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Abstract

This paper is concerned with the existence and non-existence of traveling wave solutions for a diffusive SIR model with
delay and nonlinear incidence. First, we construct a pair of upper and lower solutions and a bounded cone. Then we prove
the existence of traveling wave by using Schauder’s fixed point theorem and constructing a suitable Lyapunov functional.
The nonexistence of traveling wave is obtained by two-sided Laplace transform. Moreover, numerical simulations support the
theoretical results. Finally, we also obtain that the minimal wave speed is decreasing with respect to the latent period and
increasing with respect to the diffusion rate of infected individuals.
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1. Introduction

The SIR epidemic models and their various extensions have been frequently used in the study of
theoretical epidemiology. It is well known that the disease propagation is relevant to not only the time
variation, but also the space variation which is sufficient to describe a disease’s diffusion and plays an
important role in the disease spreading. In this paper, we consider traveling waves of the following
diffusive SIR model with delay and nonlinear incidence

St(x,t) = di1Sxx(x,t) + By — uS(x, t) — F(S(x, t))G(I(x,t — 1)),
Ii(x,t) = dolx (x,t) + F(S(x, 1)) G(I(x,t — 7)) — (L+v)I(x, 1), (1.1)
Rt (X/ t) - d3RXX (X/ t) +YI(X/ t) - HR(X/ t)/

where S(x,t),I(x,t),R(x,t) denote the total number of susceptible, infected, and removed individuals,
respectively, in the time-space coordinate (t,x), and d; > 0 (i = 1,2,3) are their diffusion rates. The
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parameter B; > 0 represents the entering flux of the susceptible; . > 0 is the natural death rate; y > 0 is
the recovery rate of the infective population; and T > 0 is the latent period of the disease.

For the original system of SIR model, it is assumed that the transmission is instantaneous, and does
not consider the spatial variation (see [7]). In order to be more realistic, the spatial variation should
be considered. There have been many works on spatial epidemic models (see [3, 15, 16]). For instance,
Hosono and Ilyas [5] investigated the existence and nonexistence of traveling wave solutions for the simple
diffusive epidemic model

St(X, t) = dlsXX(XI t) - BS(X/ t)I(xI t)/
It(X/ t) = dZIxx(X/ t) + BS(X/ t)I(X/ t) _YI(X/ t)

Here, bilinear incidence 3SI is considered. However, the disease transmission process may have a non-
linear incidence rate (see [6, 8-10]). Korobeinikov and Maini [10] considered the incidence of the form
f(S)g(I). In addition, in epidemiological models, delay can be caused by many factors. So the influences
of delays should be considered when modeling epidemic process (see [1, 2, 11-14, 17, 18]). Based on these
modeling mechanism, Bai and Wu [1] studied the following diffusive SIR model with delay and nonlinear
incidence rate

Ii(x,t) = dalix (%, 1) + F(S(x,t))G(I(x,t — 1)) — vI(x, 1),

St(xl t) = dlsXX(XI t) - F(S(X/ t))G(I(X/t - T))/
(
{ Rt(X, t) = d3RXX(X/ t) +YI(X/ t)/

where the incidence rate is the nonlinear incidence rate F(S)G(I). By using Schauder’s fixed theorem, the
existence and nonexistence of traveling wave solutions are obtained. Moreover, the existence of S(+o00) is
established. However, the author does not get the exact value of S(4c0). In order to be more practical,
we consider an epidemic model of birth and death rates. Fu [4] studied the following diffusive SIR model
with delay and saturated incidence rate

St(x, 1) = diSux (%, 1) + (A — S(x, 1)) — BRI,
L(x,t) = dalx (, 1) + BEIOAT) (491 (x, 1),
Ri(x,t) = dsRux(x, 1) +vI(x,t) — uR(x, 1),

where the constant pA is the recruitment rate of the susceptible population, the incidence rate is saturated
incidence rate % Using the upper and lower solutions and the Schauder’s fixed point theorem, the
existence of traveling waves is obtained.

Motivated the above works, we shall consider traveling waves of system (1.1).

