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Abstract
First, we examine a practical numerical method which based on the classical Crank-Nicholson (CN) method combined

with Richardson extrapolation is used to solve a class of one-dimensional initial-boundary value fractional percolation equation
(FPE) with variable coefficients on a finite domain. Secondly, we present ADI-CN method for the two-dimensional fractional
percolation equation. Stability and convergence of these methods are proved. Using these methods, we can achieve second-order
convergence in time and space. Finally, numerical examples are presented to verify the order of convergence. c©2017 All rights
reserved.
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1. Introduction

The fractional percolation equations, which are used to model problems in seepage hydraulics,
groundwater hydraulics, groundwater dynamics, and fluid dynamics in porous media [5, 10, 17, 25],
are generated from classical integer order percolation equations. Under the hypotheses of continuity and
Darcy ′s law, the traditional integer percolation equation for incompressible, single phase percolation flow
can be written as

1
v

∂p

∂t
=
∂

∂x
(k(x)

∂p(x, t)
∂x

) + h(x, t), x ∈ Ω,

where k(x) is the percolation coefficient along the x direction, p = p(x, t) is the pressure, v is the velocity,
h(x, t) is the source term, andΩ denotes the percolation domain. In fact, some people studied the seepage
flow and found that the process is neither continuous nor rigid, therefore a more general equation for
seepage flow was considered. He [9] first considered a modification of Darcy ′s law to treat the seepage
flow movement in a non-homogeneous porous medium. It can be written as

1
v

∂p

∂t
=
∂β

∂xβ
(k(x)

∂αp(x, t)
∂xα

) + h(x, t), x ∈ Ω, (1.1)
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where 0 < α < 1 and 0 6 β 6 1. In this FPE, we denote the rate of the fluid mass flux q = k(x)
∂αp(x,t)
∂xα .

And the above defined fractional derivative is the Riemann-Liouville fractional derivative [16, 18].
The Riemann-Liouville fractional derivative ∂

γp(x,t)
∂xγ of the order γ is defined by

∂γp(x, t)
∂xγ

=
1

Γ(n− γ)

∂n

∂xn

∫x
0
p(x, t)(x− s)−γ+n−1ds,

where, for any γ > 0, n is an integer, and n− 1 < γ 6 n.
If the seepage flow is rigid, then β = 0, and the FPE (1.1) can be written as

1
v

∂p

∂t
=
∂0

∂x0 (k(x)
∂αp(x, t)
∂xα

) + h(x, t), x ∈ Ω.

The equation (1.1) is called the fractional percolation equation. This paper will focus on a class of
initial-boundary value fractional percolation equation (FPE) with variable coefficients on a finite domain.

As we all know, most fractional partial differential equations are not easy to obtain analytic solu-
tions, so some researchers resort to numerical solution for fractional partial differential equations [8, 11–
13, 15, 20]. In recent years, many authors presented some efficient numerical methods. Tchier et al.
[24] introduced the residual power series method for solving nonlinear time fractional reaction-diffusion
equations. Zhang et al. [26] used the series expansion method within local fractional derivative to ob-
tain the solutions of both homogeneous and non-homogeneous transport equations. Bhrawy et al. [1]
reported a new space-time spectral algorithm for obtaining an approximate solution for the space-time
fractional Burger’s equation (FBE) based on spectral shifted Legendre collocation (SLC) method in com-
bination with the shifted Legendre operational matrix of fractional derivatives. Singh and Kumar [19]
presented the homotopy analysis transform method (HATM) to solve fractional Lotka-Volterra equation,
which describes the long term survival of species. Srivastava et al. [21] presented an efficient analytical
approach based on the q-homotopy analysis transform technique in order to analyze a fractional model
of the vibration equation for large membranes.

In the numerical aspect of the FPE, Chen et al. [2] developed a novel implicit finite difference method
for the one-dimensional fractional percolation equation. Guo et al. [6] proposed an implicit finite differ-
ence method for the one-dimensional fractional percolation equation with Dirichlet and fractional bound-
ary conditions. Chen et al. [4] considered an alternating direction implicit difference method for the
two-dimensional case. Chen et al. [3] discussed the two-dimensional variable-order fractional percola-
tion equation. Guo et al. [7] proposed a second order finite difference method for the two-dimensional
fractional percolation equation. Liu et al. [14] proposed two finite difference methods for the three-
dimensional non-continued seepage flow problem with constant percolation coefficients and continued
seepage flow problem with variable percolation coefficients. However, these estimates of numerical so-
lution for the one-dimensional FPE are only first-order accurate in their papers. To our knowledge, the
study on one-dimensional FPE with better than first-order accuracy is still limited. Here, we present
numerical method, which combines a fractional Crank-Nicholson method with the extrapolation of the
Crank-s solution, and get second-order accurate both in time and space. This method can be extended
to two-dimensional fractional percolation equation. This work has appeared in the literature [7]. We
proposed ADI-CN method for a two-dimensional percolation equation, compared with the CN method,
can reduce the amount of computation, thus reducing the computational cost.

