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Abstract

Using new methods for dealing with an infinite-point fractional differential equation with p-Laplacian and a parameter,
we study the existence of unique positive solution for any given positive parameter A, and then give some clear properties of
positive solutions which depend on the parameter A > 0, that is, the positive solution u} is continuous, strictly increasing in A
and limy_, ;o [[U} || = +o0, limy_,+ [[u} || = 0. Our analysis relies on some new theorems for operator equations A(x, x) = x and
A(x,x) = Ax, where A is a mixed monotone operator. (©2017 All rights reserved.
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1. Introduction

Recently, fractional calculus and fractional differential equations have been of great interest, and it is
caused both by the intensive development of the theory of fractional calculus itself and by the applications
of such constructions in various sciences such as mechanics, chemistry, and engineering. For details,
see [14, 16, 17] and references therein. For example, fractional differential equations have important
applications in quantum mechanics, see [7, 12, 13] for example. On the other hand, there are some papers
reported on analytical and numerical methods for solving fractional differential equations, see [8, 14] for
example.

In the paper [17], the authors considered the following infinite-point boundary value problem of
fractional differential equations with p-Laplacian

DP. (@p(Dgu(t) +f(tu(t) =0, 0<t<1,
u(0) =uw'(0) =--- =u™2(0) =0, DFu(0)=0, ulV(1)=375, au(§),

and obtained the existence results of at least one positive solution. Their methods are upper and lower
solutions, the Schauder fixed point theorem. But the uniqueness of positive solutions was not studied.
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Moreover, we can find some results about infinite-point fractional differential equations in literature,
see [3-6, 9, 16, 17] for example. But there are very few results on the uniqueness of positive solutions for
infinite-point fractional boundary value problem. So we will discuss the following infinite-point fractional
differential equation with p-Laplacian and a parameter

(1.1)

D, (@p (D u(t)) +Af(tu(t),u(t) =0, 0<t<1,
u(0) =u'(0)=---=ul™20) =0, D§w(0) =0, ulV(1) =352, agu(&;),

where D8‘+,Dg ', are the Riemann-Liouville derivatives, @, (s) = sP~2-s5,p > 1,A >0isa parameter,
fe C(0,1] x],J),J =10,+00),i € [1,n—2]isa fixedinteger n -1 <ax<nn>30<pf <1, >00<
<< <§a<g<--<1f= 1,2,--0),A—Zj°‘;1 ocj?,)f"_l >0,here A=(ax—1)(ax—2)- (x—1).

As we know, fractional integral inequalities are useful in establishing the uniqueness of solutions for
certain fractional differential equations, and they also provide upper and lower bounds for the solutions,
see [1, 2] for example. Different from the works mentioned above, in this work, we will study the existence
and uniqueness of positive solutions for the problem (1.1) for every parameter A > 0. Moreover, we give
some clear properties of the positive solutions which depend on the parameter. Our methods are based

upon some new results for operator equations A(x,x) = x and A(x,x) = Ax.

2. Preliminaries and several lemmas
Here, we list some definitions and useful lemmas from fractional calculus theory.

Definition 2.1 ([11]). The Riemann-Liouville fractional integral of order « > 0 of a functiony : (0,c0) =+ R
is given by
1 t

Iy(t) = o) L (t—s)* ly(s)ds

provided the right-hand side is pointwise defined on (0, co).

Definition 2.2 ([11]). The Riemann-Liouville fractional derivative of order « > 0 of a continuous function
y: (0,00) — R is given by

byl
J (t _ S)OC*TL‘Fl dS,

TS S A
D50 = 7 (1)

where n = [«] + 1, [« denotes the integer part of the number «, provided that the right-hand side is
pointwise defined on (0, co).

Now, we consider the linear fractional differential equation with infinite-point boundary conditions

D u(t) +y(t) =0, O<t<l, 2.1)
w0)=u/(0)=---=u™20)=0, u¥(1)= 272 au(E)). :
Lemma 2.3 ([17]). Ify € L1[0, 1], then the unique solution of (2.1) can be written by
1
u(t) = J G(t,s)y(s)ds,
0
e 1 1p(s)(1— )15 — p(O)(t —5)°]
_ t* p(s)(1—s)* " —p0)(t—s)*", 0<s<t<,
Sl6:) = ST { v tp(a— a1, D<t<s<t @2
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Lemma 2.4 ([10, 17]). The function G(t,s) defined by (2.2) has the following properties:
(1) ( ) > p(o)lr( )mls(l - S)“ilii : t(xil/ t,se [0/ 1]/

(2) ( ) < Wp( )(1 - S)O(—l—i : t“_ll t/ NS [0/ 1];

(3) G(t,s) >0, ts5€(0,1),

where my = infos<1 pl

s)—p(0)

S is a positive number.

