonempty closed convex subset of H2.

The split feasibility problem (SFP) consists of finding a point x satisfying the property: x ∈ C and
Ax ∈ Q, where A : H1 → H2 is a bounded linear operator. To solve the SFP, it is very useful to investigate
the following convexly constrained minimization problem: minx∈C f(x), where f(x) = 1

2‖(I− PQ)Ax‖
2. If

the solution set Ω of the SFP is nonempty, then C∩ (∇f)−1(0) 6= ∅.

Corollary 4.5. Let H1 and H2 be two Hilbert spaces. Let C be a nonempty closed convex subset of H1 and let Q be
a nonempty closed convex subset of H2. Let A : H1 → H2 be a bounded linear operator and let A∗ be the adjoint
operator of A. Suppose that the SFP is consistent, i.e., Ω 6= ∅. Let {xn} be a sequence generated in the following
manner: x0 ∈ C and {

zn ≈ ProjC(xn − rnA
∗(I− ProjQ)Ax),

xn+1 = (1 −αn)zn +αnxn, ∀n > 0,

where the criterion for the approximate computation of zn is ‖ProjC(xn − rnA
∗(I − ProjQ)Ax) − zn‖ 6 en,

{αn} and {rn} are real sequences satisfying the following restrictions:
∑∞
i=0 en < ∞, 0 6 αn 6 α < 1 and

0 < r 6 rn 6 r ′ < 2α. Then {xn} converges weakly to some solution of Ω.

Proof. Let f(x) = 1
2‖(I− PQ)Ax‖

2. According to [8], we have ∇f = A∗(I− ProjQ)A, which is 1
α -Lipschitz

continuous with α = 1
‖A‖2 . From Corollary 4.4, we find the desired conclusion immediately.
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