The rest of this paper is organized as follows. In Section 2, the Crank-Nicholson method for the one-
dimensional fractional percolation equation is proposed. In Section 3, its stability and convergence are
discussed in two cases. In Section 4, we present ADI-CN method for the two-dimensional percolation
equation. In Section 5, we study the stability and convergence of the method. In Section 6, we carry out
numerical experiments to verify the accuracy of the methods.
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2. The Crank-Nicholson method for the one-dimensional FPE

Consider a one-dimensional fractional percolation equation

∂p

∂t
=
∂β

∂xβ
(k(x)

∂αp(x, t)
∂xα

) + f(x, t), 0 < x < L, 0 < t < T . (2.1)

We assume an initial condition p(x, 0) = s(x), 0 6 x 6 L, and Dirichlet boundary conditions of the form
p(0, t) = 0, p(L, t) = u(t), 0 6 t 6 T , where 0 < α < 1, 0 < β 6 1, and we assume the percolation
coefficient k(x) > 0 .

For the Crank-Nicholson numerical approximation scheme, define tn = n4t to be integration time
0 6 tn 6 T , for n = 0, 1, 2, . . . ,N and 4x = h = L

m to be the grid size in spacewith xi = i4x for
i = 0, 1, . . . ,m. Define pni to be the numerical solution of p(xi, tn). The initial conditions are set by
p0
i = s(xi). Similarly, we define ki = k(xi) and fni = f(xi, tn). The Dirichlet boundary conditions are set

by pn0 = 0,pnm = u(tn).
To approximate the mixed fractional spatial derivative by substituting the shifted Grunwald estimates

into the differential equation, chen et al. [2] defined

∂β

∂xβ
(kx(x)

∂αp

∂xα
)|(xi,tn) ∼

1
hα+β

i+1∑
j=1

(

i−j+1∑
l=0

gβ,lgα,i−j−l+1ki−l)p
n
j +O(∆x), (2.2)

where gβ,l = (−1)l
(
β
l

)
;gα,j = (−1)j

(
α
j

)
.

Substitute (2.2) into the percolation equation (2.1) to get the Crank-Nicholson type numerical approx-
imation. The resulting finite difference equations are as follows:

pn+1
i − pni
4t

=
1
2
(δxp

n+1
i + δxp

n
i ) + f

n+ 1
2

i , (2.3)

where the above fractional partial differentiation operator is defined as

δxp
n
i =

1
hα+β

i+1∑
j=1

(

i−j+1∑
l=0

gβ,lgα,i−j−l+1ki−l)p
n
j .

This implies that the implicit finite difference scheme defined by (2.3) is consistent with orderO(4t2)+
O(4x). Eq. (2.3) may be rearranged and written as the fractional Crank-Nicholson discretization in the
form

(1 −
∆t

2
δx)p

n+1
i = (1 +

∆t

2
δx)p

n
i + f

n+ 1
2

i 4t, (2.4)

and the operator form (2.4) may be written in matrix form.

(I−A)Pn+1 = (I+A)Pn + Fn+
1
24t, (2.5)

where

Pn =
(
pn1 , · · · , pnm−1

)T ,

Fn+
1
2 =

(
f
n+ 1

2
1 4t, f

n+ 1
2

2 4t, · · · , f
n+ 1

2
m−14t+ rkm−1(p

n+1
m + pnm)

)T
,

where r = 4t
2hα+β , I is the (m− 1)× (m− 1) identity matrix, and A = (Ai,j)(m−1)×(m−1), defined by

Ai,j =


0, when j > i+ 1,
rki, when j = i+ 1,
r
∑1
l=0 gβ,lgα,−l+1ki−l, when j = i,

r
∑i−j+1
l=0 gβ,lgα,i−j−l+1ki−l, when j 6 i− 1.

(2.6)
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3. Stability and convergence of the fractional CN

Having developed a numerical scheme and showing that it is consistent, we now show that it is also
stable and thus convergent. First, we establish stability of the CN method under the assumption of
continuity of seepage flow (β = 1).

Theorem 3.1. If β = 1 and k(x) decreases monotonically in the interval [0,L], then the CN method defined by (2.5)
is unconditionally stable.

Proof. For β = 1, we have gβ,0 = 1,gβ,1 = −1, and gβ,n = 0(n > 2). Hence (2.6) can be rewritten as

Ai,j =


0, when j > i+ 1,
rki, when j = i+ 1,
r(−αki − ki−1), when j = i,
r(gα,i−j+1ki − gα,i−jki−1), when j 6 i− 1.

Since 0 < α < 1, so gα,0 = 1,gα,1 = −α, and
∑∞
k=0 gα,k = 0. Now gα,k = (1 − α+1

k gα,k−1) so gα,k−1 <

gα,k < 0 (k > 2). Since k(x) decreases monotonically in the interval [0,L], 0 < ki < ki−1 (i = 1, 2, . . . ,m−
1). Therefore gα,i−j+1ki − gα,i−jki−1 > 0 for j < i. According to the Gerschgorin theorem (see [16]), the
eigenvalues of the matrix A lie in the disks centered at Ai,i with radius ri (ri =

∑m−1
j=1,j6=i |Ai,j|).

ri =

m−1∑
j=1,j6=i

|Ai,j| = r

i−1∑
j=1

|[gα,i−j+1ki − gα,i−jki−1]|+ rki

= rki

i−1∑
j=1

gα,i−j+1 − rki−1

i−1∑
j=1

gα,i−j + rki

= rki

i∑
s=0,s6=1

gα,s − rki−1

i−1∑
s=1

gα,s

= rki(−gα,1 −

∞∑
s=i+1

gα,s) − rki−1

i−1∑
s=1

gα,s

= rkiα− rki

∞∑
s=i+1

gα,s − rki−1

i−1∑
s=1

gα,s

< rkiα− rki−1

∞∑
s=i+1

gα,s − rki−1

i−1∑
s=1

gα,s

= rkiα− rki−1

∞∑
s=1,s6=i

gα,s < rkiα+ rki−1 = −Ai,i.

