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Abstract
The purpose of this paper is to introduce and consider a new accelerated hybrid shrinking projection method for finding

a common element of the set EP ∩ F in reflexive Banach spaces, where EP is the set of all solutions of a generalized equilibrium
problem, and F is the common fixed point set of finite uniformly closed families of countable Bregman quasi-Lipschitz mappings.
It is proved that the sequence generated by the accelerated hybrid shrinking projection iteration, converges strongly to the point
in EP∩F, under some conditions. This result is also applied to find the fixed point of Bregman asymptotically quasi-nonexpansive
mappings. It is worth mentioning that, there are multiple projection points from the multiple points in the projection algorithm.
Therefore the new projection method in this paper can accelerate the convergence speed of iterative sequence. The new results
improve and extend the previously known ones in the literature.
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1. Introduction

Takahashi et al. [30] introduced a new hybrid iterative scheme which was called shrinking projection
method to approximate the common fixed point of a family of nonexpansive mappings in 2008. It is an
improvement of the projection methods, because the strong convergence of iterative sequence is guaran-
teed without any compact assumption. Asymptotically nonexpansive mapping was firstly presented in
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[13]. Let C be a nonempty subset of a real Banach space and T be a mapping from C into itself. The fixed
points set of T is denoted by F(T). A mapping T is called an asymptotically nonexpansive mapping in the
intermediate sense ([7]) if

lim sup
n→∞ sup

x,y∈C
(‖Tnx− Tny‖− ‖x− y‖) 6 0. (1.1)

In addition, T is called an asymptotically quasi-nonexpansive mapping in the intermediate sense, if F(T)
is nonempty and for all x ∈ C and y ∈ F(T), (1.1) holds. It is obvious that an asymptotically nonexpansive
mapping must be an asymptotically nonexpansive mappings in the intermediate sense, but the converse
is not always true. Since generally the mappings in the intermediate sense are not Lipschitz continuous.
In uniformly convex Banach spaces, Schu [27] early introduced a modified Mann iteration to approxi-
mate the fixed point of asymptotically nonexpansive mappings. Based on [27, 30], Inchan [16] presented
another hybrid iterative scheme using shrinking projection method with the modified Mann iteration for
asymptotically nonexpansive mappings.

In recent years, many authors studied some other new hybrid iterative schemes in real Banach spaces;
see the literature [15, 21, 32–34] for detail. In 2012, Qin and Wang [22] introduced the following new
definition, asymptotically quasi-nonexpansive mappings with respect to Lyapunov functional ([1]) in the
intermediate sense. In 2013, Hao [14] proved a strong convergence theorem for the new defined mapping
using the shrinking projection method.

In 1967, Bregman [6] presented an elegant and effective technique, i.e., used the so-called Bregman
distance function (see Section 2) to design and analyze the feasibility and optimization algorithms. It
opened a growing area of research in which Bregman’s technique is applied in variety of ways to design
and analyze not only iterative algorithms for solving feasibility and optimization problems, but also for
solving variational inequalities, computing fixed points of nonlinear mappings, and finding solutions to
equilibrium problems.

Recently, many authors studied iterative algorithms for approximating fixed points of nonexpansive
type mappings with respect to Bregman distance [18, 20, 25, 26, 28]. In [4], the authors presented a new
class of nonlinear mappings, which is a generalization of asymptotically quasi-nonexpansive mappings
with respect to Bregman distance in the intermediate sense. And strong convergence theorems for this
new class of nonlinear mappings were also proved. In [11], the authors introduced a monotone hybrid
shrinking projection method for finding a common element of the sets EP and F, where EP is the solution
set of a generalized equilibrium problem, and F is the common fixed point set of finite uniformly closed
families of countable Bregman quasi-Lipschitz mappings in reflexive Banach spaces.

The purpose of this paper is to introduce and consider a new accelerated hybrid shrinking projec-
tion method for finding a common element of the set EP ∩ F in reflexive Banach spaces, where EP is
the set of all solutions of a generalized equilibrium problem, and F is the common fixed point set of
finite uniformly closed families of countable Bregman quasi-Lipschitz mappings. It is proved that the
sequence generated by the accelerated hybrid shrinking projection iteration, converges strongly to the
point in EP ∩ F, under some conditions. This result is also applied to find the fixed point of Bregman
asymptotically quasi-nonexpansive mappings. It is worth mentioning that, there are multiple projection
points from the multiple points in the iteration algorithm. Therefore the new projection method in this
paper can accelerate the convergence speed of iterative sequence. The new results improve and extend
the previously known ones in the literature.

2. Preliminaries

We assume that E is a real reflexive Banach space and E∗ is the dual space of E throughout this paper.
〈·, ·〉 is the pairing between E and E∗. Let g : E→ (−∞,+∞] be a function. As follows, domg denotes the
effective domain of g,

domg := {x ∈ E : g(x) < +∞}.
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We say that g is proper if domg 6= ∅. The interior of the effective domain of g is denoted by intdomg.
And the range of g is denoted by rang.

We say that g is strongly coercive if

lim
‖x‖→∞

g(x)

‖x‖
= +∞.

Given a proper and convex function g : E→ (−∞,+∞], the subdifferential of g is a mapping ∂g : E→ E∗

defined by
∂g(x) = {x∗ ∈ E∗ : g(y) > g(x) + 〈x∗,y− x〉, ∀y ∈ E},

for all x ∈ E. The Fenchel conjugate function of g is the convex function g∗ : E→ (−∞,+∞) defined by

g∗(x∗) = sup{〈x∗, x〉− g(x), x ∈ E}.

We know that the necessary and sufficient condition for x∗ ∈ ∂g(x) is

g(x) + g∗(x∗) = 〈x∗, x〉

for all x ∈ E (see [4]).

Theorem 2.1 ([3]). Let g : E → (−∞,+∞] be a convex, proper, and lower semicontinuous function. Then the
following conditions are equivalent:

(i) g is strongly coercive;

(ii) on bounded subsets of E∗, ran∂g = E∗ and ∂g∗ = (∂g)−1 is bounded.

Let x ∈ intdomg and g : E→ (−∞,∞+] be a convex function. For any y ∈ E, we define the right-hand
derivative of g at x in the direction y by

g◦(x,y) = lim
t↓0

g(x+ ty) − g(x)

t
. (2.1)

If the limit (2.1) exists for any y, we say that the function g is Gâteaux differentiable at x. In this case,
the function ∇g(x) : E → E∗, where 〈∇g(x),y〉 = g◦(x,y) for all y ∈ E, is the gradient of g at x. If the
function g is Gâteaux differentiable at each x ∈ intdom f, then g is said to be Gâteaux differentiable. The
function g is said to be Fréchet differentiable at x, if the limit (2.1) is attained uniformly in ‖y‖ = 1. If the
limit (2.1) is attained uniformly for ‖y‖ = 1 and x ∈ C, then the function f is said to be uniformly Fréchet
differentiable on a subset C of E. It is known that if g is uniformly Fréchet differentiable on bounded
subsets of E, then g is uniformly continuous on bounded subsets of E ([3]).

Theorem 2.2 ([23]). If a function g : E → R is convex, bounded and uniformly Fréchet differentiable on bounded
subsets of E, then ∇g is uniformly continuous on bounded subsets of E from the strong topology of E to the strong
topology of E∗.

Theorem 2.3 ([23]). Let g : E → R be a convex function, which is bounded on bounded subsets of E. Then the
following assertions are equivalent:

(i) g is uniformly convex and strongly coercive on bounded subsets of E;

(ii) g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of domg∗ =
E∗.
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If a function g : E → (−∞,+∞] is convex, proper and lower semicontinuous on E and Gâteaux
differentiable on intdomg, then g is said to be admissible. Under these conditions, we know that g is
continuous in intdomg, ∂g = ∇g and ∂g is single-valued [20, 35]. An admissible function

g : E→ (−∞,+∞],

is called Legendre ([20]) if it satisfies the following two conditions:

(L1) the interior of the domain of g∗, i.e., intdomg∗ is nonempty, g∗ is Gâteaux differentiable and
dom∇g∗ = intdomg∗;

(L2) the interior of the domain of g, i.e., intdomg is nonempty, g is Gâteaux differentiable and
dom∇g = intdomg.

Let g be a Legendre function on E. We always have∇g = (∇g∗)−1 since E is reflexive. When combined
with conditions (L1) and (L2), this fact implies the following equalities:

ran∇g = domg∗ = intdomg∗, ran∇g∗ = domg = intdomg.