Let q > 1 satisfy % + % = 1. Then (pgl(s) = @q(s). To discuss the problem (1.1), we first study the
following linear boundary value problem

{ DE (@p(Dg, ult))) +y(t ) =0, 0<t<l, (2.3)

u(0) =u/(0) =--- =ulm2(0) =0, D§u(0) =0, uV(1) =352 ju(&;)

for y € L0, 1] withy > 0.
Lemma 2.5 ([17]). The linear problem (2.3) has the following form of solution

1 s
u(t) = <r(1ﬁ)>q J: (t,s)oy! ([ (5= P ycelar) as

where G(t, s) is given by (2.2).

3. Main results

Suppose that (E, || - ||) is a real Banach space which is partially ordered by a cone P C E, by 6 we denote
the zero element of E. For x,y € E, the notation x ~ y means that there exist k > 0 and p > 0 such that
kx <y < px. Clearly, ~ is an equivalence relation. Given h > 0 (i.e., h > 0 and h # 0), we denote by Py,
the set P, = {x € E[x ~ h}. It is easy to see that Py, C P is convex and 1Py, = Py forall 1 > 0.

Definition 3.1. A : P x P — P is said to be a mixed monotone operator if A(x,y) is increasing in x and
decreasing in y, i.e., ui, vi(i =1,2) € P,u; < up,vi > vy implies A(ug,v1) < A(up,v2). Element x € P is
called a fixed point of A if A(x,x) = x.

In [15], Zhai and Zhang studied the following operator equations
A(x,x) =x and A(x,x) = Ax,

where A : P x P — P is a mixed monotone operator and the following conditions are satisfied:

(A7) there exists h € P with h # 0 such that A(h,h) € Py;
(A2) for any u,v € Pand t € (0,1), there exists @(t) € (t,1) such that

Altu, t7v) = @(tA(u,v).
They obtained the existence and uniqueness results for the above equations.

Lemma 3.2. Let P be a normal cone of €, and (A1) and (Ap) be satisfied. Then operator equation A(x,x) = x has a
unique positive solution x* in Py. Moreover, for any initial xo, Yo € Py, the sequences

Xn =AXn-1,Yn-1), Yn=AlYn-1,xXn-1), n=12,...,
satisfy ||xn —x*|| = 0 and ||yn —x*|| = 0as n — oo.

Lemma 3.3. Let P be a normal cone of E, and (A1) and (Ay) be satisfied. Suppose that x) (A > 0) is the unique
solution of parameter equation A(x,x) = Ax in Py. Then the following conclusions hold:
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(B1) if @(t) > t2 for t € (0,1), then x, is strictly decreasing in A, that is, 0 < Ay < Ay implies xp, > Xa,;

(By) if there exists B € (0,1) such that (t) > tP fort € (0,1), then x, is continuous in A, that is, A — Ag(Ag > 0)
implies ||xa —xa,|| — 0;

(Bs) if there exists B € (0, 3) such that @(t) > tP for t € (0,1), then

li =0, i = +o0.
Jm [Pl =0, lim [Pl = +oo

Our purpose of this section is to apply Lemmas 3.2 and 3.3 to study the problem (1.1), and obtain
some new results on the existence and uniqueness of positive solutions. Moreover, we show that the
positive solution with respect to A has some clear properties. It should be pointed out that the method
used here is new to the literature and so are the existence and uniqueness results to the infinite-point
fractional differential equations.

Next we will discuss the problem (1.1) in the Banach space C[0,1] = {x : [0,1] — R is continuous}. The
norm of E is ||x|| = sup{/x(t)| : t € [0,1]}. The cone of E is given as P = {x € C[0,1]|x(t) > 0,t € [0,1]},
a standard, normal cone in C[0,1]. This space can be equipped with a partial order given by x,y €
Cl0,1],x <y < x(t) <y(t) for t € [0,1].

We give the following conditions:

(Hy) f(t,x,y):[0,1] x [0,4+00) x [0, +00) — [0,400) is a continuous function;

(Hz) f(t,x,y) is increasing in x for each t € [0,1] and y € [0, +o0); and decreasing in y for each t € [0, 1]
and x € [0, +0);

(Hs) for v € (0,1), there exists y € (0,p — 1) such that f(t, rx, v 'y) > rYf(t,x,y),t € [0,1],x,y € [0, +00);

(Hg) f(t,0,1) #O0 for t € [0,1].