We can get these Gerschgorin disks are within the left half of the complex plane. Therefore, the eigenval-
ues of the matrix A have negative real-parts.

Next, if λ is an eigenvalue of matrix A, we know 1 − λ is an eigenvalue of the matrix I − A, and
(1 + λ)/(1 − λ) is an eigenvalue of the matrix (I−A)−1(I+A). We found that all the eigenvalues of the
matrix (I − A) have a magnitude larger than 1, and thus this matrix is invertible. Furthermore, since
the real part of λ is negative, it is not hard to prove that |(1 + λ)/(1 − λ)| < 1. Therefore, the spectral
radius of the system matrix (I−A)−1(I+A) is less than one. Thus, the system of finite difference (2.5) is
unconditionally stable.
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Next, we discuss stability of the implicit finite difference method under the assumption of the function
k(x) = C for x ∈ [0,L], where C is a positive constant.

Theorem 3.2. If 1 6 α+ β < 2 and k(x) = C for x ∈ [0,L], where C is a positive constant, then CN method
defined by (2.5) is unconditionally stable.

Proof. Now (1 − x)α =
∑∞
k=0 gα,kx

k, (1 − x)β =
∑∞
k=0 gβ,kx

k, and (1 − x)α+β =
∑∞
k=0 gα+β,kx

k for
−1 6 x 6 1. Then we have

(

∞∑
k=0

gα,kx
k)(

∞∑
k=0

gβ,kx
k) =

∞∑
k=0

gα+β,kx
k.

Comparing the coefficients on both sides of the above equation, we have

n∑
k=0

gα,kgβ,n−k = gα+β,n,n = 0, 1, · · · .

With k(x) = C for x ∈ [0,L], therefore (2.6) can be rewritten as

Ai,j =


0, when j > i+ 1,
rC, when j = i+ 1,
rCgα+β,1, when j = i,
rCgα+β,i−j+1, when j 6 i− 1.

Since 1 6 α+ β < 2, gα+β,0 = 1,gα+β,1 = −(α+ β) < 0,gα+β,n > 0 (n 6= 1), and
∑∞
k=0 gα+β,k = 0, so∑i

l=0,l 6=i gα+β,l < −gα+β,i. By the Gerschgorin theorem, the eigenvalues of the matrix A lie in the disks
centered at Ai,i = rCgα+β,i with radius ri (ri =

∑m−1
j=1,j6=i |Ai,j|)

m−1∑
j=1,j6=i

|Ai,j| =

i−1∑
j=1,j6=i

|rCgα+β,i−j+1|+ rC = rC

i∑
l=0,l 6=1

gα+β,l < −rCgα+β,1 = −Ai,i.

Similar to the proof of Theorem 3.1, we can get the spectral radius of the system matrix (I−A)−1(I+A)
is less than one. Thus, the system of finite difference (2.5) is unconditionally stable.

Remark 3.3. The fractional CN method was shown to be stable above. This method is consistent with
order O((4t)2)+O(∆x). Therefore, according to Lax’s equivalence Theorem [16], it converges at this rate.
In paper [23], the Richardson extrapolated solution is Ptn,x, then computed from Ptn,x, = 2Ptn,x,(∆x)/2 −
Ptn,x,∆x, where (x, tn) is a common grid point, and Ptn,x,(∆x)/2,Ptn,x,∆x denote the CN method solutions
at the grid point (x, tn) on the coarse grid (∆x) and the fine grid (∆x/2), we can get second-order accurate
both in time and space.

4. The ADI-CN method for the two-dimensional FPE

Consider a two-dimensional fractional percolation equation

∂p

∂t
=
∂β1

∂xβ1
(kx(x,y)

∂α1p

∂xα1
) +

∂β2

∂xβ2
(ky(x,y)

∂α2p

∂xα2
) + f(x,y, t), (x,y) ∈ Ω,

subject to the initial condition
p(x,y, 0) = φ(x,y), (x,y) ∈ Ω,

and the Dirichlet boundary conditions

p(a1,y, 0) = p(x,b1, t) = 0,
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p(a2,y, 0) = u(y, t),p(x,b2, t) = v(x, t), 0 6 t 6 T ,

where Ω = {(x,y)|a1 6 x 6 a2,b1 6 y 6 b2}.
For the ADI-CN scheme, define tn = n4t to be integration time 0 6 tn 6 T , for n = 0, 1, 2, . . . ,N

and 4x = a2−a1
m1

to be the grid size in x-direction, where m1 is a positive integer, with xi = a1 + i4x
for i = 0, 1, . . . ,m1. 4y = b2−b1

m2
is the grid size in y-direction, where m2 is a positive integer, with

xj = b1 + j4y for i = 0, 1, . . . ,m2. Define pni,j to be the numerical solution of p(xi,yj, tn). The initial
conditions are set by p0

i,j = φi,j = φ(xi,yj). Similarly, we define ki,j = kx(xi,yj), hi,j = ky(xi,yj), and
fni,j = f(xi,yj, tn). The Dirichlet boundary conditions are set by pn0,j = p

n
i,0 = 0, pnm1,j = u(yj, tn), p

n
i,m2

=
v(xi, tn), 1 6 i 6 m1, 1 6 j 6 m2.

