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Abstract
In this paper, we are concerned with the problem of approximating a solution of a nonlinear equations by means of using

the Secant method. We present a new semilocal convergence analysis for Secant method using restricted convergence domains.
According to this idea we find a more precise domain where the inverses of the operators involved exist than in earlier studies.
This way we obtain smaller Lipschitz constants leading to more precise majorizing sequences. Our convergence criteria are
weaker and the error bounds are more precise than in earlier studies. Under the same computational cost on the parameters
involved our analysis includes the computation of the bounds on the limit points of the majorizing sequences involved. Different
real-world applications are also presented to illustrate the theoretical results obtained in this study.
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1. Introduction

In this study, we are concerned with the problem of approximating a locally unique solution x? of the
nonlinear equation

F(x) = 0, (1.1)

where, F is a Fréchet-differentiable operator defined on a non-empty subset D of a Banach space X

with values in a Banach space Y. Several problems from Applied Sciences including Engineering can be
expressed in a form like equation (1.1) using mathematical modeling [2–6, 12–14, 16, 18–24, 28, 30]. The
solutions of these equations can be found in closed form only in special cases. That is why the most
solution methods for these equations are iterative.
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In this paper, we consider the convergence of the Secant method defined as

xn+1 = xn −A−1
n F(xn), An = δF(xn, xn−1) for each n = 1, 2, . . . , (1.2)

where x−1, x0 are initial points. Here An ∈ L(X,Y) is an approximation of the Fréchet-derivative F ′

of F and L(X,Y) stands for the space of bounded linear operators from X into Y. There is a plethora
of sufficient convergence criteria for the Secant method (1.2) under Lipschitz-type conditions (1.2) (see
[1–28]). It is interesting to notice that although we use very general majorizing sequences for {xn} our
technique leads in the semilocal case to: weaker sufficient convergence criteria; more precise estimates on
the distances ‖xn − xn−1‖, ‖xn − x∗‖ and an at least as precise information on the location of the solution
x∗ in many interesting special cases such as Newton’s method or the Secant method.

The rest of the paper is organized as follows. In Section 2, we study the convergence of the majorizing
sequences for {xn} involved in the Secant method. In Section 3, we present the semilocal convergence
analysis for {xn}. Finally, numerical examples are presented in the concluding Section 4.

2. Majorizing sequences for the Secant method

In this Section, we shall first study some scalar sequences which are related to the Secant method.
Let there be parameters c > 0, ν > 0,k > 0, k0 > 0, k1 > 0, and k2 > 0. Define the scalar sequence {αn}

by  α−1 = 0, α0 = c,α1 = c+ ν,

αn+2 = αn+1 +
k1 (αn+1 −αn) + k2(αn −αn−1)(αn+1 −αn)

1 − [k0(αn+1 − c) + kαn]
for each n = 0, 1, 2, . . . . (2.1)

Special cases of the sequence {αn} have been used as majorizing sequences for Secant method by several
authors. For example: Case 1 (Secant method) k0 = k and k1 = k2 has been studied in [2, 5, 6, 8, 12, 14,
15, 17, 20, 22–26, 28–30] and for k0 = k, k1 = k2 and k0 6 k1 in [9–11]. Case 2 (Newton’s method) k2 = 0,
k = 0, c = 0 and k0 = k1 has been studied in [2, 5, 6, 8, 10, 13, 15, 17–20, 22–25, 27, 28] and for k0 6 k1 in
[2–4].

In the present paper, we shall study the convergence of sequence {αn} by first simplifying it. Indeed,
the purpose of the following transformations is to study the sequence (2.1) after using easier to study
sequences defined by (2.3), (2.4), and (2.5). Let

λ =
k2

k1
, L0 =

1
1 + k0c

, and L =
k1

1 + k0c
. (2.2)

Using (2.1) and (2.2), sequence {αn} can be written as

 α−1 = 0, α0 = c,α1 = c+ ν,

αn+2 = αn+1 +
L (αn+1 −αn + λ(αn −αn−1)) (αn+1 −αn)

1 − L0(k0αn+1 + kαn)
for each n = 0, 1, 2, . . . . (2.3)

Notice that
L = k1L0 and βn = L0αn.

