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Abstract

The applications of fractional order integrals have promoted the study of inequalities. In this paper, we utilize recently
introduced left- and right-fractional conformable integrals (FCI) for a class of decreasing n positive functions such that n € N,
for the generalization of existing integral inequalities. Our results have the potentials to be used for the investigation of positive
solutions of different classes of fractional differential equations. (©2017 All rights reserved.
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1. Introduction and preliminaries

The applications of fractional calculus have attracted more and more attention of scientists in different
application fields in last two decades including control theory, viscoelastic theory, fluid dynamics, image
processing, biology, hydrodynamics, signals, computer networking, and many others [4-13, 17, 18, 22, 28,
31, 33, 34].

Recently, several authors have worked on the generalization of existing inequalities through different
ways. One of the most popular ways is the use of fractional order integrals. For example, Agarwal et al.
[2] produced Hermite-Hadamard type inequalities by considering the generalized k-fractional integrals.
Set et al. [25] obtained an integral identity for the generalized fractional integral operators and with help
of the identity. They proved some Hermite-Hadamard type for a class of functions whose absolute values
of derivatives are convex. Their work generalized Hermite-Hadamard type inequalities for Riemann-
Liouville fractional integral. Sarikaya and Budak [24] derived a generalized inequality for local fractional
integrals.

In existing literature, there are numerous applications of inequalities in the applied sciences, for in-
stance see [3, 21, 23, 32]. The applications of inequalities in the mathematics are widely investigated. One
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of the recently highly attracted areas is the existence of non-trivial solutions of differential equations via
inequalities. For example, Jleli et al. [15] considered a fractional differential equation (FDE) involving
fractional derivative with respect to another function and established a Hartman-Winter-type inequal-
ity. There are several results for the existence of non-trivial solution of eigenvalue problem by using the
inequalities, see [23, 32].

In this paper we utilize the newly introduced fractional integral operators that are left- and right-
FCI introduced in [14] for the generalization of integral inequalities for a class of n decreasing positive
functions. Our new inequalities generalize the work given in [21] and many others in the previous
literature. For the details about the work related to the inequalities, applications, and stabilities, we refer
the readers to [16, 19, 20, 27].

Abdeljawad [1] introduced the notion of left and right conformable derivatives for a differentiable
function f whose are expressed as below

TH(T) = (T— )1 %f/(1), T&(1) = (b—1)1 7% (1),
and the corresponding left and right integrals for 0 < « < 1, by
T dx o dx
(0.4 (04
= - = f(x)—————.
aJ*f(T) L f(x) o Ipf(T) L (x) o=

Definition 1.1 ([14]). Left-FCI operator for any 3 € C, Re(p) > 0, is defined as

B aa 1 (M x—a)*—(t—a)*\Bk-1 dt

b = i |, (=) g
Definition 1.2 ([14]). Right-FCI operator for any 3 € C, Re(f3) > 0, is defined as
1 (°/(b—x)%—(b—1)%\B-1 dt
) ( « ) WG

where the Gamma function is defined for 3 as

Pagt(x) =

+00

I'p) :J e SsP1ds.

0

It is worthy to note that Riemann-Liouville, Hadamad, and generalized fractional integrals are special
cases of Definitions 1.1 and 1.2; see in [14].

Integral inequalities have been studied for different purposes. One of the most useful applications
of the integral inequalities is the existence of non-trivial solutions of FDEs. In literature, there are ap-
plications of several fractional integral operators in the generalizations of pre-existing inequalities. For
instance one can see and apply the integral inequalities given in [26, 29, 30].

2. Main results

Theorem 2.1. Let (fj)j—1,..n be 1 for finiten € {1,2,...} positive continuous functions decreasing on the interval
[a,bl. Leta <t <b,8>0,&>vp >0forany fixedp € {1,...,n}. Then for left-FCI operator Bax, the following
inequality holds true

G [T ' 1500] 8% [1x— @) T, 175 )
Rox[m, 0] T Bae [T ]

Proof. Itis clear that for decreasing positive and continuous functions (fj)j—1,. nanda <t <b,8 >0, £>
Yp > 0 for any fixed p € {1,...,n}, we have

((p—a) (=) (f5 " (1) =15 ""(p)) > 0.