For simplicity, let

_ Bil(x,t), R(x,t) = 2-R(x, 1),

1 1 1

f(u) = B—MlF <]ilu> , glu)=G <]ilu> .

By dropping the tilde for convenience, we then consider the following system

{ Se(x,t) = diSxx(x, 1) + (1 = S(x, t)) — f(S(x, t))g(I(x, t — 1)),

and

It (X/ t) = dZIXX(X/ t) + f(s(xl t))Q(I(Xz t— T)) - (H + Y)I(X/ t)r (12)
Rt(X/ t) = d3RXX (X/ t) + YI(X/ t) - HR(X/ t)
Throughout this paper, the following assumptions hold.

(A1) fe C([0,00),[0,00)),f(0) =0;f'(u) > 0 for anyu 0; f'(u) is bounded on [0, c0);
(A2) g € C([0,0),[0,00)),9(0) =0;g’(u) > 0and g”(u) <0 for any u > 0.
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Since the first two equations of (1.2) form a closed system, we only consider the following system

(1.3)

{ St(X/ t) = dlsXX(Xlt) + H(]- - S(X/ t)) - f(s(xl t))g(I(X/t_T))/
Le(x, 1) = dalux (%, 1) + F(S{x, 1)) g(I(x, t — 7)) — (u+v)I(x, ).

It is easy to see that (1.3) always has a disease-free equilibrium (1,0). Furthermore, if Ry := %9&0) >1,

there exists a unique positive endemic equilibrium (s*,1*) satisfying 0 < s* < 1and 0 < i* < ;1= (see
Lemma A.1 in Appendix). If Ry < 1, there exists no positive endemic equilibrium. By a traveling wave
solution of system (1.3), we mean a solution of system (1.3) of the form

Sk, t) =s(&), Ixt)=1i(f), &=x+cteR,
with the boundary condition
(s,1)(—00) = (1,0) and (s,i)(+00) = (s%,1"), (1.4)

where ¢ > 0 is a constant. In order to show the existence of traveling wave, in addition to Ry > 1, we give
the following assumption.

(A3) There exists B > 0 such that g(B) = %B.

It is easy to see that i* < B. That is, i* < min{
(1.3) yields

LLT“y,B}. Then for any & € R, substituting (s(&),1(&)) into

{ cs’(&) = dis” (&) + (1 —s(&)) — (1.5)

f(s(&))g(i(§ —cT)),
ci’(&) = doi” (&) + f(s(&))g(i(& )

S
cT)) — (L +V)i(E).

To obtain the existence of traveling wave solutions of (1.3), we only need to get the existence of solutions
for system (1.5) satisfying (1.4). Our main theorems are stated as follows.

Theorem 1.1. If (A1)-(A3) hold and Ry > 1, then for any ¢ > c*, system (1.5) admits a nontrivial and nonnegative
solution (s(&),1(&)) satisfying the following properties:

(i) 0<s(f) <land 0 <i(&) < Bforall & € R;
(ii) alim (s(&),1(&)) = (1,0), aliril (s(&),1(&)) = (s*,1%), i.e., system (1.3) exists a traveling wave solution
——00 —+oo

with speed c;
(iii) Elifg i(E)e™ME=T1and lim (s'(¢),i'(&)) = lim (s'(£),i'(§)) =(0,0),

&——00 &—+o00

where c* and A\ are shown in Lemma 2.1.

Theorem 1.2. Assume (A1) and (A) hold. One of the following conditions holds:

(i) Ro =1 and system (1.5) exists a unique positive endemic equilibrium (s*,1*);
(ii) Ro > landc € (0,c*).

Then system (1.5) does not exist nontrivial and nonnegative solution satisfying (1.4).