Then, we can define sequence {βn} by β−1 = 0, β0 = L0c, β1 = L0(c+ ν),

βn+2 = βn+1 +
k1 (βn+1 −βn + λ(βn −βn−1)) (βn+1 −βn)

1 − (k0βn+1 + kβn)
for each n = 0, 1, 2, . . . . (2.4)

Furthermore, let

γn =
1

k0 + k
−βn for each n = 0, 1, 2, . . . .
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Then, sequence {γn} is defined by γ−1 = 1
k0+k

,γ0 = 1
k0+k

− L0c, γ1 = 1
k0+k

− L0(c+ ν),

γn+2 = γn+1 −
k1 (γn+1 − γn + λ(γn − γn−1)) (γn+1 − γn)

k0γn+1 + kγn
for each n = 0, 1, 2, . . . .

(2.5)

Finally, let
δn = 1 −

γn

γn−1
for each n = 0, 1, 2, . . . .

Then, we define the sequence {δn} by
δ0 = 1 − γ0

γ−1
, δ1 = 1 − γ1

γ0
,

δn+2 =
k1δn+1 (λδn + (1 − δn)δn+1)

(1 − δn)(1 − δn+1) (k0(1 − δn+1) + k)
for each n = 0, 1, 2, . . . .

(2.6)

It is convenient for the study of the convergence of the sequence {αn} to define polynomial p by

p(t) = k0t
3 − (k1 + 3k0 + k)t

2 + (2k+ 3k0 + k1(λ+ 1))t− (k0 + k). (2.7)

We have that p(0) = −(k0 + k) < 0 and p(1) = k1λ for λ > 0. It follows from the intermediate value theo-
rem that p has roots in (0, 1). Denote the smallest root by δ. If λ = 0, then p(t) = (t− 1)(k0t

2 − (k1 + k+

2k0)t+ k0 + k). Hence, we can choose the smallest root of p given by 2k0+k1+k−
√

(2k0+k1+k)2−4k0(k0+k)

2k0
∈

(0, 1) to be δ in this case.
Notice also that

p(t) 6 0 for each t ∈ (−∞, δ].

Next, we study the convergence of these sequences starting from {δn}.

Lemma 2.1 ([10]). Let δ1 > 0, δ2 > 0 and k1 > 0 be given parameters. Suppose that

0 < δ2 6 δ1 6 δ, (2.8)

where δ was defined in (2.7). Let {δn} be the scalar sequence defined by (2.6). Then, the following assertions hold:

(A1) If
δ1 = δ2, (2.9)

then
δn = δ for each n = 1, 2, 3, . . . ;

(A2) If
δ2 < δ1 < δ, (2.10)

then sequence {δn} is decreasing and converges to 0.

Lemma 2.2 ([10]). Suppose that the hypothesis (2.10) is satisfied. Then, the sequence {γn} is decreasingly conver-
gent and sequences {αn} and {βn} are increasingly convergent.

Lemma 2.3 ([10]). Suppose that (2.8) and (2.9) hold. Then, the following assertions hold for each n = 1, 2, . . .

δn = δ,
γn = (1 − δ)nγ0, γ∗ = lim

n→∞γn = 0,

βn =
1

k0 + k
− (1 − δ)nγ0, β∗ = lim

n→∞βn =
1

k0 + k
,

and

αn =
1
L0

[
1

k0 + k
− (1 − δ)nγ0

]
, α∗ = lim

n→∞αn =
1

L0(k0 + k)
.
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Corollary 2.4 ([10]). Suppose that the hypotheses of Lemma 2.1 and Lemma 2.2 hold. Then, sequence {αn} defined
in (2.1) is nondecreasing and converges to

α∗ = β∗(1 + k0c).

Next, we present lower and upper bounds on the limit point α∗.

Lemma 2.5 ([10]). Suppose that condition (2.10) is satisfied. Then, the following assertion holds:

b1
1 6 α∗ 6 b1

2,

where

b1
1 =

1 + k0c

1 − kc

[
1

k0 + k
− exp

(
−2
(

δ1

2 − δ1
+

δ2

2 − δ2

))]
,

b1
2 =

1 + k0c

1 − kc

[
1

k0 + k
− exp(δ∗)

]
,

δ∗ = −

[
1

1 − δ1

(
δ1 +

δ2

1 − r

)
+ ln

(
(k0 + k)(1 + k0c)

1 − kc

)]
,

and

r = k1
λδ1 + δ2(1 − δ1)

(1 − δ1)(1 − δ2)(k+ k0(1 − δ2))
.