2.1)
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Define a function

Byo(x,p, 1) = r(1[5) <(X_a)“;(’f—a)°‘>(51
ey ° 5) (¢ £y 2.2)
Ty (0 =) (57 (6T ),

With the assumptions in Theorem 2.1, the function E‘J’“(x, p,T) is positive for all T € (a,b]. Integrating
both sides of (2.2), with respect to T from a to x, we have

0< JX BT(x,p,T)dT = 1 JX <(X_‘1)“;(T—a)“>ﬁ—1

rip)
x E D ((p—a —(r=a)®) (70— 157 (0)) = o
n n (2.3)
= [(p—a)Ba* [T 00| + 57 (08a* (=) [T ()]
j#p j=1
—(p—a)fy P (Ba| [T 0] 8 8% [(r— * [T ).
j=1 j=1
Multiplying (2.3) by r(lf:’»J ((x—a)a; (p—a)¥ ) % and integrating with respect to p from a to x
implies
0< 8| [T )80 [(x—a)* TTH )] = 6% [(x—a)® TT ) 1500 B0 TT ) ).
j#£p j=1 j#p j=1
Dividing both sides by (13"‘{ a)® [T, f;/J} {]_[J 1 f;/]( )] we get (2.1). O

Theorem 2.2. Let (fj)j—1,.n ben for finiten € {1,2,...} positive continuous functions decreasing on the interval

[a,bl. Leta<t<b,8>0,&>vp >0forany fixedp € {1,...,n}. Then for left-FCI operator Bge, the following
inequulity holds true

ea(x[(x_a)énl 1f;Y]( )}Ega[nﬁpf)y]fa( )] ega[nnipf]%fa( )}

H“[X—GEH] 1f;/) } ,
63“|:(X*06H]¢pf ]aH“[H#pfv’fp ):|+2306[H].=1f;/1 X):|

=21 (24
b [(X* a)® Hj:l f;/] X)}

B
a
B
a

Proof. It is clear that for decreasing positive and continuous functions (fj)j—;, . nanda<t<b,5>0, &>
Yp > 0 for any fixed p € {1,...,n}, we have

(o=@ —(x—a)) (5 (0 =15 "7(p)) > 0.

Define a function

Bao(x,p,1) = r(1[3) ((X_a)“;(T—a)“>(3_1
1_[] 1f;/]( T) 5 8\ [ c&—Vp — (2.5)
X W((p_a) (e a)®) (50— 0).
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With the assumptions in Theorem 2.2, the function E‘J"X(X, p,T) is positive for all T € (a,b]. Integrating
both sides of (2.5), with respect to T from a to x, we have

0< JX BT(x,p,T)dT = L JX <(X_‘1)“;(T—a)“>ﬁ—1

()
AL . _ dt
X Hf]y] (1) <(p —a)®—(1— a)é) (fé Y7 (1) —f§ YP(P)) R
j=1
no . no (2.6)
= (=B [T 15 ()| + 5 7 (083 [(r— ) [T 1 ()]
j#p j=1
—(p—a)*fy " (Ba| TT00] —8 8% [(r— 0 [T 1) 15000,
j=1
o 1 ((x—a)*—(p—a)® It (o . . .
Multiplying (2.6) by g3 ( m ) W and integrating with respect to p from a to x

implies

0.< 2% [(x— ) [[7°00] 8= [ TT 715 00)] + S [T 1r500] B2 [ox - énf% ]

5*1 j#p j#p 2.7)
egoc[ stv]fa }ﬁgm[n#pfﬂfa }_(elga[Hfjw(X]ﬁgrs[ 5va) }
i#p j=1
Dividing both sides of (2.7) by §3% | (x— a)® [T}, )15 (x)] §0%| 11, 1} 15 (x)] + 8% | T 1) 00| £3P
[(x —a)® | f]y" (x)} , we get (2.4). O

Theorem 2.3. Let (fj)j—1,.n ben for finite n € {1,2,...} positive continuous functions decreasing on the interval
[a,b]. Let a <t < b, 0>0, &>vp > 0forany fixedp € {1,...,n}. Then for left-FCI operator Bae, the following
inequality holds true

& [T 75 00] 8% [ 00 T 1 50

Ra~ [H}L:ﬁ:;/j (X)} - Bgu [hé(x)n}izlf)}’i (x)] (2.8)

Proof. Itis clear that for decreasing positive and continuous functions (fj)j—;,. nanda <t <b,8 >0, &>
Yp > 0 for any fixed p € {1,...,n}, we have

(R (0) =1 (@) (5 7 (1) =5 7 (0)) 0.