To approximate the mixed fractional spatial derivative into the differential equation centered at time
tn+1/2 = 1

2(tn+1 + tn), chen et al. [3] defined

∂β1

∂xβ1
(kx(x,y)

∂α1p

∂xα1
)|(xi,yj,tn+1/2) ∼

1
(∆x)α1+β1

i+1∑
v=1

(

i−v+1∑
u=0

gβ1,ugα1,i−u−v+1ki−u,j)p
n+1/2
v,j +O(4x),

∂β2

∂xβ2
(ky(x,y)

∂α2p

∂xα2
)|(xi,yj,tn+1/2) ∼

1
(∆y)α2+β2

j+1∑
v=1

(

j−v+1∑
u=0

gβ2,ugα2,j−u−v+1hi,j−u)p
n+1/2
i,v +O(4y).

Then, we can get the difference equations

pn+1
i,j − pni,j
∆t

=
1

(∆x)α1+β1

i+1∑
v=1

(

i−v+1∑
u=0

gβ1,ugα1,i−u−v+1ki−u,j)p
n+1/2
v,j

+
1

(∆y)α2+β2

j+1∑
v=1

(

j−v+1∑
u=0

gβ2,ugα2,j−u−v+1hi,j−u)p
n+1/2
i,v + f

n+1/2
i,j ,

(4.1)

p0
i,j = φ(xi,yj), (4.2)

pn0,j = p
n
i,0 = 0, pnm1,j = u(yi, tn), p

n
i,m2

= v(xi, tn). (4.3)

This implies that the implicit finite difference scheme defined by (4.1)-(4.3) is consistent with order
O(4t2) +O(4x) +O(4y). Define the following finite difference operator

δxp
n
i,j =

1
(∆x)α1+β1

i+1∑
v=1

(

i−v+1∑
u=0

gβ1,ugα1,i−u−v+1ki−u,j)p
n
v,j,

δyp
n
i,j =

1
(∆y)α2+β2

j+1∑
v=1

(

j−v+1∑
u=0

gβ2,ugα2,j−u−v+1hi,j−u)p
n
i,v.

Then (4.1) may be rearranged and written in the operator form

(1 −
4t
2
δx −

4t
2
δy)p

n+1
i,j = (1 +

4t
2
δx +

4t
2
δy)p

n
i,j + f

n+ 1
2

i,j 4t.

For the AID-CN method, the operator form is written in a directional separation product form

(1 −
4t
2
δx)(1 −

4t
2
δy)p

n+1
i,j = (1 +

4t
2
δx)(1 +

4t
2
δy)p

n
i,j + f

n+ 1
2

i,j 4t, (4.4)

which introduces an additional perturbation error equal to

1
4
{(4t)2(δxδy)(p

n+1
i,j − pni,j)}.
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Using Proposition 4.1 in [7], we can conclude that the ADI-CN method is also consistent with order
O(4t2) +O(4x) +O(4y). Eq. (4.4) can be written in the matrix form

(I− S)(I− T)Pn+1 = (I+ S)(I+ T)Pn + Fn+1/2, (4.5)

where the matrices A and B represent the operators 1 − 4t2 δx and 1 − 4t2 δy, which are matrices of size

(m1 − 1)(m2 − 1)× (m1 − 1)(m2 − 1), Fn+1/2 absorbs the source terms fn+1/2 and the boundary conditions
in the discretized equation, and

Pn = (pn1,1,pn2,1, . . . ,pnm1−1,1,pn1,2,pn2,2, . . . ,pnm1−1,2, . . . ,pn1,m2−1,pn2,m2−1, . . . ,pnm1−1,m2−1).

The ADI-CN method defined by (4.4) can now be solved by the following (Peaceman-Rachford type)
set of equations:

(1 −
4t
2
δx)p

∗
i,j = (1 +

4t
2
δy)p

n
i,j +

4t
2
f
n+ 1

2
i,j 4t, (4.6)

(1 −
4t
2
δy)p

n+1
i,j = (1 +

4t
2
δx)p

∗
i,j +

4t
2
f
n+ 1

2
i,j 4t. (4.7)

The intermediate solution p∗i,j should be defined carefully on the boundary, prior to solve the system
of equations defined by (4.6) and (4.7). Otherwise, the first-order spatial accuracy of the two-step ADI
method outlined above will be impacted. This is accomplished by subtracting (4.6) from (4.7) to get the
following equation to define p∗i,j

2p∗i,j = (1 −
4t
2
δy)p

n+1
i,j + (1 +

4t
2
δy)p

n
i,j. (4.8)

Thus, the boundary conditions for p∗i,j (i.e., i = 0 or m1 for j = 1, . . . ,m2 − 1) needed to solve each set of
equations in (4.8) are set from

p∗0,j = (1 −
4t
2
δy)p

n+1
0,j + (1 +

4t
2
δy)p

n
0,j = 0,

p∗m1,j = (1 −
4t
2
δy)p

n+1
m1,j + (1 +

4t
2
δy)p

n
m1,j = (1 −

4t
2
δy)u

n+1
m1,j + (1 +

4t
2
δy)u

n
m1,j.