From now on we shall denote by (C1) the hypotheses of Lemma 2.1 and Lemma 2.2.

Remark 2.6.

(a) Let us introduce the notation

cN = αN−1 −αN−2, νN = αN −αN−1

for some integer N > 1. Notice that c1 = α0 −α−1 = c and ν1 = α1 −α0 = ν. The results in the preceding
Lemmas can be weakened even further as follows. Consider the convergence criteria (CN∗ ) for N > 1: (C1)
with c,ν replaced by cN,νN, respectively

α−1 < α0 < α1 < · · · < αN < αN+1, k0(αN+1 − c
N) + kαN < 1.

Then, the preceding results hold with c,ν, δ1, δ2,b1
1,b1

2 replaced, respectively by cN,νN, δN, δN+1,bN1 ,bN2 .

(b) Notice that if
k0(αN+1 − c

N) + kαN < 1 holds for each n = 0, 1, 2, . . . , (2.11)

then, it follows from (2.1) that sequence {αn} is increasing, bounded from above by 1+k0c
k0+k

and as such
it converges to its unique least upper bound α∗. Criterion (2.11) is the weakest of all the preceding
convergence criteria for sequence {αn}. Clearly all the preceding criteria imply (2.11). Finally, define the
criteria for N > 1

(IN) =

{
(CN∗ ),
(2.11) if criteria (CN∗ ) fails. (2.12)

Lemma 2.7 ([10]). Suppose that the conditions (2.10) hold. Then, the following assertion holds

b1
1 6 α∗ 6 b1

2,

where

b1
1 =

1 + k0c

1 − kc

[
1

k0 + k
− exp

(
−2
(

δ1

2 − δ1
+

δ2

2 − δ2

))]
,
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b1
2 =

1 + k0c

1 − kc

[
1

k0 + k
− exp(δ∗)

]
,

δ∗ = −

[
1

1 − δ1

(
δ1 +

δ2

1 − r

)
+ ln

(
(k0 + k)(1 + k0c)

1 − kc

)]
,

and

r = k1
λδ1 + δ2(1 − δ1)

(1 − δ1)(1 − δ2)(k+ k0(1 − δ2))
.

3. Semilocal convergence of the Secant method

In this section, we first present the semilocal convergence of the Secant method using {αn} (defined in
(2.1)) as a majorizing sequence. Let U(x,R) stand for an open ball centered at x ∈ X with radius R > 0.
Let U(x,R) denote its closure. We shall study the Secant method for triplets (F, x−1, x0) belonging to the
class K = K(ν, c,k,k0,k1,k2) defined as follows.

Definition 3.1. Let ν, c,k,k0,k1,k2 be constants satisfying the hypotheses (IN) for some fixed integer
N > 1. A triplet (F, x−1, x0) belongs to the class K = K(ν, c,k,k0,k1,k2) if:

(D1) F is a nonlinear operator defined on a convex subset D of a Banach space X with values in a Banach
space Y;

(D2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying the inequality

‖x0 − x−1‖ 6 c,

for some constant c > 0;
(D3) F is Fréchet-differentiable on D0 and there exists an operator δF : D0 ×D0 → Ł(X, Y) such that

δF(x,y)(x−y) = F(x)− F(y) for each x 6= y, δF(x, x) = F ′(x), x ∈ D0, F ′(x0)
−1, A−1 = δF(x0, x−1)

−1∈
Ł(Y,X) for all x,y ∈ D then, the following hold

‖A−1F(x0)‖ 6 ν, ‖F ′(x0)
−1(δF(x,y) − F ′(x0))‖ 6 k0‖x− x0‖+ k‖y− x0‖

and for each x,y, z ∈ D0 := U(x0, 1
k0+k

)∩D

‖F ′(x0)
−1(δF(x,y) − F ′(z))‖ 6 k1‖x− z‖+ k2‖y− z‖

for some constants k > 0, k0 > 0, k1 > 0, k2 > 0 and ν > 0;
(D4)

U(x0,α∗ − c) ⊆ D or U(x0,
1

k0 + k
) ⊂ D,

where α∗ is given in Lemma 2.3.