Conditions (L1) and (L2) imply that the functions g and g∗ are strictly convex on the interior of their
respective domains. The author in [31] presented an example of Legendre function.

Let g : E → (−∞,+∞] be a convex function on E which is Gâteaux differentiable on intdomg. The
bifunction Dg : domg× intdomg→ [0,+∞) denoted by

Dg(x,y) = g(x) − g(y) − 〈x− y,∇g(y)〉,

is called the Bregman distance with respect to g ([10]). Generally speaking, the Bregman distance is not a
metric, because it is not symmetric and does not satisfy the triangle inequality, either. However, it has the
important three point identity property ([12]): for any x ∈ domg and y, z ∈ intdomg,

Dg(x,y) +Dg(y, z) −Dg(x, z) = 〈x− y,∇g(z) −∇g(y)〉.

With a Legendre function g : E→ (−∞,+∞], we associate the bifunction Wg : domg∗× domg→ [0,+∞)
defined by

Wg(w, x) = g(x) − 〈w, x〉+ g∗(w).

Theorem 2.4 ([25]). Let g : E→ (−∞,+∞] be a Legendre function such that ∇g∗ is bounded on bounded subsets
of intdom f∗. Let x ∈ intdomg. If the sequence {Dg(x, xn)} is bounded, then the sequence {xn} is also bounded.

Theorem 2.5 ([25]). Let g : E→ (−∞,+∞] be a Legendre function. Then the following statements hold:

(i) The function Wg(·, x) is convex for all x ∈ domg;

(ii) Wg(∇g(x),y) = Dg(y, x) for all x ∈ intdomg and y ∈ domg.

Let g : E → (−∞,+∞] be a convex function on E, which is Gâteaux differentiable on intdomg. The
modulus of total convexity at x, vg(x, ·) : [0,+∞)→ [0,+∞] is defined as

vg(x, t) = inf{Dg(y, x) : y ∈ domg, ‖y− x‖ = t}.

If it is positive whenever t > 0, then the function g is said to be totally convex at a point x ∈ intdomg.
When the function g is totally convex at every point of intdomg, then g is said to be totally convex. For
any nonempty bounded set B ⊂ E, if the modulus of total convexity of g on B, vg(B, t) is positive for any
t > 0, where vg(B, ·) : [0,+∞)→ [0,+∞] is defined by

vg(B, t) = inf{vg(x, t) : x ∈ B∩ intdomg},

then the function g is said to be totally convex on bounded sets. By the way, we remark that g is totally
convex on bounded sets if and only if g is uniformly convex on bounded sets; see [8, 9].
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Theorem 2.6 ([8]). Let g : E → (−∞,+∞] be a convex function whose domain contains at least two points. If g
is lower semi-continuous, then g is totally convex on bounded sets if and only if g is uniformly convex on bounded
sets.

Theorem 2.7 ([24]). Let g : E→ R be a totally convex function. If x ∈ E and the sequence {Dg(xn, x)} is bounded,
then the sequence {xn} is also bounded.

Let g : E→ [0,+∞) be a convex function on E which is Gâteaux differentiable on intdomg. If for any
two sequences {xn} in intdom f and {yn} in domg, {xn} is bounded, and

lim
n→∞Dg(yn, xn) = 0 ⇒ lim

n→∞ ‖yn − xn‖ = 0,

then the function g is said to be sequentially consistent [9].

Theorem 2.8 ([11]). A function g : E → [0,+∞) is totally convex on bounded subsets of E if and only if it is
sequentially consistent.

Let C be a closed, nonempty and convex subset of E. Let g : E → (−∞,+∞] be a convex function on
E which is Gâteaux differentiable on intdomg. The Bregman projection projgC(x) with respect to g [11] of
x ∈ intdom f onto C is the minimizer over C of the functional Dg(·, x) :→ [0,+∞], i.e.,

projgC(x) = argmin{Dg(y, x) : y ∈ C}.

Let E be a Banach space with its dual space E∗. We denote the normalized duality mapping from E to 2E
∗

by
Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},

where 〈·, ·〉 is the generalized duality pairing. It is well-known that J is single-value if E is smooth.

Theorem 2.9 ([2]). Let g : E → R be an admissible, strongly coercive, and strictly convex function. Let C be a
nonempty, closed, and convex subset of domg. Then projgC(x) exists uniquely for all x ∈ intdomg.

Let g(x) = 1
2‖x‖

2.

(i) If E is a Hilbert space, then the Bregman projection is reduced to the metric projection onto C.

(ii) If E is a smooth Banach space, then the Bregman projection is reduced to the generalized projection
ΠC(x) which is defined by

ΠC(x) = argmin{φ(y, x) : y ∈ C},

where φ is the Lyapunov functional ([1]) defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2

for all y, x ∈ E.

Theorem 2.10 ([9]). Let g : E→ (−∞,+∞] be a totally convex function. Let C be a nonempty, closed, and convex
subset of intdomg and x ∈ intdomg. If x∗ ∈ C, then the following statements are equivalent:

(i) The vector x∗ is the Bregman projection of x onto C.

(ii) The vector x∗ is the unique solution z of the variational inequality

〈z− y,∇g(x) −∇g(z)〉 > 0, ∀ y ∈ C.

(iii) The vector x∗ is the unique solution z of the inequality

Dg(y, z) +Dg(z, x) 6 Dg(y, x), ∀ y ∈ C.
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Next we present the following definitions.

Definition 2.11. Let C be a nonempty, closed, and convex subset of E and g : E→ (−∞,+∞] an admissible
function. Let T be a mapping from C into itself with nonempty fixed point set F(T). The mapping T is
said to be Bregman quasi-Lipschitz, if there exists a constant L > 1 such that

Dg(p, Tx) 6 LDg(p, x), ∀ p ∈ F(T), ∀ x ∈ C.

The mapping T is said to be Bregman quasi-nonexpansive if

Dg(p, Tx) 6 Dg(p, x), ∀ p ∈ F(T), ∀ x ∈ C.

Obviously, Bregman quasi-Lipschitz mappings is more generalized than Bregman quasi-mappings.
Moreover, both the relatively quasi-Lipschitz mappings and the quasi-Lipschitz mappings are contained
in the Bregman quasi-Lipschitz mappings. Therefore, we can see that Bregman quasi-Lipschitz mappings
are very significant in fixed point theory and applications nonlinear analysis.

Definition 2.12. Let C be a nonempty, closed, and convex subset of E. Let {Tn} be sequence of mappings
from C into itself with nonempty common fixed point set F = ∩∞n=1F(Tn). The {Tn} is said to be uniformly
closed if for any convergent sequence {zn} ⊂ C such that ‖Tnzn − zn‖ → 0 as n → ∞, the limit of {zn}
belongs to F.

Let E be a real Banach space with its dual space E∗ and C be a nonempty closed convex subset of E.
Let A : C → E∗ be a nonlinear mapping and F : C×C → R be a bifunction. Then, consider the following
generalized equilibrium problem of finding u ∈ C such that:

F(u,y) + 〈Au,y− u〉 > 0, ∀y ∈ C. (2.2)

The set of solutions of (2.2) is denoted by EP, i.e.,

EP = {u ∈ C : F(u,y) + 〈Au,y− u〉 > 0, ∀y ∈ C}.

Whenever E = H a Hilbert space, problem (2.2) was introduced and studied by Takahashi and Takahashi
[29].

Whenever F ≡ 0, problem (1.1) is equivalent to finding u ∈ C such that

〈Au,y− u〉 > 0, ∀y ∈ C,

which is called the variational inequality of Browder type. The set of its solutions is denoted by VI(C,A).
Whenever A ≡ 0, problem (2.2) is equivalent to finding u ∈ C such that

F(u,y) > 0, ∀y ∈ C,

which is called the equilibrium problem. The set of its solutions is denoted by EP(F).
Problem (2.2) is very general in the sense that it includes, as special cases, optimization problems,

variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative games and
others; see, e.g., [17, 19].

In order to solve the equilibrium problem, assume that F : C×C → (−∞,+∞) satisfies the following
conditions [5]:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F(x,y) + F(y, x) 6 0, for all x,y ∈ C;

(A3) for all x,y, z ∈ C, lim supt↓0 F(tz+ (1 − t)x,y) 6 F(x,y);
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(A4) for all x ∈ C, F(x, ·) is convex and lower semi-continuous.

For r > 0, we define a mapping Kr : E→ C as follows

Tr(x) = {z ∈ C : F(z,y) +
1
r
〈y− z,∇g(z) −∇g(x)〉 > 0, ∀ y ∈ C} (2.3)

for all x ∈ E. The following two lemmas were proved in [25].