Define a function

ET“(X’ p’T) — r(lﬁ) ((X_a)“;('f—a)“>[3_1
H;l 1f;/’( ) 5 5 iy fy (2.9)
e () —nt ) (5 =5 ).

With the assumptions in Theorem 2.3, the function E‘J’“(x, p,T) is positive for all T € (a,b]. Integrating
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both sides of (2.9), with respect to T from a to x, we have

0< JX BT(x, p,1)dT = 1 JX ((X_ a)“;(T— a)“>f5*1

F(B)
_ — d
fo% (R0 =) (15 (0 =5 (0) (o ya
n (2.10)
~ [0 TT 95 00] + 65 (= [n ) [ 7))
7P j=1
_hé( ) &— Vp ﬁao{[HfYJ ]_ “[hé(X)Hf]yj(X)}.
j=1
Multiplying (2.10) by ((x_a)“; (p—a)"‘) U x % and integrating with respect to p from a to x
implies
0< Ba[TT#e500]8a% 0o [T 0] = Ba~[ne o0 TT ) e5 00| Ba~ | TT ) 00
J#P j=1 i#Pp j=1
Dividing both sides by &g~ {hé ()T 1f;”} BH“[H] 1 f;/’( )} we get (2.8). O

Theorem 2.4. Let (fj)j—1,. n be 1 for finiten € {1,2,...} positive continuous functions decreasing on the interval
[a,bl. Leta <t <b,8>0,&>vp >0forany fixedp € {1,...,n}. Then for left-FCI operator B, the following
inequality holds true

23%[nS 00 T 1) () 8% | T}y £ 15 0)| +90% [ T 1150 £3% [0 T 1) (o)
00% [N 00 T}y 1715 ()| 80| TT 1y 115 (x)| + 83 | T 1) 00| 83P [n3 00 T, 1) ()]

Proof. Itis clear that for decreasing positive and continuous functions (fj)j—,. nanda <t <b,8 >0, £ >
Yp > 0 for any fixed p € {1,...,n}, we have

(R (0)—n2 (@) (5 " (x5 " (p)) > 0.

>1. (2.11)

Define a function

BI%(x, p,7) = F(lrs) ((x— )= - - a)a) -
[ 50 5 E—y E—y (2.12)
X m(h (p)_h (T)) (fp p(T)_fp p(p))

With the assumptions in Theorem 2.4, the function 5T%(x, p,T) is positive for all T € (a,b]. Integrating
both sides of (2.12), with respect to T from a to x, we have

0< J: Bge(x,p,T)dT = F(lﬁ) E <(X_ a)“;(T— a)"‘>f3*1
Xny’ ( h5( ))( ‘E VP(T)—fg_YP(pD(Td(:)l(X

n (2.13)
= [ho(p)Ea" I £500] + 5 (0B (R (0 [T 0]

i#p j=1

_hé(p)fé_yp(p)gg(x[ﬁf}/j (X)} — { H]#pf%fa }
j=1
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Multiplying (2.13) by r(le) ((x_a)“; (p—a)™ ) % and integrating with respect to p from a to x
implies
0< 8% [n2 () [T 0] Bax| [T f500] + 53 | TT 1 r500]83% (20 [T 0]
j=1 i#p i#P =1 (2.14)
=00 (000 TT 6500 B2 | TT 1) 00| = 80 | TT 0|28 [n2 0 TT 6 0
j#p j=1 j=1

Dividing both sides of (2.14) by 33*[}@(@ [T, £ f5(x )]Eg“[ n Y5 (x )} n 33“[1‘[] L (x )} Bgp
[hé(x) [ ) (x )} we get (2.11). O
Now using the right-FCI operator we get following theorem.

Theorem 2.5. Let (fj);—1,.. n be 1 for finiten € {1,2,...} positive continuous functions decreasing on the interval
[a,b]. Let a < t < b 5 >0,&>vp > 0forany fixed p € {1,...,n). Then for right-FCI operator PJ%, the
following inequality holds true

P T 5 00]  Pag [0 —x° T 6750
bag ] T Bag[ -0 |

(2.15)

Proof. Itis clear that for decreasing positive and continuous functions (fj)j—1,. . nanda <t <b,8 >0, £>
Yp > 0 for any fixed p € {1,...,n}, we have

((b=p) = (=) (5" () =5 " (p) > 0.