Next, we present the semilocal convergence result for the Secant method.

Theorem 3.2. If (F, x−1, x0) ∈ K(ν, c,k,k0,k1,k2), then the sequence {xn} (n > −1) generated by the Secant
method is well defined, remains in U(x0,α∗0) for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈
U(x0,α∗ − c) of (1.1). Moreover, the following assertions hold for each n = 0, 1, 2, . . .

‖xn − xn−1‖ 6 αn −αn−1

and
‖x∗ − xn‖ 6 α∗ −αn,

where sequence {αn} (n > 0) is given in (2.1). Furthermore, if there exists R such that

U(x0,R) ⊆ D, R > α∗ − c and k0(α
∗ −α0) + kR < 1,

then, the solution x∗ is unique in U(x0,R).
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Proof. Simply notice that the iterates lie in D0 which is a more accurate location containing the iterates
{xn} than D used in [10], since D0 ⊆ D. Then, the proof is exactly the same with the one in [10].

Remark 3.3. If follows from the proof of Theorem 3.2 that sequence {rn} defined by
r−1 = 0, r0 = c, r1 = c+ ν,
r2 = r1 +

(k0(r1−r0)+k(r0−r−1))(r1−r0)
1−(k0(r1−c)+kc)

,

rn+2 = rn+1 +
(k1(rn+1−rn)+k2(rn−rn−1))(rn+1−rn)

1−(k0(rn+1−c)+krn)
,

is a more precise majorizing sequences for {xn}. Clearly, the sequence {rn} also converges under the (IN)
hypotheses.

A simple inductive argument shows that if k0 < k1 or k < k2 for each n = 2, 3, . . .,

rn < αn, (3.1)

rn+1 − rn < αn+1 −αn, (3.2)

and
r∗ = lim

n→∞rn 6 α∗ = lim
n→∞αn. (3.3)

Note also that sequence {rn} may converge under even weaker hypotheses. The sufficient convergence
criterion (2.12) determines the smallness of c and r. This criterion can be solved for c and r (see for
example the h criteria or (3.5) in the following). Indeed, let us demonstrate the advantages in two popular
cases:
Case 1: Newton’s method (i.e., if c = 0,k0 = k,k1 = k2). Then, it can easily be seen that {sn} (and
consequently {rn}) converges provided that (see also [8])

h2 = ξ2ν 6 1,

where

ξ2 =
1
4

(
4k0 +

√
k0k1 +

√
k0k1 + 8k2

0

)
,

whereas sequence {xn} converges, if
h1 = k1ν 6 1,

where

ξ1 =
1
4

(
4k0 + k1 +

√
k2

0 + 8k1k0

)
.

In the case k0 = k1, we obtain the famous for its simplicity and clarity Kantorovich sufficient convergent
criteria [5, 20] given by

h = 2k1ν 6 1. (3.4)

Notice however that
h 6 1⇒ h1 6 1⇒ h2 6 1

but not necessarily vice versa unless if k0 = k1. Moreover, we have that

h1

h
→ 1

4
,
h1

h
→ 0,

h2

h1
→ 0 as

k0

k1
→ 0.

Case 2: Secant method. Schmidt [27], Potra-Ptáck [24], Dennis [14], and Ezquerro el at. [15, 18], used the
majorizing sequence {rn} for k0 = k = k1 = k2. That is, they used the sequence {tn} given by{

t−1 = 0, t0 = c, t1 = c+ ν,
tn+2 = tn+1 +

k1(tn+1−tn−1)(tn+1−tn)
1−k1(tn−tn+1+c)

,
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whereas our sequence {αn} for k0 = k and k1 = k2 [1, 5–12, 15, 18, 25, 27] reduces to{
α−1 = 0, α0 = c, α1 = c+ ν,
αn+2 = αn+1 +

k1(αn+1−αn−1)(αn+1−αn)
1−k0(αn+1−αn+c)

.

Then, in case k0 < k1 our sequence is more precise (see also (3.1)-(3.3)). Notice also that in the preceding
references the sufficient convergence criterion associated to {tn} is given by

k1c+ 2
√
k1ν 6 1. (3.5)

Our sufficient convergence criteria are weaker in this case. It is worth nothing that if c = 0 (3.5) reduces
to (3.4). Similar observations can be made for other choices of parameters.