This paper is organized as follows. In Section 2, we first construct a pair of upper and lower solutions
for system (1.5). Then, we construct a bounded cone and verify the conditions of Schauder’s fixed point
theorem. In Section 3, the existence of solutions for system (1.5) is proved. Moreover, we obtain that the
solution satisfies the boundary conditions (s,1)(+o00) = (s*,1*) by constructing a Lyapunov functional. In
addition, we establish the non-existence of solutions for system (1.5) satisfying (1.4) by two-sided Laplace
transform. In Section 4, some numerical simulations are introduced to demonstrate the analytical results.
In Section 5, we give a brief discussion. Finally, some auxiliary lemma is given in Appendix.
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2. Preliminary
Linearizing the second equation of (1.5) around the point (1,0) yields
dai” (&) —ci’(&) +f(1)g"(0)L(E — cT) — (1 +V)i(E) =0,
whose characteristic equation is given by
AN, ¢) == dpA? —cA+f(1)g’(0)e T — (u+v) =0.
Then we have the following result.
Lemma 2.1. Suppose Ry > 1. Then there exists ¢* > 0 and \* > 0 such that

0A(A, c)
A [(nc)

=0 and A(A*,c*)=0.

Moreover, A(A, ¢) also satisfies:
(i) if c > c*, then A(A, c) = 0 has two positive roots Ay = Aj(c) and Ay = Aa(c) with 0 < A(c) < A* < Az(c) <
oo, and A(A,c¢) < 0 for A € (A1(c),A2(c)) and A(A,¢) >0 for A € (0,A1(c)) U(A2(c), +00);
(i) if 0 < c < c*, then A(A,c) > 0 forall A € [0,+00).
dA(AC)

Proof. 1t follows from Ry > 1 that A(0,c) = f(1)g’(0) —pu—vy > 0. For each fixed ¢ > 0, a)\ o T

—c —c1f(1)g’(0) < 0, and % > 0 for any A € R.
dA(AC)

Since A(A,0) = doA? +f(1)g’(0) —pn—v > 0, T < 0 for all A > 0, and for any fixed A > 0,
A(A, c) < 0 if c is sufficiently large. Define
c* :=supf{c > 0| A(A,c) >0, VA e R}

It is easy to see that ¢c* € (0, c0) and A(A, ¢*) = 0 has a unique root denoted by A*. We can easily prove that

A* > 0,and A(A*,c*) =0, aA )‘ ) ) = 0. Then, by a simple discussion, we can obtain the conclusions
*,C*

of (i) and (ii). O]

In the following, we always assume Ry > 1 and ¢ > ¢*. Now we define four nonnegative continuous
functions s, s_, 1., and i_ as follows:

if &>&,
, [ eME(1—Ment), if &< &y,
1‘(5)_{ 0, it &> 6,

where o, x,1, M are all positive constants satisfying 0 <1 < min{A; —A;,A\}, 0 < x <A, 0>1, M >1

and
1 1 1

1
& = )TllnB El—&lng<£0; az—alnm<£l-

Definition 2.2. (s,1i;) and (s—,1i_) are called a pair of upper and lower solutions of (1.5), if s;,14,s5_,1_
are almost everywhere continuously differentiable and satisfy

cs! (&) = dis (&) + (1 —s4 (&) —f(s(
es! (&) < dis” (&) +u(l—s_(&)) —f(s—(
14 (&) = i (&) +f(s4(&))g(i (E—cT)) —
ci’ (&) < d2i” (&) +f(s_(&))g(i_ (& —cT)) —

o
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It is obvious that s, (&) satisfies the inequality
cs! (€)= dis’/(£) + p(1 —s.(£) — f(s+(E))gli_(E—cT), E€R (2.1)
Lemma 2.3. The function i (&) satisfies the inequality
i’ (&) > dai¥ (&) +F(s4(£))g(i+(E —cT)) — (n+V)is(E) (2.2)

forall & # &.

Proof. For & > &, since i, (&) = B in (&, 00), (A2), and (As3), the inequality (2.2) holds. For & < &, it
follows from Lemma 2.1 and g(i4) < ¢’(0)i, that

cif (&) = daifl (&) +f(1)g"(0)i+ (E—ct) — (k+V)it(E),  &E€R,
which yields (2.2). O
Lemma 2.4. Assume that 0 < « < Ay is sufficiently small. Then
cs’ (&) < dis” (&) +p(1—s_(&)) —f(s—(&))g(iy(&—cT)) (2.3)
for any & # &y, and o > 1 is sufficiently large.