The corresponding algorithm is implemented as follows:
First, fixed horizontal slice yl (l = 1, · · · ,m2 − 1), solve a set of m1 − 1 equations at the points xi to

obtain an intermediate solution slice p∗i,l.
Second, fixed vertical slice xl (l = 1, · · · ,m1 − 1), then solve a set of m2 − 1 equations at the points yj

to obtain the solution slice pn+1
l,j .

According to the first step gives a set of m1 − 1 linear equations, the system of the equations may be
written as

(I−Al)P
∗
l = Q

n
l +
4t
2
F
n+ 1

2
l , (4.9)

where

P∗l = [P∗1,l,P
∗
2,l, . . . ,P∗m1−1,l],

Qnl = [

l+1∑
v=1

Bn1,vP
n
1,v,

l+1∑
v=1

Bn2,vP
n
2,v, . . . ,

l+1∑
v=1

Bnm1−1,vP
n
m1−1,v],

F
n+ 1

2
l = [f

n+ 1
2

1,l , fn+
1
2

2,l , . . . , fn+
1
2

m1−2,l, f
n+ 1

2
m1−1,l −Am1−1,m1P

∗
m1,l],
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and Al = [Ai,v] is the (m1 − 1)× (m1 − 1) matrix of the coefficients resulting from a set of equations at the
grid point yl, therefore the matrix entries Ai,v are defined by

Ai,v =


0, when v > i+ 1,
r1ki,l, when v = i+ 1,
r1

∑1
u=0 gβ1,ugα1,−u+1ki−u,l, when v = i,

r1
∑i−v+1
u=0 gβ1,ugα1,i−v−u+1ki−u,l, when v 6 i− 1,

(4.10)

and the coefficients Bi,v for i = 1, · · · ,m1 are defined by:

Bi,v =


r2hi,l, when v = l+ 1,
1 + r2

∑1
u=0 gβ2,ugα2,−u+1hi,l−u, when v = l,

r2
∑l−v+1
u=0 gβ2,ugα2,l−v−u+1hi,l−u, when v 6 l− 1,

where r1 = 4t
2(∆x)α1+β1

; r2 = 4t
2(∆y)α2+β2

.
Similarly, according to the second step gives a set of m2 − 1 linear equations, the system of the equa-

tions may be written as

(I− B̂l)P
n+1
l = O∗l +

4t
2
F̂
n+ 1

2
l ,

where

Pn+1
l = [Pn+1

l,1 ,Pn+1
l,2 , . . . ,Pn+1

l,m2−1],

O∗l = [

l+1∑
v=1

Ân1,vP
∗
v,1,

l+1∑
v=1

Ân2,vP
∗
v,2, . . . ,

l+1∑
v=1

Ânm2−1,vP
∗
v,m2−1],

F̂
n+ 1

2
l = [f

n+ l
2

l,1 , fn+
1
2

l,2 , . . . , fn+
1
2

l.m2−2, fn+
1
2

l,m2−1 − B̂m2−1,m2P
∗
l,m2−1],

and B̂l = [B̂j,v] is the (m2 − 1)× (m2 − 1) matrix of the coefficients resulting from a set of equations at the
grid point xl, therefore the matrix entries B̂j,v are defined by

B̂j,v =


0, when v > j+ 1,
r2hl,j, when v = j+ 1,
r2

∑1
u=0 gβ2,ugα2,−u+1hl,j−u, when v = j,

r2
∑j−v+1
u=0 gβ2,ugα1,j−v−u+1hl,j−u, when v 6 j− 1,

(4.11)

and the coefficients Âj,v for j = 1, · · · ,m2 are defined by:

Âj,v =


r1kl,j, when v = l+ 1,
1 + r1

∑1
u=0 gβ1,ugα1,−u+1kl−u,j, when v = l,

r1
∑l−v+1
u=0 gβ1,ugα1,l−v−u+1kl−u,j, when v 6 l− 1.

5. Stability and convergence of the fractional ADI-CN method

Having developed a numerical scheme and showing that it is consistent, we now show that it is also
stable and thus convergent. First, we establish stability of the ADI-CN method under the assumption of
continuity of seepage flow (β1 = β2 = 1).

Theorem 5.1. If β1 = β2 = 1, kx(x,y) decreases monotonically with respect to x, ky(x,y) decreases monotonically
with respect to y in the domain Ω, and the matrices A and B commute, then the ADI-CN method defined by (4.5)
is unconditionally stable.
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Proof. By definition, for β1 = β2 = 1, we have gβi,0 = 1, gβi,1 = −1, and gβi,n = 0 (n > 2), for i = 1, 2.
Hence (4.10) and (4.11) can be rewritten as

Ai,v =


0, when v > i+ 1,
r1ki,l, when v = i+ 1,
−r1[α1ki,l + ki−1,l], when v = i,
r1[gα1,i−v+1ki,l + gα1,i−vki−1,l], when v 6 i− 1,

(5.1)

B̂j,v =


0 when v > j+ 1,
r2hl,j, when v = j+ 1,
−r2[α2hl,j + hl,j−1], when v = j,
r2[gα2,j−v+1hl,j + gα2,j−vhl,j−1], when v 6 j− 1.