Define a function

BIe(x, p,T) = r(lﬁ)<(b—x) “(b T)OC>[5 .
[T, ) (7) . 5 216)
)= ) ) 5 —Yp vy
b (0= = (o= ) (75 (0~ ().

With the assumptions in Theorem 2.5, the function B‘J’g‘(x, p,T) is positive for all T € (a,b]. Integrating
both sides of (2.16), with respect to T from x to b, we have

L 1 (P /(b—x)%—(b—1)*\B-1
0< L B‘J'b (x,p,T)dT = r(ﬁ) L ( = )
- - d
ljfy’ (=) = (0 —0) (57 (0 1" 0)) p—yia
n (2.17)

~ [to— g TT 5500 « 15" (mPag [1b—o1° T 7w

i#p j=1
—(b—p)*5 (P[] (0] —Pag [ -0 T (0)].

j=1 j=1

H?:lf;/j(())

Multiplying (2.3) by 153 ((b*")“*o((p*a)l “) X o and integrating with respect to p from x to
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b implies
o< Pag[ [T fs00]Pag[o—xP [TH x)] - Pag[o -0 [T s50)|Pag[ TT ) (0],
i#p j=1 i#p =1

Dividing both sides by 53"‘[ —x)® ]_[] 1 f?’} {H] 1 f;/]( )} we get (2.15). O

Theorem 2.6. Let (fj)j—1,. n be n for finiten € {1,2,...} positive continuous functions decreasing on the interval
[a,b]. Let a <t <b,d>0,&=>vp, >0 forany fixed p € {1,...,n}. Then for right-FCI operator BH{’;, the
following inequality holds true

"8 |0 —)° T 709 P38 [ TTiep 76509 ] + °08 [ [ 71500 P38 [ 10 0 [T °00)
03[ (b —%)8 Ty 1) 15000 | Bag [ TT 1y 1 65 00)] + 035 [ T 1) 00| B3R [0 =P [Ty )00~

Proof. Itis clear that for decreasing positive and continuous functions (fj)j—, . nanda <t <b,8 >0, &>
Yp > 0 for any fixed p € {1,...,n}, we have

((b=p)® = (o= (57 () 5" (0)) > 0.

Define a function

BT{;‘(X,p,T) _ r(lﬁ)<(b—x) (x(b T)oc>[5 1
[14 f]?/j (t) 5 8\ (b - (2.19)
xW((b*p) —(b—1) )(fp () — 5 p(p)).

With the assumptions in Theorem 2.6, the function PTg&(x, p, ) is positive for all T € (a,b]. Integrating
both sides of (2.19), with respect to T from x to b, we have

0< Jj PIE(x, p,T)dT = F(l(s) Jf <(b_x)“;(b—T)“)ﬁl
T80 (o01 o) (557700

(2.20)
~ [to—opPag [T 50] + 5 (xR 16— 51‘[#1 )
j#p
—(b— p) EVP Bgcx[Hf% ] Bgcx[ _TZSH]#pr;fE }

0-—1 nocYj
« Hj:l f,’ (p)

Multiplying (2.20) by (le) <(b—x)cx;c (pfa)“) and integrating with respect to p from x to b

implies e
0 < %38t TL 0] Pag[ [T e500] + a8 [TT 75 00] o o -8 T ) )]
izln j#p j#p X j=1 X (2.21)
— g [(b )P [T 5 }ﬁgb [Hﬁépf”fa } egg‘[Hf}i (x)} BgP [(b ) T (x)].
i#p j=1 j=1

Dividing both sides of (2.21) by eH“{b X 5H]7ép f}/’f‘E ] {H)“#pf;“fa )}—FGH{’,‘{H] 1f;/’( )}535
[ —x 5]_[) 1f}/] } we get (2.18). O
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Theorem 2.7. Let (fj)j—1,.n ben for finiten € {1,2,...} positive continuous functions decreasing on the interval
[a,bl. Let a <t < b, 6>0,&>vp > 0 for any fixed p € {1,...,n}. Then for right-FCI operator PJ&, the
following inequality holds true

0 [T 65 00] P W 0TI 7500

Bag (] T eag (RG]

(2.22)

Proof. 1t is clear that for decreasing positive and continuous functions (fj )]—:1,.,_111 anda<t<b,6>0 &>
Yp > 0 for any fixed p € {1,...,n}, we have

(R*(e) =1 @) (5 " (®) =5 7 (0)) 0.