Lemma 2.13. Let E be a reflexive Banach space and let g : E → R be a Legendre function. Let C be a nonempty,
closed and convex subset of E and let F : C×C→ R be a bifunction satisfying (A1)-(A4). For r > 0, let Tr : E→ C

be the mapping defined by (2.3). Then dom Tr = E.

Lemma 2.14. Let E be a reflexive Banach space and let f : E → R be a convex, continuous and strongly coercive
function which is bounded on bounded subsets and uniformly convex on bounded subsets of E. Let C be a nonempty,
closed and convex subset of E and let F : C×C→ R be a bifunction satisfying (A1)-(A4). For r > 0, let Tr : E→ C

be the mapping defined by (2.3). Then the following statements hold:

(i) Tr is single-valued.

(ii) Tr is a firmly nonexpansive-type mapping, i.e., for all x,y ∈ E,

〈Trx− Try,∇g(Trx) −∇g(Try)〉 6 〈Trx− Try,∇g(x) −∇f(y)〉.

(iii) F(Tr) = F̂(Tr) = EP(F).

(iv) EP(F) is closed and convex.

(v) Dg(p, Trx) +Dg(Trx, x) 6 Dg(p, x), for all p ∈ EP(F) and for all x ∈ E.

Lemma 2.15. Let E be a reflexive Banach space and let f : E → R be a convex, continuous and strongly coercive
function which is bounded on bounded subsets and uniformly convex on bounded subsets of E. Let C be a nonempty,
closed and convex subset of E and let F : C×C → R be a bifunction satisfying (A1)-(A4). Let A : C → E∗ be a
monotone mapping, i.e.,

〈Ax−Ay, x− y〉 > 0, ∀ x,y ∈ C.

For r > 0, let Kr : E→ C be the mapping defined by

Kr(x) = {z ∈ C : F(z,y) + 〈Az,y− z〉+ 1
r
〈y− z,∇g(z) −∇g(x)〉 > 0, ∀ y ∈ C}.

Then the following statements hold:

(i) Kr is single-valued.

(ii) Kr is a firmly nonexpansive-type mapping, i.e., for all x,y ∈ E,

〈Krx−Kry,∇g(Krx) −∇g(Kry)〉 6 〈Krx−Kry,∇g(x) −∇g(y)〉.

(iii) F(Kr) = F̂(Kr) = EP.

(iv) EP is closed and convex.

(v) Dg(p,Krx) +Dg(Krx, x) 6 Dg(p, x), for all p ∈ EP(F) and for all x ∈ E.

Proof. Let
G(x,y) = F(x,y) + 〈Ax,y− x〉, ∀ x,y ∈ C.

It is easy to show that, G(x,y) satisfies the conditions (A1)-(A4). Replacing the F(x,y) by the G(x,y) in
Lemma 2.14, we can get the conclusions.



J. L. Zhang, R. P. Agarwal, N. Jiang, J. Nonlinear Sci. Appl., 11 (2018), 108–130 115

3. Main results

Theorem 3.1 ([11]). Let g : E→ (−∞,+∞] be a Legendre function which is totally convex on bounded subsets of
E. Suppose that ∇g∗ is bounded on bounded subsets of intdomg∗. Let C be a nonempty, closed, and convex subset
of intdomg. Let {Tn} : C → C be a uniformly closed family of countable Bregman quasi-Lipschitz mappings with
the condition limn→∞ Ln = 1, where

Dg(p, Tnx) 6 LnDg(p, x), ∀ p ∈ F, ∀ x ∈ C.

Let F be the common fixed point set of {Tn}. Then F is closed and convex.

Next we will prove the main strong convergence theorem for the finite families of countable Bregman
quasi-Lipschitz mappings by using a new accelerated hybrid projection scheme. In this scheme, we will
use some detailed technology.

Theorem 3.2. Let g : E → (−∞,+∞] be a Legendre function which is bounded, strongly coercive, uniformly
Fréchet differentiable and totally convex on bounded subsets on E. Let C be a nonempty, closed, and convex subset
of intdom f. Let {T (i)n }∞n=1 : C→ C be N uniformly closed families of countable Bregman quasi-Lipschitz mappings
with the condition limn→∞ L(i)n = 1 for i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F ∩ EP be nonempty.

Let {xn}, {zn} and {ωn} be sequences of C generated by

x0,i, z0,i ∈ intdomg, arbitrarily, i = 1, 2, · · · , l,
y
(1)
i,n = ∇g∗(α(1)

n ∇g(xn) + (1 −α
(1)
n )∇g(T (i)n xn)), i = 1, 2, 3, · · · ,N,

y
(2)
i,n = ∇g∗(α(2)

n ∇g(zn) + (1 −α
(2)
n )∇g(T (i)n zn)), i = 1, 2, 3, · · · ,N,

F(u
(1)
i,n,y) + 〈Au(1)

i,n,y− u(1)
i,n〉+

1
r
(1)
n

〈∇g(u(1)
i,n) −∇g(y

(1)
i,n),y− u

(1)
i,n〉 > 0, ∀y ∈ C,

F(u
(2)
i,n,y) + 〈Au(2)

i,n,y− u(2)
i,n〉+

1
r
(2)
n

〈∇g(u(2)
i,n) −∇g(y

(2)
i,n),y− u

(2)
i,n〉 > 0, ∀y ∈ C,

C
(1)
i,n+1 = {z ∈ Cn : Dg(z,u

(1)
i,n) 6 Dg(z,y

(1)
i,n) 6 Dg(z, xn) + ξn,i},

C
(2)
i,n+1 = {z ∈ Cn : Dg(z,u

(2)
i,n) 6 Dg(z,y

(2)
i,n) 6 Dg(z, zn) + ηn,i},

C
(1)
i,1 = C

(2)
i,1 = C, i = 1, 2, 3, · · ·,N,

C
(1)
n+1 = ∩Ni=1C

(1)
i,n+1,

C
(2)
n+1 = ∩Ni=1C

(2)
i,n+1,

Cn+1 = C
(1)
n+1 ∩C

(2)
n+1,

xn+1,i = P
g
Cn+1

x0,i, i = 1, 2, · · · , l,

zn+1,i = P
g
Cn+1

z0,i, i = 1, 2, · · · , l,

xn+1 =
∑l

i=1 λixn+1,i, λi ∈ [0, 1],
zn+1 =

∑l
i=1 λizn+1,i, λi ∈ [0, 1],

ωn+1 = λxn+1 + (1 − λ)zn+1, λ ∈ [0, 1],

where
ξn,i = (Ln − 1) sup

x∈F∩EP∩B(Pg
F∩EPx0,i,1)

Dg(x, x0,i), i = 1, 2, · · ·,N,

ηn,i = (Ln − 1) sup
x∈F∩EP∩B(Pg

F∩EPz0,i,1)
Dg(x, z0,i), i = 1, 2, · · ·,N,

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{α
(1)
n }, {α(2)

n } are sequences satisfying lim supn→∞ α(1)
n < 1, lim supn→∞ α(2)

n < 1 and {r
(1)
n }, {r(2)

n } are sequences
satisfying lim infn→∞ r(1)

n > 0, lim infn→∞ r(2)
n > 0. Then the following conclusions hold:
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(1) {xn} converges strongly to p = PgF∩EPx0;

(2) {zn} converges strongly to q = PgF∩EPz0;

(3) {ωn} converges strongly to λq+ (1 − λ)q ∈ F∩ EP.

Proof. We divide the proof into six steps.

Step 1. We show that Cn is closed and convex for all n > 1. It is obvious that C(1)
i,1 = C is closed and

convex for each i = 1, 2, 3, · · ·,N. For each i = 1, 2, 3, · · ·,N, suppose that C(1)
i,k is closed and convex for

some k > 1. We see that,

C
(1)
i,k+1 = {z ∈ C : Dg(z,u

(1)
i,k) 6 Dg(z,y

(1)
i,k) 6 Dg(z, xk) + ξk}∩C

(1)
i,k ,

and
Dg(z,u

(1)
i,k) 6 Dg(z,y

(1)
i,k) 6 Dg(z, xk) + ξk,i,

is equivalent to {
〈∇g(xk) −∇g(y

(1)
i,k), z〉 6 〈g

∗(∇g(xk)) − g∗(∇g(y
(1)
i,k))〉+ ξk,i,

〈∇g(y(1)
i,k) −∇g(u

(1)
i,k), z〉 6 〈g

∗(∇g(y(1)
i,k)) − g

∗(∇g(u(1)
i,k))〉.