(5.2)

Since 0 < αl < 1, so gαl,0 = 1,gαl,1 = −αt, and
∑∞
k=0 gαl,k = 0. Now gαl,k = (1 − αl+1

k gαl,k−1)
so gαl,k−1 < gαl,k < 0 for k > 2, l = 1, 2. Since kx(x,y) and ky(x,y) decrease monotonically in the
domain Ω, 0 < ki,u < ki−1,u (i = 1, 2, . . . ,m1 − 1) and 0 < hj,u < hj−1,u (j = 1, 2, . . . ,m2 − 1). Therefore
gαt,i−j+1sl,u − gαl,i−jsi−1,u > 0 for j < i, l = 1, 2, sl,u = kl,u or hl,u. Since

m1−1∑
v=1,j6=i

|Ai,v| = r1

i−1∑
v=1

|gα1,i−v+1ki,l − gα1,i−vki−1,l|+ r1ki,l

= r1ki,l

i−1∑
v=1

gα1,i−v+1 − rki−1,l

i−1∑
v=1

gα1,i−v + r1ki,l

= r1ki,l

i∑
s=0,s6=1

gα1,s − r1ki−1,l

i−1∑
s=1

gα1,s

= r1ki,l(−gα,1 −

∞∑
s=i+1

gα1,s) − r1ki−1,l

i−1∑
s=1

gα1,s

= r1ki,lα1 − r1ki,l

∞∑
s=i+1

gα1,s − r1ki−1,l

i−1∑
s=1

gα1,s

< rki,lα1 − r1ki−1,l

∞∑
s=i+1

gα1,s − r1ki−1,l

i−1∑
s=1

gα1,s

= r1ki,lα1 − r1ki−1,l

∞∑
s=1,s6=i

gα1,s < r1ki,lα1 + r1ki−1,l = −Ai,i.

According to the Greschgorin theorem, the eigenvalues of the matrix Al lie in the union of the disks
centered at Ai,i with the radius

∑m1−1
v=1,j6=i |Ai,v|, therefore, the eigenvalues of the matrix Al have negative

real-parts. Similarly, the eigenvalues of the matrix B̂l have negative real-parts.
Next, the matrix S is a block diagonal matrix of (m2 − 1)× (m2 − 1) blocks whose blocks are the square

(m1 − 1)× (m1 − 1) super-triangular Al matrices resulting from (5.1). We may write

S = diag(A1,A2, . . . ,Am2−1).

The matrix T is a block super-triangular matrix of (m2 − 1)× (m2 − 1) blocks whose blocks are the square
(m1 − 1)× (m1 − 1) diagonal matrices resulting from (5.2). We may write T = [Tj,v], where each Tj,v is a
(m1 − 1)× (m1 − 1) matrix, such that for v > j+ 1, Tj,v = 0, and for v 6 j+ 1 each Tj,v is a diagonal matrix
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Tj,v = diag((B̂1)j,v, (B̂2)j,v, . . . , (B̂m1−1)j,v), where the notation (B̂l)j,v refers to the j, vth entry of the matrix
(B̂l) define previously.

Since S = diag(A1,A2, . . . ,Am2−1), the eigenvalues of the matrix S are in the union of the Gerschgorin
disks for the matrices A

′
ls, therefore every eigenvalue of the matrix S has a negative real-part. Similarly,

every eigenvalue of the matrix T has a negative real-part.
If λ1, λ2 are eigenvalues of matrices S and T , respectively, we can obtain (1 + λ1)/(1 − λ1) and (1 +

λ2)/(1− λ2) are eigenvalues of the matrices (I− S)−1(I+ S) and (I− T)−1(I+ T), respectively. We observe
that the first part of this statement implies that all the eigenvalues of the matrix (I−A) have a magnitude
larger than 1, and thus this matrix is invertible. Furthermore, since the real part of λ1 is negative, it is not
hard to check that |(1 + λ1)/(1 − λ1)| < 1. Therefore, the spectral radius of matrix (I− S)−1(I+ S) is less
than one. Similarly the spectral radius of matrix (I− B)−1(I+ B) is less than one. Next, the matrices S
and T commute, we know the matrices (I− T)−1, (I+ T)−1, I+ S, and I+ T commute, so we can obtain
(1 + λ1)/(1 − λ1)(1 + λ2)/(1 − λ2) is an eigenvalue of the matrix (I − A)−1(I + A)(I − B)−1(I + B), and
the system matrix of (I − T)−1(I − S)−1(I + S)(I + T)=(I − S)−1(I + S)(I − T)−1(I + T), thus the spectral
radius of matrix (I− T)−1(I− S)−1(I+ S)(I+ T) is less than one, then ADI-CN method defined by (4.9) is
unconditionally stable.

Next, we discuss stability of ADI-CN method under the assumption of the function kx(x,y) = C1 and
ky(x,y) = C2 for (x,y) ∈ Ω where C1 and C2 are positive constants.

Theorem 5.2. If 1 6 αl + βl < 2 for l = 1, 2 and kx(x,y) = C1 and ky(x,y) = C2 for (x,y) ∈ Ω, where C is
a positive constant and the matrices A and B commute, then ADI-CN method defined by (4.5) is unconditionally
stable.