Theorem 3.4. Assume that (Hy)-(Hy) hold, then

(a) for every A € (0, +00), the problem (1.1) has a unique positive solution uy in Py, where h(t) = t* 1t e0,1].
Moreover, for any initial values ug, vo € Py, the sequences

s (1) = (F(ABQ

)\ q_1 1 S
V(1) = () [RECS (J (s—T)B1f(r,vn(T),un(T))dT) ds,
0 0

q—1 1 s
| ctsioy (J (s—ﬂﬁ1f(w,un(w),vn(T))dT) ds,
0 0

rip)

wheren =0,1,2,- -, must satisfy un (t) = ux(t), va(t) = v3(t) asn — oo;
(b) uj is continuous in A, that is, [[u} —uj || — 0as A — Ao (Ag > 0).

Proof. To begin with, from Lemma 2.5, the problem (1.1) has an integral formulation given by

q—1 1 s
u(t) = (F()\B)) J G(t,s)p," (L (S—T)Bly(’t)d’f) ds,

0
where G(t, s) is given as in Lemma 2.3. For any u,v € P, we define

A(u,v)(t) = (1>

-t ([ B—1
10 J G(t,s)o, (J (s —1) f(T,u(T),V(T))dT) ds.

0 0

For x > 0, we have (pgl(x) > 0. Noting that <ﬁ)q ' > 0 and G(t,s) > 0, it is easy to check that
A : P x P — P. In the sequel, we check that A satisfies all assumptions of Lemma 3.2 by several steps.

First step, we prove that A is a mixed monotone operator. In fact, for uj,vi € P,i = 1,2 with u; >
U, v1 < v, we know that ug(t) > ua(t), vi(t) < w(t),t € [0,1] and by (H;), (Hz), (Hs), Lemma 2.3, and
the fact that ¢! is monotone increasing,

Al vi) () = (1)

e ([ B—1
FB) J G(t,s)o, <J (s —1) f(T,ul(T),vl(T))dT) ds

0 0
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> <1>
~ \T(B)

Second step, we show that A satisfies the condition (A3). From (H3), for u,v € P,r € (0, 1), we obtain

-1 1 s
! | sttoey! (J (s—fr)B—lf(T,uz(T),vZ(r))dT> ds = Az, v2) (1),
0 0

Alru, v ) (t) = <1>

r'(p)
q—1 1 s
J G(t,s)@;_)l <J (S—T)B_lf(T,u(T),v(T))dT> ds

> il
- (r(ﬁ)) 0 0

= (™9 TA,V)(1), telo,1l.

q—1 1 s
J G(t,s)p," (J (sT)B_lf(’r,ru('r),T_lv(’t))d’c) ds
0 0

Let @(t) =t¥(9=D t € (0,1), then 0 < y(q—1) < 1 and thus ¢(t) € (t,1) for t € (0,1). Hence,
Altu, t7v) > @(H)A(w,v), Yu,veP,te(0,1).

So the condition (Aj) is satisfied.
Third step, we show that A(h,h) € Py,. On one hand, note that h(t) = t*=1 ¢ € ]0,1], it follows from
(Hy)-(H4) and Lemma 2.4 that

1\ 1 ! o—1 a1—i -1 ([° p—1
> (Wﬁ)) (0o 0t mys(1—s) P (Jo (s—1) f(T,h(T),h(T))dT) ds

1 q—1 1 rl . s
= =— : mys(l—s)* 1t (s —1)B (T, =%, v Hdr ) ds - h(t)
J P 0

q—1 (1 s
J G(t,s)(p];1 <J (S—T)Blf(T,h(T),h(T))dT> ds
0 0

r(p) p(0)T(er) Jo

1

o
1\ 1
> ()
rip) p(0)T(x)
On the other hand, also from (H;)-(Hs) and Lemma 2.4, we have that

mys(1— s)"‘*lfi(p;,1 (Js(s — )P 1(r, 0,1)dT> ds - h(t).
0 0

AR h)(t) = (1>

q—1 1 s
—1 \B—1
FB) J G(t,s)(pp <J (s—1) f(T,h(T),h(T))dT) ds

0 0

1 q—l 1 rl . S

s <r()) PO Jp PO ey (Jo (S_T)Blf“’h(ﬂ’h(ﬂ)d1> a
1 \9! 1 - s

- <r(r3)> D@ Jy PO e (L“’_T)B1f(T’TM’TM)dT> ds iy
1 q—1 1 1 . s

S <F(B)> PO Jo P9 ey (JO(S_T)B_lf(T’l’O)dT) ds 1L

Let
1 . s
I :J mys(1 —s)"‘*lﬂ(p;1 (J (S—T)Blf(T,O,l)dT> ds,
0
1 . s
%3 :J p(s)(1 —s)"‘*lfl(p;1 <J (s —1)P~Lf(x, 1,0)dT> ds.
0
Since f is continuous, f(t,0,1) # 0, we have fg (s —T)B~1f(7,0,1)dt > 0 with

r(s —1)P=1¢(t,0,1)dt £ 0.
0
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So ;
@, (J (S—T)B_lf(T,l,O)d’t> ds >0
0