Proof. 1f & > &;, then s_(&) = 0. Further, it is easy to see that (2.3) holds. If & < &;, then s_(§) =
1—o0e*% € (0,1). This, together with (A;), yields f(s_(&)) < f(1). We only need to prove that

—cxoe*t + djo?oe*t + £(1)g(iy (& — cT)) — noe®t < 0. (2.4)

Note that o € (0, A1) is sufficiently small, and o > 1 is large enough. Hence

ax—A|

—cao+diao+f(1)g’(0)0 = e MT — o <0,
which implies
—caoe®t + djo?oe™E 4+ f(1)g’ (0)ip (& —ct)) —poe™® <0, &< &;. (2.5)

In addition,
glit(E—c1)) < g'(0)ip(E—cT1), E<&.

This, together with (2.5), yields the inequality (2.4) holds. O
Lemma 2.5. Suppose that 0 <1 < min{Ay — Ay, A1}. Then
i’ (&) < d2i” (&) +f(s-(£))g(i- (£ —cT)) — (n+V)i- (&)
for large enough M > 1, and for any & # &,.
Proof. The proof is similar to that of [1, Lemma 2.4]. Hence we omit its proof. O

From (2.1) and Lemmas 2.3-2.5, we obtain that (s;,iy) and (s_,i_) are a pair of upper and lower
solutions of (1.5). In addition, s_ (&) < s (&),1-(&) <14 (&) for any & € R.
Let Ay, /\f(i = 1,2) be the roots of diA%2—cA —«; = 0, where &1, are all positive constants
satisfying
op > pn+ sup {f'(s)}g’(0)B, o > pu+y. (2.6)
0<s<1
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Further,

Af_C_N/C2+4di(Xi<O A+_C+\/C2+4di“i>0

i 2d; ’ i 2d;
Let $ € (0, min{—A;,—A;}) be a constant. Denote

Bp(R,R?) :={(s,1) € C(R,R?) : sup|s(&)le P&l < +oo, supli(&)le P&l < +o0},
£€ER EER

with norm

I(s,1)]p := max{sup |s(&)le PI&], supli(&)le PIE]).
EER aeR

It is easy to check that (Bg (R, R?),|- |g) is a Banach space. Denote
F={(s,1) € Bg(R,R¥)Is_(&) < s(&) < s4(&),1-(&) <i(E) <i(E),E€RL

Clearly, (s—,i-) €T, (s4,i4) € I; T'is bounded, closed, and convex in Bg (R, R?).
Next, for any (s,1) € T, & € R, we define an operator F: " — C(R, R?) by

F(SI 1)(&) = (Fl(sl i)(E)IFZ(SI 1)(&))/

where
Fi(s,0(8) = pr Jaw ™M B [y (x) — F(s(x))gilx — 1)) — ps(x) + l dx
o EO e (6% oy s(x) — (5(x)) g (1(x — 1) — ps(x) + ] dx,
Fa(s, 1) (&) = p2 J; e”2 (B [api(x) + f(s(x))g(i(x — c1)) — (n+7y)i(x)] dx
T Eo M %) i) + F(s())gli(x — 7)) — [+ V)i(x)] d,
and , ,
P1 = P2

(A=A T AN —A)

One can easily see that any fixed point of F is a solution of (1.5). Hence the existence of solution for
(1.5) is reduced to verify that the operator F satisfies the conditions of Schauder’s fixed point theorem.
Here, we have the following lemmas.

Lemma 2.6. The operator F maps T into T

Proof. For any (s,i) €T, & € R, we have

& - oo
Fi(s, D)(E) <o1 J AT E ) (o — w)s(x) + pldx + py L N E) (g — s(x) + wldx

GAT(a_X)dX] = o1p1 ( ! 1> = s+ (&).