(3.1)

Therefore,
C
(1)
i,k+1 = {z ∈ C : z satisfies (3.1)}∩C(1)

i,k .

It is easy to see that, if z1, z2 satisfy (3.1), the element z = tz1 + (1− t)z2 satisfies also (3.1) for all t ∈ (0, 1),
so that the set

{z ∈ C : z satisfies (3.1)},

is convex and closed and hence C(1)
i,k+1 is closed and convex for all n > 1. Therefore C(1)

n+1 = ∩Ni=1C
(1)
i,n+1

is closed and convex. Similarly, C(2)
n+1 = ∩Ni=1C

(2)
i,n+1 is closed and convex. Hence Cn is closed and convex

for all n > 1.

Step 2. We show that
F∩ EP ∩B(PgF∩EPx0, 1) ⊂ C(1)

n ,

and
F∩ EP ∩B(PgF∩EPz0, 1) ⊂ C(2)

n

for all n > 1. It is obvious that F ∩ EP ∩ B(PgF∩EPx0, 1) ⊂ C
(1)
i,1 = C for all 1 6 i 6 N. Suppose that

F∩ EP ∩B(PgF∩EPx0, 1) ⊂ C(1)
i,n for some n > 1. Let p ∈ F∩ EP ∩B(PgF∩EPx0, 1). By Theorem 2.5, we have

Dg(p,y(1)
i,n) = Dg(p,∇g∗(α(1)

n ∇g(xn) + (1 −α
(1)
n )∇g(T (i)n xn)))

=Wg(α
(1)
n ∇g(xn) + (1 −α

(1)
n )∇g(T (i)n xn),p)

= α
(1)
n Wg(∇g(xn),p) + (1 −α

(1)
n )Wg(∇g(T (i)n xn),p)

= α
(1)
n Dg(p, xn) + (1 −α

(1)
n )Dg(p, T (i)n xn)

6 α(1)
n Dg(p, xn) + (1 −α

(1)
n )Dg(p, xn) + ξn

6 Dg(p, xn) + ξn.

(3.2)

On the other hand, by Lemma 2.15, we have p = Kr(p) and

Dg(p,Kry
(1)
i,n) +Dg(Kny

(1)
i,n,y(1)

i,n) 6 Dg(p,y(1)
i,n),
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that is,
Dg(p,u(1)

i,n) +Dg(Kny
(1)
i,n,y(1)

i,n) 6 Dg(p,y(1)
i,n). (3.3)

Combining (3.2) and (3.3) we know that p ∈ C(1)
i,n+1 for all 1 6 i 6 N, which implies that

F∩ EP ∩B(PgF∩EPx0, 1) ⊂ C(1)
i,n+1.

Therefore F∩EP ∩B(PgF∩EPx0, 1) ⊂ C(1)
n+1. By induction we know that F∩EP ∩B(PgF∩EPx0, 1) ⊂ C(1)

n for all

n > 1. Similarly, F∩ EP ∩B(PgF∩EPz0, 1) ⊂ C(2)
n for all n > 1.

Step 3. We show that {ωn} converges to a point of C.
Since xn,i = P

g
Cn
x0,i and Cn+1 ⊂ Cn for all i = 1, 2, · · · , l, then we get

Dg(xn,i, x0,i) 6 Dg(xn+1,i, x0,i), ∀ n > 1, i = 1, 2, · · · , l. (3.4)

Therefore {Dg(xn,i, x0,i)} is nondecreasing. On the other hand, by Definition 2.12, we have

Dg(xn,i, x0,i) = Dg(P
g
Cn
x0,i, x0,i) 6 Dg(p, x0,i) −Dg(p, xn,i) 6 Dg(p, x0,i)

for all p ∈ F ⊂ Cn and for all n > 1. Therefore, Dg(xn,i, x0,i) is also bounded. This together with (3.4)
implies that the limit of {Dg(xn,i, x0,i)} exists. Put

lim
n→∞Dg(xn,i, x0,i) = di, i = 1, 2, · · · , l. (3.5)

From Definition 2.12, we have for any positive integer m, that

Dg(xn+m,i, xn,i) = Dg(xn+m,i,P
g
Cn
x0,i) 6 Dg(xn+m,i, x0,i) −Dg(P

g
Cn
x0,i, x0,i)

= Dg(xn+m,i, x0,i) −Dg(xn,i, x0,i)

for all n > 1. This together with (3.5) implies that

lim
n→∞Dg(xn+m,i, xn,i) = 0,

holds uniformly for all m. Therefore, we get that

lim
n→∞ ‖xn+m,i − xn,i‖ = 0,

holds uniformly for all m. Then {xn,i} is a Cauchy sequence, for all i = 1, 2, · · · , l. Therefore there exists
a point pi ∈ C such that xn,i → pi. Similarly, {zn,i} is a Cauchy sequence, therefore there exists a point
qi ∈ C such that zn,i → qi. Hence

xn →
l∑

i=1

λipi = p ∈ C, zn →
l∑

i=1

λiqi = q ∈ C.

From the definitions of ωn, {ωn} converges to a point ω = λp+ (1 − λ)q ∈ C.

Step 4. We show that the limit of {ωn} belongs to F.
Sine xn+1 ∈ C

(1)
n+1, we have for all 1 6 i 6 N that

Dg(xn+1,u(1)
i,n) 6 Dg(xn+1,y(1)

i,n) 6 Dg(xn+1, xn) + ξn → 0,

as n→∞. By Theorem 2.8, we obtain that

lim
n→∞ ‖xn+1 − y

(1)
i,n‖ = 0, lim

n→∞ ‖xn+1 − u
(1)
i,n‖ = 0. (3.6)



J. L. Zhang, R. P. Agarwal, N. Jiang, J. Nonlinear Sci. Appl., 11 (2018), 108–130 118

From
y
(1)
i,n = ∇g∗(α(1)

n ∇g(xn) + (1 −α
(1)
n )∇g(T (i)n xn)),

we get
∇g(y(1)

i,n) = α
(1)
n ∇g(xn) + (1 −α

(1)
n )∇g(T (i)n xn),

where implies that
∇g(y(1)

i,n) −∇g(xn) = (1 −α
(1)
n )(∇g(T (i)n xn) −∇g(xn)).

By Theorem 2.2, we have
lim
n→∞ ‖∇g(y(1)

i,n) −∇g(xn)‖ = 0,

so that
lim
n→∞ ‖∇g(T (i)n xn) −∇g(xn)‖ = 0.

By Theorems 2.3 and 2.8, ∇g∗ is uniformly continuous on bounded subsets of E and thus

lim
n→∞ ‖T (i)n xn − xn‖ = 0.

Since {T
(i)
n } is an asymptotically countable family of Bregman weak relatively nonexpansive mappings

and xn → p, so that p ∈ ∩∞n=1F(T
(i)
n ) for each 1 6 i 6 N. Therefore p ∈ F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ). Similarly,

q ∈ F = ∩∞n=1 ∩Ni=1 F(T
(i)
n ). Since F is convex, we get ω ∈ F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ).

Step 5. We show that the limit of {ωn} belongs to EP.
We have proved that xn → p as n→∞. Now let us show that p ∈ EP. Since ∇g is uniformly norm-to-

norm continuous on bounded subsets of E, from (3.6) we have limn→∞ ‖∇g(u(1)
i,n) −∇g(y

(1)
i,n)‖ = 0. From

lim infn→∞ r(1)
n > 0, it follows that

lim
n→∞

‖∇g(u(1)
i,n) −∇g(y

(1)
i,n)‖

r
(1)
n

= 0.

By the definition of un := Krnyn, we have

G(u
(1)
i,n,y) +

1

r
(1)
n

〈y− u(1)
i,n,∇g(u(1)

i,n) −∇g(y
(1)
i,n)〉 > 0, ∀y ∈ C,

where
G(u

(1)
i,n,y) = F(u(1)

i,n,y) + 〈Au(1)
i,n,y− u(1)

i,n〉.
We have from (A2) that

1

r
(1)
n

〈y− u(1)
i,n,∇g(u(1)

i,n) −∇g(y
(1)
i,n)〉 > −G(u

(1)
i,n,y) > G(y,u(1)

i,n), ∀y ∈ C.

Since y 7→ F(x,y) + 〈Ax,y− x〉 is convex and lower semi-continuous, letting n→∞ in the last inequality,
from (A4), we have

G(y,p) 6 0, ∀y ∈ C.