Define a function

Bﬂ'g‘(x, 0,T) = r(lm ((b —x)* ; (b —T)“)B—l
H) 1fy’( ) 5 s Ey - (223)
X W(h (p)_h (T)) (fp p(T)_fp p(p))

With the assumptions in Theorem 2.7, the function B‘J’g‘(x, p,T) is positive for all T € (a,b]. Integrating
both sides of (2.23), with respect to T from x to b, we have

o< [ i <“’"”°‘;“’—”“>“

y va] ( —hi(t )) (féfy"(ﬂ féyp(P))(b_d:)la

:[hé(p)ﬁag‘Hf?fé(x)}+f§—w )83 [nd(x va] )

i#p

—h(p)f5 " (p) 53“[1‘[% | -z e [T )
j=1

(2.24)

« o« B—1 nog
Multiplying (2.24) by 5 ((bfx) —(o—a) ) X % and integrating with respect to p from x to b
implies
n n n n
0< Pz [T s Pas [0 [T 0] - Pag [0 [T 0] Pas [ [T 0] @25
j#p j=1 j#p =1
Dividing both sides of (2.25) by P& [h5 )T fﬂ B [ T 1) (x)}, we get (2.22). 0

Theorem 2.8. Let (fj)j—1,.n be n for finite n € {1,2,...,n} positive continuous functions decreasing on the
interval [a,b]. Let a < t < b §>0,&>vp >0 forany fixed p € {1,...}. Then for right-FCI operator PJ¥, the
following inequality holds true

008 [0 0TI 1 09|38 [ Ty £76509] + 08 [ Ty 176509 P [0 T 6700
05 [ () TTsp 15 )| B[ Ty £ 5000 ] + 035 [ T 1 (0] P38 [ () T ) ()]
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Proof. Itis clear that for decreasing positive and continuous functions (fj)j—1,. nanda <t <b,8 >0, £ >
Yp > 0 for any fixed p € {1,...,n}, we have

(n*(p) = ho(0)) (15 7 () =5 7 (p)) >0,

Define a function

BT}C}(X/p,T) _ r(lﬁ)((b x) ;(b_T)fx>B_1
H?Zl ﬂ/j (1) ) 5 E—y fy (227)
X W(h (p)—h (T)) (fp P (1) — 5 p(p)).

With the assumptions in Theorem 2.8, the function B‘J'{;‘(x, p,T) is positive for all T € (a,b]. Integrating
both sides of (2.27), with respect to T from x to b, we have

0< Jf B‘I{;‘(x,p)dr{: 1 Jj ((b_x)“;(b—T)“)Bl

F(B)
fo% (¥ (0) — (o) (15 ypm—fg—vp(p))wd:)la
= [hé(P)BH% H f;/j f%(X)} —|—ff,’_yp Bgoc[hé va] } (2.28)
J#Pp

—n®(e)f " (0P | [T 00| = Pa5 [ 00 T 1) 5 0.
j=1

Multiplying (2.28) by r(le) <(b—x)"‘; (p—a)* ) % and integrating with respect to p from x to b
implies
0 < 35[0 [T5 x| Pag[ TT ) e500] + a8 [ T[T 50| Pag [ 0 T 6 ()]
j=1 j#p j#p j=1 (2.29)
=095 000 [T w500 Pag | T s50x)| = a8 | TT#) 0] #a8 e 0 TT ()
i#p i#p j=1 =1
Dividing both sides of (2.29) by
Ggg[hé(x) Hf;’if;‘; :|(58b [H]#pf%fa } 93%[1—[1?’1‘ (X)} [335 [hé(X)Hf;/j (X)},
j#p j=1 j=1
we get (2.26). O

3. Conclusion

In this paper we have considered the generalization of some integral inequalities for a general class
of n positive non-increasing functions such that n € N by using the newly introduced left- and right-FCI
operators. This work generalizes many results in the available literature. Several more special cases can
be drawn from our results which will be equivalent to the pre-existing works. The results can be used in
different directions. We suggest the readers for its applications to the existence of non-trivial solution of
FDEs of different classes.
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