With S
0p' (J (s—T)ﬁlf(T,l,O)dT> ds #0, s € [0, 1.
0

Note that m;s < p(s), we can get 0 < 1; < lo. Consequently,

1 9! 1 17 9! 1
> (- R P <[ R P .
Al hi(t) > <rus)) e 1 MY Al < <rus)> pOe 2 MY

So we have

1 \9! L 1 \9! L,
(wm) 'p(O)r(oc)'h<A(h'h)<<r(m> e

Hence A(h,h) € Py, and the condition (A1) is satisfied.
From Lemma 3.2, it is clear that there exists u}, € Py such that A(uj,, u},) = Au},. Note that
@(t) =tY19"D with 0 < y(q—1) < 1, Lemma 3.3 (By) implies that u}, is continuousin A’. Set A’ = (4) -1

uy, = ux. Then A(uj, uy) = (%)q_l uj. Thatis u} = AqflA(u;,u;‘\). So we can check that uj is a unique
positive solution of the problem (1.1) for any given A > 0. Moreover, u} is continuous in A, that is,
[uy —uj, |l = 0as A — Ag (Ag > 0).

Finally, let Ay = A97!A, then A, also satisfies all the conditions of Lemma 3.2. By Lemma 3.2, for
any initial values ugp,vo € Py, we construct two sequences un1 = Ax(Un,Vn),Vnt1 = Ax(Vn, Uun),n =

0,1,2,---, then we obtain u,, — u%,v, — uf asn — oo. That is,
A A

q-1 1
U () = (F(AB)> | G(t,s)cpgl(

0
q—1 1
V(1) = (F(AB)> | stsiop (
as N — oo. ]

7

r(s —T)B_lf(T,un(T),vn(T))dT> ds — ui(t),
0

r(s —T)B_lf(T,vn(’t),un('t))dT> ds — ui(t),
0

0
In the following, we need the other condition:

(H3)' for r € (0,1), there exists y € (0, %1) such that f(t, rx, v 1y) > rYf(t,x,y),t € [0,1],x,y € [0, +00).

Theorem 3.5. Assume that (Hy), (Hp), (H3)', and (Hy) hold, then

(a) for every A > 0, the problem (1.1) has a unique positive solution uy in Py, where h(t) = t*1 t € [0,1].
Moreover, for any initial values ug, vo € Py, the sequences

wnalt) = ()

Vs (t) = (F(ABJ

wheren =0,1,2,-- -, must satisfy un(t) — ux(t), va(t) = vi(t) asn — oo;
(b) j is strictly increasing in A, that is, uy < uj ,uy #uy, for 0 <Ay <Ay
(c) uj is continuous in A, that is, [[uy —uj || = 0as A — Ag (Ag > 0);
(d) Hma s oo [[UR ]l = +o00,  limy_0+ [[u3]| =0

q—1 1 s
| stsiop <J (s—r)ﬁ—lf(aunm,vn(r))dr) s,
0 0

q—1 r1 s
J G(t,s)o," <J (S_T)B1f(Trvn(T)/un(T))dT> ds,
0 0
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Proof. We also consider the operator

1 q-1 1 s
Alw,v)(t) = () J G(t,s)p," (J (s —1)P (T, ult), v(t )dT> ds.
0= (rra7) | G9Iep" (| 50 lruin),vix)
Similar to the proof of Theorem 3.4, we know that A : P x P — P is a mixed monotone operator and
satisfies

(i) A(h,h) € Py, where h(t) =t*1,t € [0,1];
(i) Atx, ty) > @(t)A(x,y), %y € P, t € (0,1), where @(t) = Y971, t € (0,1).