For t, with 0 < t < 1, and y ∈ C, let yt = ty+ (1 − t)p. Since y ∈ C and p ∈ C, then yt ∈ C and hence
G(yt,p) 6 0. So, from (A1) we have

0 = G(yt,yt) 6 tG(yt,y) + (1 − t)G(yt,p) 6 tG(yt,y).

Dividing by t, we have
G(yt,y) > 0, ∀y ∈ C.

Letting t→ 0, from (A3) we can get
G(p,y) > 0, ∀y ∈ C.

So, p ∈ EP. Similarly, q ∈ EP. Therefore ω ∈ EP.
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Step 6. Finally, we prove that p = PgF∩EPx0 and q = PgF∩EPz0, from Definition 2.12, we have

Dg(p,PgF∩EPx0) +Dg(P
g
F∩EPx0, x0) 6 Dg(p, x0). (3.7)

On the other hand, since xn = PgCn
x0 and F∩ EP ⊂ Cn, for all n, and from Definition 2.12, we have

Dg(P
g
F∩EPx0, xn+1) +Dg(xn+1, x0) 6 Dg(P

g
F∩EPx0, x0). (3.8)

By the definition of Dg(x,y), we know that

lim
n→∞Dg(xn+1, x0) = Dg(p, x0). (3.9)

Combining (3.7), (3.8) and (3.9), we know that Dg(p, x0) = Dg(P
g
F∩EPx0, x0). Therefore, it follows from the

uniqueness of PgF∩EPx0 that p = PgF∩EPx0. Similarly, q = PgF∩EPz0. This completes the proof.

Definition 3.3. Let C be a nonempty, closed and convex subset of E. Let T be a mapping from C into itself
with nonempty fixed point set F(T). The mapping T is said to be Lyapunov quasi-Lipschitz if there exists
a constant L > 1 such that

φ(p, Tx) 6 Lφ(p, x), ∀ p ∈ F(T), ∀ x ∈ C.

The mapping T is said to be Lyapunov quasi-nonexpansive if

φ(p, Tx) 6 φ(p, x), ∀ p ∈ F(T), ∀ x ∈ C.

If we choose g(x) = 1
2‖x‖

2 for all x ∈ E, then Theorem 3.2 reduces to the following corollary.

Corollary 3.4. Let E be a smooth Banach space and C a closed convex subset of E. Let {T (i)n }∞n=1 : C → C be N
uniformly closed families of countable Lyapunov quasi-Lipschitz mappings with the condition limn→∞ L(i)n = 1 for
i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F∩ EP be nonempty. Let {xn}, {zn} and {ωn} be sequences of C

generated by 

x0,i, z0,i ∈ C, arbitrarily, i = 1, 2, · · · , l,
y
(1)
i,n = J−1(α

(1)
n J(xn) + (1 −α

(1)
n )J(T

(i)
n xn)), i = 1, 2, 3, · · · ,N,

y
(2)
i,n = J−1(α

(2)
n J(zn) + (1 −α

(2)
n )J(T

(i)
n zn)), i = 1, 2, 3, · · · ,N,

F(u
(1)
i,n,y) + 〈Au(1)

i,n,y− u(1)
i,n〉+

1
r
(1)
n

〈J(u(1)
i,n) − J(y

(1)
i,n),y− u

(1)
i,n〉 > 0, ∀y ∈ C,

F(u
(2)
i,n,y) + 〈Au(2)

i,n,y− u(2)
i,n〉+

1
r
(2)
n

〈J(u(2)
i,n) − J(y

(2)
i,n),y− u

(2)
i,n〉 > 0, ∀y ∈ C,

C
(1)
i,n+1 = {z ∈ Cn : φ(z,u(1)

i,n) 6 φ(z,y
(1)
i,n) 6 φ(z, xn) + ξn,i},

C
(2)
i,n+1 = {z ∈ Cn : φ(z,u(2)

i,n) 6 φ(z,y
(2)
i,n) 6 φ(z, zn) + ηn,i},

C
(1)
i,1 = C

(2)
i,1 = C, i = 1, 2, 3, · · ·,N,

C
(1)
n+1 = ∩Ni=1C

(1)
i,n+1,

C
(2)
n+1 = ∩Ni=1C

(2)
i,n+1,

Cn+1 = C
(1)
n+1 ∩C

(2)
n+1,

xn+1,i = P
f
Cn+1

x0,i, i = 1, 2, · · · , l,
zn+1,i = P

f
Cn+1

z0,i, i = 1, 2, · · · , l,
xn+1 =

∑l
i=1 λixn+1,i, λi ∈ [0, 1],

zn+1 =
∑l

i=1 λizn+1,i, λi ∈ [0, 1],
ωn+1 = λxn+1 + (1 − λ)zn+1, λ ∈ [0, 1],

where
ξn,i = (Ln − 1) sup

x∈F∩EP∩B(Pf
F∩EPx0,i,1)

φ(x, x0,i), i = 1, 2, · · ·,N,
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ηn,i = (Ln − 1) sup
x∈F∩EP∩B(Pf

F∩EPz0,i,1)
φ(x, z0,i), i = 1, 2, · · ·,N,

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{α
(1)
n }, {α(2)

n } are sequences satisfying lim supn→∞ α(1)
n < 1, lim supn→∞ α(2)

n < 1 and {r
(1)
n }, {r(2)

n } are sequences
satisfying lim infn→∞ r(1)

n > 0, lim infn→∞ r(2)
n > 0. Then the following conclusions hold:

(1) {xn} converges strongly to p = ΠF∩EPx0;

(2) {zn} converges strongly to q = ΠF∩EPz0;

(3) {wn} converges strongly to λq+ (1 − λ)q ∈ F∩ EP.

We change the structure of iterative scheme to get the following convergence theorem.

Theorem 3.5. Let g : E → (−∞,+∞] be a Legendre function which is bounded, strongly coercive, uniformly
Fréchet differentiable and totally convex on bounded subsets on E. Let C be a nonempty, closed, and convex subset
of intdom f. Let {T (i)n }∞n=1 : C→ C be N uniformly closed families of countable Bregman quasi-Lipschitz mappings
with the condition limn→∞ L(i)n = 1 for i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F ∩ EP be nonempty.

Let {xn}, {zn} and {ωn} be sequences of C generated by

x0,i, z0,i ∈ intdomg, arbitrarily, i = 1, 2, · · · , l,
yi,n = ∇g∗(αn∇g(ωn) + (1 −αn)∇g(T (i)n ωn)), i = 1, 2, 3, · · · ,N,
F(ui,n,y) + 〈Aui,n,y− ui,n〉+ 1

rn
〈∇g(ui,n) −∇g(yi,n),y− ui,n〉 > 0, ∀y ∈ C,

Ci,n+1 = {z ∈ Cn : Dg(z,ui,n) 6 Dg(z,yi,n) 6 Dg(z,ωn) + ξn,i},
Ci,1 = C, i = 1, 2, 3, · · ·,N,
Cn+1 = ∩Ni=1Ci,n+1,
xn+1,i = P

g
Cn+1

x0,i, i = 1, 2, · · · , l,

zn+1,i = P
g
Cn+1

z0,i, i = 1, 2, · · · , l,

xn+1 =
∑l

i=1 λixn+1,i, λi ∈ [0, 1],
zn+1 =

∑l
i=1 λizn+1,i, λi ∈ [0, 1],

ωn+1 = λxn+1 + (1 − λ)zn+1, λ ∈ [0, 1],

where
ξn,i = (Ln − 1) sup

x∈F∩EP∩B(Pg
F∩EPx0,i,1)

Dg(x, x0,i), i = 1, 2, · · ·,N,

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{αn} is a sequence satisfying lim supn→∞ αn < 1 and {rn} is a sequence satisfying lim infn→∞ rn > 0. Then the
following conclusions hold:

(1) {xn} converges strongly to a point p ∈ ∩∞n=0Cn;

(2) {zn} converges strongly to a point q ∈ ∩∞n=0Cn;

(3) {ωn} converges strongly to a point ω ∈ F∩ EP.

Proof. We divide the proof into five steps.
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Step 1. We show that Cn is closed and convex for all n > 1. It is obvious that Ci,1 = C is closed and
convex. Suppose that Ci,k is closed and convex for some k > 1. We see for each i = 1, 2, 3, · · ·,N that,

Ci,k+1 = {z ∈ C : Dg(z,ui,k) 6 Dg(z,yi,k) 6 Dg(z,ωk) + ξk}∩Ci,k,

and
Dg(z,ui,k) 6 Dg(z,yi,k) 6 Dg(z,ωk) + ξk,

is equivalent to {
〈∇g(ωk) −∇g(yi,k), z〉 6 〈g∗(∇g(ωk)) − g

∗(∇g(yi,k))〉+ ξk,
〈∇g(yi,k) −∇g(ui,k), z〉 6 〈g∗(∇g(yi,k)) − g

∗(∇g(ui,k))〉.
(3.10)

Therefore,
Ci,k+1 = {z ∈ C : z satisfies (3.10)}∩Ci,k.