Proof. For l = 1, 2, (1− x)αl=
∑∞
k=0 gαl,kx

k, (1− x)βl=
∑∞
k=0 gβl,kx

k, and (1− x)αl+βl=
∑∞
k=0 gαl+βl,kx

k

for −1 6 x 6 1. Then we have

(

∞∑
k=0

gαl,kx
k)(

∞∑
k=0

gβl,kx
k) =

∞∑
k=0

gαl+βl,kx
k.

Comparing the coefficients on both sides of the above equation, we have

n∑
k=0

gαt,kgβt,n−k = gαt+βt,n,n = 0, 1, · · · .

With kx(x,y) = C1 for (x,y) ∈ Ω, therefore (4.10) and (4.11) can be rewritten as

Ai,v =


0, when v > i+ 1,
r1C1, when v = i+ 1,
r1C1gα1+β1,1, when v = i,
r1C1gα1+β1,i−v+1, when v 6 i− 1,

B̂j,v =


0, when v > j+ 1,
r2C2 when v = j+ 1,
r2C2gα2+β2,1, when v = j,
r2C2gα2+β2,j−v+1, when v 6 j− 1.

Since l = 1, 2, 1 6 αl + βl < 2, gαl+βl,0 = 1,gαl+βl,1 = −(αl + βl) < 0,gαl+βl,n > 0 (n 6= 1), and∑∞
k=0 gαl+βl,k = 0, so

∑i
l=0,l 6=i gαl+βl,l < −gαl+βl,i. Since

m−1∑
v=1,j6=m1−1

|Ai,j| =

i−1∑
v=1,v 6=i

|r1C1gα1+β1,i−j+1|+ r1C1 = r1C1

i∑
l=0,l 6=1

gα1+β1,l < −r1C1gα1+β1,1 = Ai,i.
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According to the Gerschgorin theorem, the eigenvalues of the matrix Al lie in the union of the disks
centered at Ai,i with the radius

∑m1−1
v=1,j6=i |Ai,v|, therefore the eigenvalues of the matrix Al have negative

real-parts. Similarly, the eigenvalues of the matrix B̂l have negative real-parts. Similar to the proof of
Theorem 5.1, the spectral radius of matrix (I−B)−1(I−A)−1(I+A)(I+B) is less than one, thus ADI-CN
method defined by (4.9) is unconditionally stable.

Remark 5.3. The ADI-CN method is both consistent and unconditionally stable. Therefore, according to
Lax’s equivalence theorem, it converges at this rate. The Richardson extrapolated [22] solution is Ptn,x,
then computed from Ptn,x,y = 2Ptn,x,(∆x)/2,y,(∆y)/2 − Ptn,x,∆x,y,∆y, where (x,y) is a common grid point,
and Ptn,x,(∆x)/2,y,(∆y)/2,Ptn,x,∆x,y,∆y denote the ADI-CN method solutions at the grid point (x,y) on the
coarse grid (∆x,∆y) and the fine grid (∆x/2,∆y/2), we can get second-order accurate both in time and
space.

6. Numerical examples

Example 6.1. The following fractional differential equation

∂p

∂t
=
∂

∂x
(kx

∂αp(x, t)
∂xα

) + f(x, t),

was considered on a finite domain 0 < x < L, for 0 < t 6 Tend, where

α = 0.5, L = 1, k(x) = 30 − x2, f(x, t) = −x2e−t −
Γ(3)
Γ(2.5)

(45x0.5 − 3.5x2.5).

Subject to the initial condition
p(x, 0) = x2, 0 < x < L,

and the Dirichlet boundary conditions

p(0, t) = 0, p(1, t) = e−t, t > 0,

the exact solution to this equation is given by

p(x, t) = x2e−t.

In this example, Fig. 1 shows the (unextrapolated) numerical solution obtained by applying the fractional
CN method (2.5) discussed above, with 4t = 1/10 and 4x = 1/10, at time T = 1, which compares well
with the exact analytic solution to the FPE in this test case. Table 1 shows the maximum error and error
rate of Example 6.1 for CN and CN extrapolated solution of the one-dimensional fractional differential
equation (β = 1). It examines the rate of convergence for these methods.

Table 1: Maximum error and error rate of Example 6.1 for CN and extrapolated CN method when the grid size is reduced at
time T = 1.

4t 4x Max Error-CN Error rate Max Error-Ext CN Error rate
1/10 1/10 5.2298× 10−3 − 2.4950× 10−3 -
1/20 1/20 2.4841× 10−3 2.1053 ≈ 2 6.3376× 10−4 3.9369
1/40 1/40 1.2357× 10−3 2.0103 ≈ 2 1.5969× 10−4 3.9688
1/80 1/80 5.7968× 10−4 2.1317 ≈ 2 4.0199× 10−5 3.9724
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Figure 1: Comparison of exact solution to the CN solution at time Tend = 1.0.

Example 6.2. The following fractional differential equation

∂p

∂t
=
∂β

∂xβ
(
∂αp(x, t)
∂xα

) + f(x, t), 0 < x < L, 0 < t 6 T ,

was considered on a finite domain 0 < x < L, for 0 < t 6 Tend, where α = 0.9,β = 0.8,L = 1, f(x, t) =

−x2e−t −
Γ(3)
Γ(1.3)x

0.3e−t . Subject to the initial condition

p(x, 0) = x2, 0 < x < L,

and the Dirichlet boundary conditions

p(0, t) = 0, p(1, t) = e−t, t > 0,

the exact solution to this equation is given by

p(x, t) = x2e−t.