5 Ar(E—x) *
<o1pP1 J e/t leTx dx+J —
o AT

3
In view of o7 > p+ sup {f’(s)}g’(0)B, we obtain that (x; — p)s — f(s)g(i) is increasing with respect to s.

0<s<1
By Lemma 2.4, for any & # &;, we get

cs’ (&) <di1s” (&) + p(1—s-(&)) — f(s—(&))g(i+ (& —cT))
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=dis” (&) +pu—ous_ (&) +xrs— (&) — f(s—(&))g(ir (& —cT)) —ps_(&)
<dis” (&) +pn—ogs—(&) + xys(&) — f(s(&))g(i(& —ct)) — ps(&),

that is,
x18(&) —f(s(&))g(i(& —c1)) —ps(&) + > —dis” (&) +cs’ (&) +ous ().

This, together with the definition of F;, yields

&
Fi(s,1)(&) 2p1J e/ B a8 (x) + es’(x) + o s (x)]dx

+p1 J eM (EX) 15" (x) + cs”(x) + aqs_ (x)]dx
g
>s_(£) + p1dy min{eN (578 M (E—EY 6 (g, 4+0) —s/ (8 —0)] = s_(£)

for any & # &;.

Next, we prove i_(x) < Fp(s,i)(x) < i4(x). It follows from (2.6) that the function (x; —pu —7y)iis
increasing with respect to i. This implies F»(s,1)(§) > 0 for any & € R. In addition, by Lemma 2.5, we
have

&
Fa(s,1)(&) >sz e 5 i (x) + (s (x))g(i(x —cT)) — (k+y)i(x)ldx

for | M E g (x) 4+ (s (x))g(i (x — c1)) — (w4 v)i_ (x)]dx
&

£
>p2J e (%) [ 4t (x) + i’ (x) + i (x)]dx

+ pzj e (EX) [ q,1 (x) + ci’ (x) + i (x)]dx
&

>1 (&) + pada min{e”? (68 e (E=8Yi7 (£, 40) — 1/ (£, —0)]
>i ()
for any & # &;.

Since g(i(&)) < ¢g’(0)iy (&) and f(s) < f(1), it follows from Lemma 2.3 that

£
Fa(s, 1) (&) <sz e (5 ot (%) + f(s4 (%)) g (14 (x — €T)) — (4 ¥)ie (x)]dx

—00

2 L M (6 o (1) + F(s.+ (0)gliy (x— 01) — (4 V)i (x)]d
&
<o | M E NI () + et () + i (XX

+ sz e/ (E-x) [—dpif (x) + cil (x) + iy (x)]dx
£

i, (£) — pady max{e’s (6780 AT (E=80))! (£, —0)
it (8).

NN

Hence, for any (s,i) € I, & € R,

S_(Ev) < Fl(sll)(a) < S-}-(E,), 1—(&) < FZ(Sll)(a) < 1—!—(5)

Thatis, F: T —T. O
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Lemma 2.7. The operator F : T — T is completely continuous.

Proof. First we prove the map F is continuous. For any (s1,11) € T, (s2,12) € T, & € R, by Lagrange’s mean
value theorem, we obtain

[f(s1(&))g(i1(& —c1)) — f(s2(&))g(i2(& — 1))
=lg(i1(& —cT))[f(s1(&)) — F(s2(E))] + f(s2(E))Mg (i1 (& — 1)) — g(i2(& — cT))]]
<F/(8)g(1(& —c1)ls1(&) — s2(&) + F(1) g’ (D1 (& — 1) —i2(& — 7))
<Oitigl{f'(S)}g’(O)B\&(E)—Sz( E)+f(1)g’ (0)]i1(& — 1) —i2(& — 1),

where § lies between s;(£) and s (&), and 1 lies between i1 (& — c¢t) and iy(& — c7). By the definition of F,
for any & € R,