It is easy to see that, if z1, z2 satisfy (3.10), the element z = tz1 + (1 − t)z2 satisfies also (3.10) for all
t ∈ (0, 1), so that the set

{z ∈ C : z satisfies (3.10)},

is convex and closed and hence Ci,k+1 is closed and convex for all n > 1. Therefore Cn+1 = ∩Ni=1Ci,n+1
is closed and convex.

Step 2. We show that F∩ EP ∩B(PgF∩EPx0, 1) ⊂ Cn for all n > 1. It is obvious that

F∩ EP ∩B(PgF∩EPx0, 1) ⊂ Ci,1 = C

for all 1 6 i 6 N. Suppose that F∩ EP ∩B(PgF∩EPx0, 1) ⊂ Ci,n for some n > 1. Let

p ∈ F∩ EP ∩B(PgF∩EPx0, 1).

By Theorem 2.5, we have

Dg(p,yi,n) = Dg(p,∇g∗(αn∇g(ωn) + (1 −αn)∇g(T (i)n ωn)))

=Wg((αn∇g(ωn) + (1 −αn)∇g(T (i)n ωn),p))

= αnW
g(∇g(ωn),p) + (1 −αn)W

g(∇g(T (i)n ωn),p)

= αnDg(p,ωn) + (1 −αn)Dg(p, T (i)n ωn)

6 αnDg(p,ωn) + (1 −αn)Dg(p,ωn) + ξn

6 Dg(p,ωn) + ξn.

(3.11)

On the other hand, by Lemma 2.15, we have p = Kr(p) and

Dg(p,Kryi,n) +Dg(Knyi,n,yi,n) 6 Dg(p,yi,n),

that is,
Dg(p,ui,n) +Dg(Knyi,n,yi,n) 6 Dg(p,yi,n). (3.12)

Combining (3.11) and (3.12) we know that p ∈ Ci,n+1 for all 1 6 i 6 N, which implies that

F∩ EP ∩B(PgF∩EPx0, 1) ⊂ Ci,n+1.

Therefore F∩ EP ∩ B(PgF∩EPx0, 1) ⊂ Cn+1. By induction we know that F∩ EP ∩ B(PgF∩EPx0, 1) ⊂ Cn for all
n > 1.
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Step 3. We show that {xn} converges to a point p ∈ ∩∞n=0Cn. Since xn,i = P
g
Cn
x0,i for all i = 1, 2, · · · , l and

Cn+1 ⊂ Cn, then we get
Dg(xn,i, x0,i) 6 Dg(xn+1,i, x0,i), ∀ n > 1. (3.13)

Therefore, {Dg(xn,i, x0,i)} is nondecreasing. On the other hand, by Definition 2.12, we have

Dg(xn,i, x0,i) = Dg(P
g
Cn
x0,i, x0,i) 6 Dg(p, x0,i) −Dg(p, xn,i) 6 Dg(p, x0,i)

for all p ∈ F ⊂ Cn and for all n > 1. Therefore, Dg(xn,i, x0,i) is also bounded. This together with (3.13)
implies that the limit of {Dg(xn,i, x0,i)} exists. Put

lim
n→∞Dg(xn,i, x0,i) = di. (3.14)

From Definition 2.12, we have, for any positive integer m that

Dg(xn+m,i, xn,i) = Dg(xn+m,i,P
g
Cn
x0,i) 6 Dg(xn+m,i, x0,i) −Dg(P

g
Cn
x0,i, x0,i)

= Dg(xn+m,i, x0,i) −Dg(xn,i, x0,i)

for all n > 1. This together with (3.14) implies that

lim
n→∞Dg(xn+m,i, xn,i) = 0,

holds uniformly for all m. Therefore, we get that

lim
n→∞ ‖xn+m,i − xn,i‖ = 0,

holds uniformly for all m. Then {xn,i} is a Cauchy sequence for all i = 1, 2, · · · , l. Therefore there exists
a point pi ∈ C such that xn,i → pi. Similarly, {zn,i} is a Cauchy sequence, therefore there exists a point
qi ∈ C such that zn,i → qi. Hence

xn →
l∑

i=1

λipi = p ∈ C, zn →
l∑

i=1

λiqi = q ∈ C.

From the definitions of ωn, {ωn} converges to a point ω = λp+ (1 − λ)q ∈ C.
Next, we prove that p ∈ ∩∞n=0Cn. In fact, for any Cn, we have that, xn+m ∈ Cn for all m > 1

and xn+m → p as m → ∞. Since Cn is closed, we have p ∈ Cn. Therefore p ∈ ∩∞n=0Cn. Similarly,
q ∈ ∩∞n=0Cn.

Step 4. We show that the limit of {ωn} belongs to F. Since

ωn+1 = λxn+1 + (1 − λ)zn+1 ∈ Cn+1, ωn → λp+ (1 − λ)q,

we have for all 1 6 i 6 N that

Dg(ωn+1,ui,n) 6 Dg(ωn+1,yi,n) 6 Dg(ωn+1,ωn) + ξn → 0,

as n→∞. By Theorem 2.8, we obtain that

lim
n→∞ ‖ωn+1 − yi,n‖ = 0, lim

n→∞ ‖ωn+1 − ui,n‖ = 0. (3.15)

From
yi,n = ∇g∗(αn∇g(ωn) + (1 −αn)∇f(T (i)n ωn)),

we get
∇g(yi,n) = αn∇g(ωn) + (1 −αn)∇g(T (i)n ωn),
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where implies that
∇g(yi,n) −∇g(ωn) = (1 −αn)(∇g(T (i)n ωn) −∇g(ωn)).

By Theorem 2.2, we have
lim
n→∞ ‖∇g(yi,n) −∇g(ωn)‖ = 0,

so that
lim
n→∞ ‖∇g(T (i)n ωn) −∇g(ωn)‖ = 0.

By Theorems 2.3 and 2.8, ∇f∗ is uniformly continuous on bounded subsets of E and thus

lim
n→∞ ‖T (i)n ωn −ωn‖ = 0.

Since {T
(i)
n } is uniformly closed for each 1 6 i 6 N, and ωn → ω = λp+ (1− λ)q, so that ω ∈ ∩∞n=1F(T

(i)
n )

for each 1 6 i 6 N. Therefore ω ∈ F = ∩∞n=1 ∩Ni=1 F(T
(i)
n ).

Step 5. We show that the limit of {ωn} belongs to EP.
We have proved that ωn → ω as n→∞. Now let us show that ω ∈ EP. Since ∇f is uniformly norm-

to-norm continuous on bounded subsets of E, from (3.15) we have limn→∞ ‖∇g(ui,n) −∇g(yi,n)‖ = 0.
From lim infn→∞ rn > 0, it follows that

lim
n→∞ ‖∇g(ui,n) −∇g(yi,n)‖

rn
= 0.

By the definition of un := Krnyn, we have

G(ui,n,y) +
1
rn
〈y− ui,n,∇g(ui,n) −∇g(yi,n)〉 > 0, ∀y ∈ C,

where
G(ui,n,y) = F(ui,n,y) + 〈Aui,n,y− ui,n〉.

We have from (A2) that

1
rn
〈y− ui,n,∇g(ui,n) −∇g(yi,n)〉 > −G(ui,n,y) > G(y,ui,n), ∀y ∈ C.

Since y 7→ F(x,y) + 〈Ax,y− x〉 is convex and lower semi-continuous, letting n→∞ in the last inequality,
from (A4) and (3.15), we have

G(y,ω) 6 0, ∀y ∈ C.

For t, with 0 < t < 1, and y ∈ C, let yt = ty+ (1 − t)ω. Since y ∈ C and ω ∈ C, then yt ∈ C and hence
G(yt,ω) 6 0. So, from (A1) we have

0 = G(yt,yt) 6 tG(yt,y) + (1 − t)G(yt,ω) 6 tG(yt,y).

Dividing by t, we have
G(yt,y) > 0, ∀y ∈ C.

Letting t→ 0, from (A3) we can get
G(ω,y) > 0, ∀y ∈ C.