Finally, notice that we can obtain and use even smaller Lipschitz constants, if we simply work on
D1 := U(x1, 1

k0+k
− ‖x1 − x0‖) instead of D0, since we are still using initial data (x1 = x0 −A−1

0 F(x0)).

4. Applications

Application 4.1. Let X = Y = C[0, 1], the space of continuous functions defined in [0, 1] equipped with the
max-norm. Let Ω = {x ∈ C[0, 1]; ‖x‖ 6 R}, such that R > 1 and F defined on Ω and given by

F(x)(s) = x(s) − f(s) − λ

∫ 1

0
G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, Λ is a real constant and the kernel G is the Green function

G(s, t) =
{

(1 − s)t, t 6 s,
s(1 − t), s 6 t.

In this case, for each x ∈ Ω, F ′(x) is a linear operator defined on Ω by the following expression:

[F ′(x)(v)](s) = v(s) − 3Λ
∫ 1

0
G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f(s) = 1, x−1 = 0.9, it follows ‖I− F ′(x0)‖ 6 3|Λ|/8. Thus, if |Λ| < 8/3, F ′(x0)
−1 is

defined and
‖F ′(x0)

−1‖ 6 8
8 − 3|Λ|

.

Moreover,

‖F(x0)‖ 6
|Λ|

8
.

Define the divided difference defined by

δF(x,y) =
∫ 1

0
F ′(y+ t(x− y))dt.

Choosing Λ = 1 and R = 1.5, we have

c= 0.1, k0= 1, k = 0.5, k1 = 1.06666 . . . , k2 = 0.533333 . . . , L0= 0.909091 . . . , L= 0.969697 . . . , and ν= 0.2.

Moreover, since 1
k0+k

= 0.66666 . . . we obtain that

U(x0,
1

k0 + k
) ⊂ D.
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Then, by the definition of the δ1, δ2, and δ we obtain

0 < δ2 = 0.164103 . . . 6 δ1 = 0.315789 . . . 6 δ = 0.487078 . . . .

So we can ensure the convergence of the Secant method to the solution of the equation. Recall that the
previous conditions considered by other authors are violated since

k1c+ 2
√
k1ν = 1.03043 . . . > 1

and the convergence was not ensured.

Application 4.2. We consider the following Planck’s radiation law problem found in [19]:

ϕ(λ) =
8πcPλ−5

e
cP
λBT−1

, (4.1)

which calculates the energy density within an isothermal blackbody, where

• λ is the wavelength of the radiation;

• T is the absolute temperature of the blackbody;

• B is Boltzmann’s constant;

• P is the Planck’s constant;

• c is the speed of light.

Suppose, we would like to determine wavelength λ which corresponds to maximum energy density
ϕ(λ). From (4.1), we get

ϕ ′(λ) =

(
8πcPλ−6

e
cP
λBT−1

)(
( cPλBT )e

cP
λBT−1

e
cP
λkT−1

− 5

)
.

The maxima for ϕ occurs when
( cPλBT )e

cP
λBT−1

e
cP
λBT−1

= 5.

Here putting x = cP
λBT , the above equation becomes

1 −
x

5
= e−x.

Let us define
f(x) = e−x − 1 +

x

5
. (4.2)

As a consequence, finding the roots of (4.2) gives us the maximum wavelength of radiation (λ) by
means of the following formula:

λ ≈ cP

x∗BT
.

It is easy to see that function f(x) is continuous and that f(2) = −0.464665 . . . and f(7) = 0.400912 . . ..
Then, it follows from the Intermediate Value Theorem that f(x) has zeros in the interval (2,7).

We consider D = [2, 7]. Then, choosing x0 = 4 and Newton’s method we obtain that

k0 = k = 0.161021 . . . , k1 = k2 = 0.372446 . . . , L0 = 1, L = 0.372446 . . . , and η = 1.
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Moreover, since 1
k0+k

= 0.0328022 . . . we obtain that

U(x0,
1

k0 + k
) ⊂ D.

Then, by the definition of the δ1, δ2, and δ we obtain

0 < δ2 = 0.210873 . . . 6 δ1 = 0.322041 . . . 6 δ = 0.407721 . . . .