Let p =v(q—1), then from (Hs)', we have 0 < vY(g—1) < % and thus t2 < @(t) = tP < 1. Therefore,
. —1
from Lemma 3.2, thlere exists uy, € Py such that A(u}, u},) = A'uj,. Set A’ = (%)q ,uy, = uy. Then
Aluy,uy) = (%)q_ uji. That is, uf = A97'A(u},u}) and then uj is a unique positive solution of the
problem (1.1) for any given A > 0. Further, from Lemma 3.3, uj, is strictly decreasing, continuous in A
and
Iim [|Ju},/||=0, lim |u}/| = +oco.
Jlim [kl =0, fim g

So we can obtain that: (i) uj is strictly increasing in A, that is, u} < uj ,uy # uj, for 0 <Ay < Ag; (i) uj
is continuous in A, that is, [[uf —u3 || = 0as A — Ag(Ag > 0); (iii) ima— 1o [[u3[| = 00, limp 0+ [[u3]| =
0. O

Corollary 3.6. Assume that (Hy)-(Hy) hold, then following infinite-point fractional differential equation with p-
Laplacian

DP. (@p (D u(t) +ftu(t),ult) =0, 0<t<1,
u(O)—u(0):--~:u(“*2)(0)20, D& uw(0) =0, uV(1) =352, ogu(&;)

has a unique positive solution u* in Py, where h(t) = t*~1 t € [0,1]. Moreover, for any initial values ugy, v € Pn,
constructing successively the sequences

q—1 1 s
1 (1) = (r(lm) | st oy (L(s—ﬂﬁ1f(nunm,vnm)m> s,

q—1 1 s
Vs (t) = (r(lm) L Glt,s)g;! (L(s—ﬂﬁ1f(r,vn(1),unm)m> s,

wheren =0,1,2,- -+, we obtain un, (t) — w*(t), va(t) = u*(t) as n — co.

Remark 3.7. In literature, we have not seen such results as Theorem 3.4, Theorem 3.5, and Corollary 3.6 on
infinite-point fractional differential equations. The methods used in literature are not mixed monotone
operator’s method. So our method is different from ones in literature. Our main results can not only
guarantee the existence of a unique positive solution for any parameter, but also help to make two iterative
schemes for approximating it. In addition, the positive solution with respect to the parameter has some
clear properties.

4. An example

We consider the following fractional boundary value problem with p-Laplacian and a parameter,

1
D§+((p3(D0+u t)+A [ Ju + t3:0, 0O<t<l1,

u(0) =u’(0) =0, D3+u(0) =0, u (1) —Z;’ol)%u(%).

(4.1)
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For this example, we know thatn =3,i =1,2, < a = % <3,p= % € (0,1,p=3,05 = ).%,&j = %,f(t,x,y) =

(\3/7? + %) t3. After a simple computation, we get A = %, Z;’il & E;"_l ~ 2.109 < A. Evidently, f(t,x,y)

satisfies (H1) and (H;). Lety = %, then vy € (0, 192;1) = (0,1). Further, for r € (0,1),x > 0,y > 0, we have

1
1 1 T4 1 1
flt,m,r y) = [ Vrx+ —— | > [ 3+ t3>r3(3x+ >t3:ryft,x, )
( y) =V rwl (f ES] Vx Ty (t,x,y)

In addition,

1
f(t,0,1) = %9 £0,t € [0,1].

So all the conditions of Theorem 3.5 are satisfied. From Theorem 3.5, we can claim that:

(@) for A > 0, the problem (4.1) has a unique positive solution u} in Py, where h(t) = t%,t € [0,1].
Moreover, for any initial values ug, vy € Py, the sequences

i s X
() = 5= | Glt,s)es! (L (s =) [ (7 + v;m] T”dw) ds,

i s X
vmialt) = 5= | 6t 5103 (L (s =) lsvn(m e T3d~r> ds,

wheren =0,1,2,---, must satisfy u,(t) = uj(t), va(t) = vi(t) asn — oo;
(b) uj is strictly increasing in A, that is, uil < u;‘\z,u}k\l #* u;‘\z for 0 < A1 < Ay;
(c) uj is continuous in A, that is, ||u} — u3, || = 0asA— Ay (Ao >0);
(d) lima—, oo [[uR]| = +o00, limy 0+ [[u3[| =0.

Remark 4.1. From the above example, it is easy to find many functions which satisfy the conditions of
Theorem 3.4, Theorem 3.5, and Corollary 3.6.

5. Conclusions

In this paper, we discuss an infinite-point fractional differential equation with p-Laplacian and a
parameter. We obtain the existence and uniqueness of positive solutions for any given positive parameter
A. Our methods are new theorems for operator equations A(x,x) = x and A(x, x) = Ax, where A is a mixed
monotone operator. We give some good properties of positive solutions which depend on the parameter
A > 0, that is, the positive solution u} is continuous, strictly increasing in A, and limy_, [[uy|l =
+00, limy_,g+ [[u}|| = 0. The methods used here are different from the literature and so the main results
are new.
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