So, ω ∈ EP. This completes the proof.

If we choose g(x) = 1
2‖x‖

2 for all x ∈ E, then Theorem 3.5 reduces to the following corollary.
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Corollary 3.6. Let E be a smooth Banach space and C a closed convex subset of E. Let {T (i)n }∞n=1 : C → C be N
uniformly closed families of countable Lyapunov quasi-Lipschitz mappings with the condition limn→∞ L(i)n = 1 for
i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F∩ EP be nonempty. Let {xn}, {zn} and {ωn} be sequences of C

generated by 

x0,i, z0,i ∈ C, arbitrarily, i = 1, 2, · · · , l,
yi,n = J−1(αnJωn + (1 −αn)JT

(i)
n ωn), i = 1, 2, 3, · · · ,N,

F(ui,n,y) + 〈Aui,n,y− ui,n〉+ 1
rn
〈Jui,n − Jyi,n,y− ui,n〉 > 0, ∀y ∈ C,

Ci,n+1 = {z ∈ Cn : φ(z,ui,n) 6 φ(z,yi,n) 6 φ(z,ωn) + ξn},
Ci,1 = C, i = 1, 2, 3, · · ·,N,
Cn+1 = ∩Ni=1Ci,n+1,
xn+1,i = P

f
Cn+1

x0,i, i = 1, 2, · · · , l,
zn+1,i = P

f
Cn+1

z0,i, i = 1, 2, · · · , l,
xn+1 =

∑l
i=1 λixn+1,i, λi ∈ [0, 1],

zn+1 =
∑l

i=1 λizn+1,i, λi ∈ [0, 1],
ωn+1 = λxn+1 + (1 − λ)zn+1, λ ∈ [0, 1],

where
ξn,i = (Ln − 1) sup

x∈F∩EP∩B(Pf
F∩EPx0,1)

φ(x, x0), i = 1, 2, · · ·,N,

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{αn} is a sequence satisfying lim supn→∞ αn < 1 and {rn} is a sequence satisfying lim infn→∞ rn > 0. Then the
following conclusions hold:

(1) {xn} converges strongly to a point p ∈ ∩∞n=0Cn;

(2) {zn} converges strongly to a point q ∈ ∩∞n=0Cn;

(3) {ωn} converges strongly to a point ω ∈ F∩ EP.

Taking λ ≡ 1 in Theorem 3.5 and Corollary 3.6, we obtain the following results.

Corollary 3.7. Let g : E → (−∞,+∞] be a Legendre function which is bounded, strongly coercive, uniformly
Fréchet differentiable and totally convex on bounded subsets on E. Let C be a nonempty, closed, and convex subset
of intdom f. Let {T (i)n }∞n=1 : C→ C be N uniformly closed families of countable Bregman quasi-Lipschitz mappings
with the condition limn→∞ L(i)n = 1 for i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F ∩ EP be nonempty.

Let {xn}, {zn} and {ωn} be sequences of C generated by

x0,i ∈ intdomg, arbitrarily, i = 1, 2, · · · , l,
yi,n = ∇g∗(αn∇g(xn) + (1 −αn)∇g(T (i)n xn)), i = 1, 2, 3, · · · ,N,
F(ui,n,y) + 〈Aui,n,y− ui,n〉+ 1

rn
〈∇g(ui,n) −∇g(yi,n),y− ui,n〉 > 0, ∀y ∈ C,

Ci,n+1 = {z ∈ Cn : Dg(z,ui,n) 6 Dg(z,yi,n) 6 Dg(z, xn) + ξn,i},
Ci,1 = C, i = 1, 2, 3, · · ·,N,
Cn+1 = ∩Ni=1Ci,n+1,
xn+1,i = P

g
Cn+1

x0,i, i = 1, 2, · · · , l,

xn+1 =
∑l

i=1 λixn+1,i, λi ∈ [0, 1],
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where
ξn,i = (Ln − 1) sup

x∈F∩EP∩B(Pg
F∩EPx0,i,1)

Dg(x, x0,i), i = 1, 2, · · ·,N,

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{αn} is a sequence satisfying lim supn→∞ αn < 1 and {rn} is a sequence satisfying lim infn→∞ rn > 0. Then
{xn} converges strongly to a point p ∈ F∩ EP.

Letting g(x) = 1
2‖x‖

2 in Corollary 3.7, we get the following result.

Corollary 3.8. Let E be a smooth Banach space and C a closed convex subset of E. Let {T (i)n }∞n=1 : C → C be N
uniformly closed families of countable Lyapunov quasi-Lipschitz mappings with the condition limn→∞ L(i)n = 1 for
i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F∩ EP be nonempty. Let {xn}, {zn} and {ωn} be sequences of C

generated by 

x0,i ∈ intdom f, arbitrarily, i = 1, 2, · · · , l,
yi,n = J−1(αnJxn + (1 −αn)JT

(i)
n xn), i = 1, 2, 3, · · · ,N,

F(ui,n,y) + 〈Aui,n,y− ui,n〉+ 1
rn
〈Jui,n − Jyi,n,y− ui,n〉 > 0, ∀y ∈ C,

Ci,n+1 = {z ∈ Cn : φ(z,ui,n) 6 φ(z,yi,n) 6 φ(z, xn) + ξn,i},
Ci,1 = C, i = 1, 2, 3, · · ·,N,
Cn+1 = ∩Ni=1Ci,n+1,
xn+1,i = P

f
Cn+1

x0,i, i = 1, 2, · · · , l,
xn+1 =

∑l
i=1 λixn+1,i, λi ∈ [0, 1],

where
ξn,i = (Ln − 1) sup

x∈F∩EP∩B(Pf
F∩EPx0,i,1)

φ(x, x0,i), i = 1, 2, · · ·,N,

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{αn} is a sequence satisfying lim supn→∞ αn < 1 and {rn} is a sequence satisfying lim infn→∞ rn > 0. Then
{xn} converges strongly to a point p ∈ F∩ EP.

Letting l = 1 in Corollary 3.7 and Corollary 3.8 respectively, we get the following results.

Corollary 3.9. Let g : E → (−∞,+∞] be a Legendre function which is bounded, strongly coercive, uniformly
Fréchet differentiable and totally convex on bounded subsets on E. Let C be a nonempty, closed, and convex subset
of intdom f. Let {T (i)n }∞n=1 : C→ C be N uniformly closed families of countable Bregman quasi-Lipschitz mappings
with the condition limn→∞ L(i)n = 1 for i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F ∩ EP be nonempty.

Let {xn}, {zn} and {ωn} be sequences of C generated by

x0 ∈ intdomg, arbitrarily,
yi,n = ∇g∗(αn∇g(xn) + (1 −αn)∇g(T (i)n xn)), i = 1, 2, 3, · · · ,N,
F(ui,n,y) + 〈Aui,n,y− ui,n〉+ 1

rn
〈∇g(ui,n) −∇g(yi,n),y− ui,n〉 > 0, ∀y ∈ C,

Ci,n+1 = {z ∈ Cn : Dg(z,ui,n) 6 Dg(z,yi,n) 6 Dg(z, xn) + ξn},
Ci,1 = C, i = 1, 2, 3, · · ·,N,
Cn+1 = ∩Ni=1Ci,n+1,
xn+1 = PgCn+1

x0,
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where
ξn = (Ln − 1) sup

x∈F∩EP∩B(Pg
F∩EPx0,1)

Dg(x, x0),

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{αn} is a sequence satisfying lim supn→∞ αn < 1 and {rn} is a sequence satisfying lim infn→∞ rn > 0. Then
{xn} converges strongly to a point p ∈ PgF∩EPx0.

Proof. By using Theorem 3.5, we know that, the iterative sequence {xn = ωn} converges strongly to a
point ω ∈ F∩ EP. Next, we prove that ω = PgF∩EPx0, from Theorem 2.10, we have

Dg(p,PgF∩EPx0) +Dg(P
g
F∩EPx0, x0) 6 Dg(ω, x0). (3.16)

On the other hand, since ωn = PfCn
x0 and F · EP ⊂ Cn, for all n, and from Theorem 2.10, we have

Dg(P
g
F∩EPx0,ωn+1) +Dg(ωn+1, x0) 6 Dg(P

g
F∩EPx0, x0). (3.17)

By the definition of Dg(x,y), we know that

lim
n→∞Dg(ωn+1, x0) = Dg(ω, x0). (3.18)

Combining (3.16), (3.17) and (3.18), we know that Dg(ω, x0) = Dg(P
g
F∩EPx0, x0). Therefore, it follows from

the uniqueness of PgF∩EPx0 that ω = PgF∩EPx0. This completes the proof.