So we can ensure the convergence of the Newton’s method to the solution x∗ = 4.96511 . . . of f(x). Recall
that the previous conditions considered by other authors are violated since

k1c+ 2
√
k1ν = 1.22057 . . . > 1

and the convergence was not ensured.
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[12] E. Cătinaş, The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comp., 74 (2005),

291–301. 1, 2, 3
[13] S. Chandrasekhar, Radiative transfer, Dover Publ., New York, (1960). 2
[14] J. E. Dennis, Toward a unified convergence theory for Newton-like methods, Nonlinear Functional Anal. and Appl., 1970

(1970), 425–472. 1, 2, 3
[15] J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, N. Romero, M. J. Rubio, The Newton method: from Newton to

Kantorovich (Spanish), Gac. R. Soc. Mat. Esp., 13 (2010), 53–76. 2, 3
[16] N. Farhane, I. Boumhidi, J. Boumhidi, Smart Algorithms to Control a Variable Speed Wind Turbine, Int. J. Interact.

Multimed. Artif. Intell., 4 (2017), 88–95. 1
[17] W. B. Gragg, R. A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem, SIAM J. Numer. Anal., 11 (1974),

10–13. 2
[18] M. A. Hernández, M. J. Rubio, J. A. Ezquerro, Secant-like methods for solving nonlinear integral equations of the

Hammerstein type, J. Comput. Appl. Math., 115 (2000), 245–254. 1, 3

https://doi.org/10.1016/S0096-3003(02)00257-6
https://doi.org/10.1081/NFA-200042628
https://doi.org/10.1081/NFA-200042628
https://doi.org/10.1002/nla.1917
https://doi.org/10.1002/nla.1917
https://doi.org/10.1016/j.amc.2014.09.066
https://doi.org/10.1016/j.amc.2014.09.066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computational+theory+of+iterative+methods&btnG=
https://content.taylorfrancis.com/books/download?dac=C2012-0-00076-9&isbn=9781466517110&format=googlePreviewPdf
http://dx.doi.org/10.1155/2014/467980
http://dx.doi.org/10.1155/2014/467980
https://doi.org/10.1016/j.jco.2011.12.003
https://doi.org/10.4134/JKMS.2014.51.6.1155
https://doi.org/10.4134/JKMS.2014.51.6.1155
https://doi.org/10.1016/j.amc.2015.06.037
https://doi.org/10.1016/j.amc.2015.06.037
https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=13598678&AN=97746744&h=isxFEEeMxgMdxP2TxHv53F1QBIB7cxWD%2bznPjy5I8d1q8GLaGf5jatq%2fqC9mhE313Idf88OUTliP9ZfsLFHc9A%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d13598678%26AN%3d97746744
https://doi.org/10.1090/S0025-5718-04-01646-1 
https://doi.org/10.1090/S0025-5718-04-01646-1 
https://mathscinet.ams.org/mathscinet-getitem?mr=0111583
https://doi.org/10.1016/B978-0-12-576350-9.50010-2
https://doi.org/10.1016/B978-0-12-576350-9.50010-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Newton+method%3A+from+Newton+to+Kantorovich&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Newton+method%3A+from+Newton+to+Kantorovich&btnG=
https://pdfs.semanticscholar.org/c316/3967be3da5e980c9a8c45f45d96189fcf7a8.pdf
https://pdfs.semanticscholar.org/c316/3967be3da5e980c9a8c45f45d96189fcf7a8.pdf
https://doi.org/10.1137/0711002
https://doi.org/10.1137/0711002
https://doi.org/10.1016/S0377-0427(99)00116-8
https://doi.org/10.1016/S0377-0427(99)00116-8


I. K. Argyros, et al., J. Nonlinear Sci. Appl., 11 (2018), 1215–1224 1224

[19] D. Jain, Families of Newton-like methods with fourth-order convergence, Int. J. Comput. Math., 90 (2013), 1072–1082.
4.2

[20] L. V. Kantorovich, G. P., Akilov, Functional Analysis (Translated from the Russian by Howard L. Silcock), Pergamon
Press, Oxford-Elmsford, (1982). 2, 3

[21] R. Kaur, S. Arora, Nature Inspired Range Based Wireless Sensor Node Localization Algorithms, Int. J. Interact. Multimed.
Artif. Intell., 4 (2017), 7–17.
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