In Fig. 2 we compute up at time T = 2 by setting 4t = 1/10, 4x = 1/10 and using (2.5) with α = 0.9
and β = 0.8. We denote the results of the numerical scheme and the solid curve corresponding to the
exact analytical solution for the one-dimensional fractional differential equation (β = 1). Table 2 shows
the maximum error and error rate of Example 6.2 for CN and CN extrapolated solution of the one-
dimensional fractional differential equation (k(x) = 1). It is proved that the numerical method is effective.

Table 2: Maximum error and error rate of Example 6.2 for C-N and extrapolated C-N method when the grid size is reduced at
time T = 2.

4t 4x Max Error-CN Error rate Max Error-Ext CN Error rate
1/10 1/10 4.2039× 10−3 − 8.5388× 10−4 -
1/20 1/20 2.0517× 10−3 2.049 ≈ 2 2.1631× 10−4 3.9475
1/40 1/40 9.6148× 10−4 2.1339 ≈ 2 5.4639× 10−5 3.9589
1/80 1/80 4.1159× 10−4 2.3360 ≈ 2 1.3719× 10−5 3.9827
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Figure 2: Comparison of exact solution to the CN solution at time Tend = 2.0 .

Example 6.3. The two-dimensional fractional percolation equation

∂p

∂t
=
∂

∂x
(kx

∂0.7p(x,y, t)
∂x0.7 ) +

∂

∂y
(ky

∂0.8p(x,y, t)
∂x0.8 ) + f(x,y, t),

was considered on a finite rectangular domain 0 < x < 1, 0 < y < 1, for 0 < t 6 Tend, where the diffusion
coefficients are

kx = 2 − x, ky = 2 − y,

and the source function is

f(x,y, t) = −
Γ(2)
Γ(1.3)

ye−t[
2Γ(1.3)
Γ(0.3)

x−0.7 −
Γ(2.3)
Γ(1.3)

x0.3] −
Γ(2)
Γ(1.2)

xe−t[
2Γ(1.2)
Γ(0.2)

y−0.8 −
Γ(2.2)
Γ(1.2)

x0.2],

subject to the initial condition
p(x,y, 0) = e−txy,

and the Dirichlet boundary conditions

p(0,y, t) = p(x, 0, t) = 0, p(1,y, t) = e−ty2, p(x, 1, t) = e−tx2.

The exact solution to this two-dimensional fractional percolation equation is given by

p(x,y, t) = e−txy.

Table 3 shows the maximum error and error rate of Example 6.3 for CN and CN extrapolated solution of
the two-dimensional fractional differential equation (β1 = β2 = 1). The late column in the Table 3 shows
that the maximum error in the extrapolated ADI-CN method approximately decreases by a factor of four
as the grid size is halved. It is proved that the numerical method is effective.

Table 3: Maximum error for the Example 6.3 at time Tend = 1.
4t 4x = 4y Max Error of ADI-CN Max Error of Ext ADI-CN
1/5 1/5 7.6714× 10−3 2.3863× 10−3

1/10 1/10 3.8642× 10−3 5.0112× 10−4

1/20 1/20 1.9451× 10−3 1.2615× 10−4

1/40 1/40 9.9824× 10−4 3.1513× 10−5
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Example 6.4. The two-dimensional fractional percolation equation

∂p

∂t
=
∂

∂x
(
∂0.7p(x,y, t)

∂x0.7 ) +
∂

∂y
(
∂0.8p(x,y, t)

∂x0.8 ) + f(x,y, t),

was considered on a finite rectangular domain 0 < x < 1, 0 < y < 1, for 0 < t 6 Tend, and the source
function is

f(x,y, t) = −
Γ(2)
Γ(1.3)

ye−t[
2Γ(1.3)
Γ(0.3)

x−0.7 −
Γ(2.3)
Γ(1.3)

x0.3] −
Γ(2)
Γ(1.2)

xe−t[
2Γ(1.2)
Γ(0.2)

y−0.8 −
Γ(2.2)
Γ(1.2)

x0.2],

subject to the initial condition
p(x,y, 0) = e−txy,

and the Dirichlet boundary conditions

p(0,y, t) = p(x, 0, t) = 0,p(1,y, t) = e−ty2,p(x, 1, t) = e−tx2.

The exact solution to this two-dimensional fractional percolation equation is given by

p(x,y, t) = e−txy.

Table 4 shows the maximum error and error rate of Example 6.4 for CN and CN extrapolated solution of
the two-dimensional fractional differential equation (kx = ky = 1). The late column in Table 4 shows that
the maximum error in the extrapolated ADI-CN method approximately decreases by a factor of four as
the grid size is halved. It is proved that the numerical method is effective.

Table 4: Maximum error for the Example 6.4 at time Tend = 1.

4t 4x = 4y Max Error of ADI-CN Max Error of Ext ADI-CN

1/5 1/5 3.5035× 10−3 8.5041× 10−4

1/10 1/10 1.7344× 10−3 2.1207× 10−4

1/20 1/20 8.2471× 10−4 5.6089× 10−5

1/40 1/40 4.0981× 10−4 1.3614× 10−5
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