Letting g(x) = 1
2‖x‖

2 in Corollary 3.9, we get the following result.

Corollary 3.10. Let E be a smooth Banach space and C a closed convex subset of E. Let {T (i)n }∞n=1 : C → C be N
uniformly closed families of countable Lyapunov quasi-Lipschitz mappings with the condition limn→∞ L(i)n = 1 for
i = 1, 2, 3, · · ·,N. Let F = ∩∞n=1 ∩Ni=1 F(T

(i)
n ) and F∩ EP be nonempty. Let {xn}, {zn} and {ωn} be sequences of C

generated by 

x0 ∈ C, arbitrarily,
yi,n = J−1(αnJxn + (1 −αn)JT

(i)
n xn), i = 1, 2, 3, · · · ,N,

F(ui,n,y) + 〈Aui,n,y− ui,n〉+ 1
rn
〈Jui,n − Jyi,n,y− ui,n〉 > 0, ∀y ∈ C,

Ci,n+1 = {z ∈ Cn : φ(z,ui,n) 6 φ(z,yi,n) 6 φ(z, xn) + ξn},
Ci,1 = C, i = 1, 2, 3, · · ·,N,
Cn+1 = ∩Ni=1Ci,n+1,
xn+1 = PfCn+1

x0,

where
ξn = (Ln − 1) sup

x∈F∩EP∩B(Pf
F∩EPx0,1)

φ(x, x0),

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{αn} is a sequence satisfying lim supn→∞ αn < 1 and {rn} is a sequence satisfying lim infn→∞ rn > 0. Then
{xn} converges strongly to a point p ∈ ΠF∩EPx0.
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Proof. By using Corollary 3.6, we know that, the iterative sequence {xn = ωn} converges strongly to a
point ω ∈ F∩ EP. Next, we prove that ω = ΠF∩EPx0, from Theorem 2.10, we have

φ(p,ΠF∩EPx0) +φ(ΠF∩EPx0, x0) 6 φ(ω, x0). (3.19)

On the other hand, since ωn = ΠCn
x0 and F · EP ⊂ Cn, for all n, and from Theorem 2.10, we have

φ(ΠF∩EPx0,ωn+1) +φ(ωn+1, x0) 6 φ(ΠF∩EPx0, x0). (3.20)

By the definition of φ(x,y), we know that

lim
n→∞φ(ωn+1, x0) = φ(ω, x0). (3.21)

Combining (3.19), (3.20) and (3.21), we know that φ(ω, x0) = φ(ΠF∩EPx0, x0). Therefore, it follows from
the uniqueness of ΠF∩EPx0 that ω = ΠF∩EPx0. This completes the proof.

Remark 3.11. In 2015, Chen et al. [11] have given some examples of uniformly closed family of countable
Bregman quasi-Lipschitz mappings.

4. Application

The mapping T is said to be Bregman asymptotically quasi-nonexpansive ([23]) if F(T) 6= ∅ and there
exists a sequence {kn} ⊂ [1,+∞) with limn→∞ kn = 1 such that

Dg(p, Tnx) 6 knDg(p, x), ∀ p ∈ F(T), ∀ x ∈ C.

Every Bregman quasi-nonexpansive mapping is Bregman asymptotically quasi-nonexpansive with kn ≡
1. Let Sn = Tn for all n > 1, the above inequality become

Dg(p,Snx) 6 knDg(p, x), ∀ p ∈ F(T), ∀ x ∈ C.

It is obvious that ∩∞n=1F(Sn) = ∩∞n=1F(T
n) = F(T).

Lemma 4.1. Assume T is uniformly Lipschitz, that is, there exists a constant L > 1 such that

‖Tnx− Tny‖ 6 L‖x− y‖, ∀ x,y ∈ C,

for all n > 1. Then {Sn} = {Tn} is uniformly closed.

Proof. Assume ‖zn − Snzn‖ → 0, zn → p as n→∞, we have ‖zn − Tnzn‖ → 0, therefore

‖p− Tnp‖ 6 ‖p− Tnzn‖+ ‖Tnzn − Tnp‖ 6 ‖p− Tnzn‖+ L‖zn − p‖ → 0,

as n→∞. One hand, Tnp→ p, other hand, Tn+1p→ Tp, these imply that p = Tp. Hence p ∈ ∩∞n=1F(Sn).
This completes the proof.

Next we give an application of Theorem 3.2 to find the fixed point of Bregman asymptotically quasi-
nonexpansive mappings.

Theorem 4.2. Let g : E → (−∞,+∞] be a Legendre function which is bounded, strongly coercive, uniformly
Fréchet differentiable and totally convex on bounded subsets on E. Let C be a nonempty, closed, and convex subset
of intdom f. Let {Ti}Ni=1 : C→ C be N uniformly Lipschitz Bregman asymptotically quasi-nonexpansive mappings
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with nonempty common fixed point set F = ∩Ni=1F(Ti) and F ∩ EP be nonempty. Let {xn}, {zn} and {ωn} be
sequences of C generated by

x0,i, z0,i ∈ intdomg, arbitrarily, i = 1, 2, · · · , l,
y
(1)
i,n = ∇g∗(α(1)

n ∇g(xn) + (1 −α
(1)
n )∇g(Tni xn)), i = 1, 2, 3, · · · ,N,

y
(2)
i,n = ∇g∗(α(2)

n ∇g(zn) + (1 −α
(2)
n )∇g(Tni zn)), i = 1, 2, 3, · · · ,N,

F(u
(1)
i,n,y) + 〈Au(1)

i,n,y− u(1)
i,n〉+

1
r
(1)
n

〈∇g(u(1)
i,n) −∇g(y

(1)
i,n),y− u

(1)
i,n〉 > 0, ∀y ∈ C,

F(u
(2)
i,n,y) + 〈Au(2)

i,n,y− u(2)
i,n〉+

1
r
(2)
n

〈∇g(u(2)
i,n) −∇g(y

(2)
i,n),y− u

(2)
i,n〉 > 0, ∀y ∈ C,

C
(1)
i,n+1 = {z ∈ Cn : Dg(z,u

(1)
i,n) 6 Dg(z,y

(1)
i,n) 6 Dg(z, xn) + ξn,i},

C
(2)
i,n+1 = {z ∈ Cn : Dg(z,u

(2)
i,n) 6 Dg(z,y

(2)
i,n) 6 Dg(z, zn) + ηn,i},

C
(1)
i,1 = C

(2)
i,1 = C, i = 1, 2, 3, · · ·,N,

C
(1)
n+1 = ∩Ni=1C

(1)
i,n+1,

C
(2)
n+1 = ∩Ni=1C

(2)
i,n+1,

Cn+1 = C
(1)
n+1 ∩C

(2)
n+1,

xn+1,i = P
g
Cn+1

x0,i, i = 1, 2, · · · , l,

zn+1,i = P
g
Cn+1

z0,i, i = 1, 2, · · · , l,

xn+1 =
∑l

i=1 λixn+1,i, λi ∈ [0, 1],
zn+1 =

∑l
i=1 λizn+1,i, λi ∈ [0, 1],

ωn+1 = λxn+1 + (1 − λ)zn+1, λ ∈ [0, 1],

where
ξn,i = (Ln − 1) sup

x∈F∩EP∩B(Pg
F∩EPx0,i,1)

Dg(x, x0,i), i = 1, 2, · · ·,N,

ηn,i = (Ln − 1) sup
x∈F∩EP∩B(Pg

F∩EPz0,i,1)
Dg(x, z0,i), i = 1, 2, · · ·,N,

B(x, 1) = {y ∈ E : ‖y− x‖ 6 1},

Ln = max{L(1)
n ,L(2)

n ,L(3)
n , · · ·,L(N)

n },

{α
(1)
n }, {α(2)

n } are sequences satisfying lim supn→∞ α(1)
n < 1, lim supn→∞ α(2)

n < 1 and {r
(1)
n }, {r(2)

n } are sequences
satisfying lim infn→∞ r(1)

n > 0, lim infn→∞ r(2)
n > 0. Then the following conclusions hold:

(1) {xn} converges strongly to p = PgF∩EPx0;

(2) {zn} converges strongly to q = PgF∩EPz0;

(3) {ωn} converges strongly to λq+ (1 − λ)q ∈ F∩ EP.

Proof. Let T in = Tni for all n > 1, i = 1, 2, 3, · · ·,N. By using Lemma 4.1 and Theorem 3.2 we can obtain the
conclusion.
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