IFi(s1,11)(&) — Fi(s,i2) (&)|e P&

&
< ple‘ﬁ'aj (ot — w)ls1(x) — s20)| + [£(s1)g(i1) — F(s2)g (i) ™ (E"¥)dx

—00

+pre P8 f [l — st (x) = s2(x)| + If(s1) g (1) — F(s2)g (i)l e (57 dx

& B
< prle e J l1(x) — s200)| + i1 (x — ¢1) — 2 (x — cO)l] € ¥

—00

+pile Pl J [1s1(x) — s2(x)| + i1 (x — c1) — i (x — cT)] &M (E)dx
&

o0
eAl(z,x)stdXJrJ

eAT(£X)+BXIdX]
g

—0o0

£
< (1+ePeT)pyle PlEl|(s) — 59,4 —12)lp U

= (1+ePT)pyl(s1 — 52,11 — 2)IpA(E),

where

0<s<1

l: = max {oq —u+ sup {f’(s)}g’(O)B,f(l)g'(O)} ,

A(E) = e BIEl UE

—00

(o.¢]
eA1(5X)+B'X'dx+J

e/\f(EXJHSIXIdX] )
g

As 0 < B < —A] < AJ, by L'Hospital’s rule, we have

1 1 1 1
A(+00)

Aloo) = R TR A AT B BoA

That is, A(&) is bounded on R. Denote A = sup |A(£)]. Hence,
£eR

sup [Fy(s1,11) (&) — F1(s2, 12) (&)le PIE < (1 4-ePCT)pq 1Al (s1,11) — (s2,12)lp-
£eR

Similarly, we obtain

sup [Fa(s1,11)(&) — Fa(s2, 12) (&)le P& < Ql(s1,11) — (s2, 12)lp,
EER

where Q is a constant. Hence, F is continuous on T.



Y. Wang, G. Liu, A. Zhao, J. Nonlinear Sci. Appl., 11 (2018), 1313-1330 1321

Next, we prove that F is compact. For any (s,1) € T', we get

&
‘cizﬂ(s,a(a)‘ =|PAL J_ e 5 o s(x) = f(s(x))g(ix — e1)) — us(x) + e

+ oA} f e (9o s(x) — F(s(x))g(ix — c1)) — ps(x) + pldx

&
< plAlj e E) (o — w)s(x) + o+ F(s(x))gli(x — c1))ldx

+o1A] Eo ™M E (o — p)s(x) + i+ F(s(x)) g A(x — c1))ldx

(o.¢]

& _
< —p1(oq +f(1)g’(0)B) <A1J e’ (‘E")dx—/\fj

M (E—%) gy
3

=2p1[x1 + f(1)g’(0)BI.
Since f(s(x))g(i(x —c7)) < f(1)g’(0)B and (xx — n— )i is increasing with respect to i, we obtain
d & _
SERIS )] =[oans [N s glite - v + (o - VIifudx

+ pAS f e (E X[ (5 (x)) g (i(x — 1)) + (x2 — 1 —y)i(x)ldx

(0.¢]

& _
< — p2B(ox2 + f(1)g’(0)) (AZJ e/ (57 dx — A L
—0

eA;(ax)dx>
=2pyBloz + f(1)g’(0)].

In addition, F(I') is uniformly bounded on R. Hence, for each n € N, by using Ascoli-Arzela theorem, F(T")
is precompact on [—n, n]. Using the standard diagonal method, F(I") is precompact on R. Hence, F: T — T
is completely continuous. O

3. Proof of main results
In this section, we first establish the existence of a nonnegative solution of system (1.5) satisfying (1.4).

Proof of Theorem 1.1.  As ¢ > c*, in view of Lemmas 2.6 and 2.7, it follows from the Schauder’s fixed point
theorem that F has a fixed point (s,1i) € I'. Hence there exists a nonnegative solution (s(&),1(&)) of system
(1.5) satistying

s—(&) <s(E) <s4(8) =1, 1(§ <i(E) <i4(§) <B, &€eR

Together with the definitions of s;,s_,i; and i_, it follows that

(s,1)(—o0) = (1,0), lim i(§)e ™M&=1.

E——o0

Applying the L'Hospital theorem to the maps F; and F, it is easy to show that

lim (s"(&),i'(&)) = (0,0).
E——o0
Furthermore, we claim that 0 < s(§¢) < 1 and 0 < i(¢) < B for all £ € R. First, we prove s(§) > 0
on R. For contradiction, we assume that s(&;) = 0 for some & € R. Then s’(&) = 0 and s”(&;) > 0.
However, it follows from the first equation of (1.5) that s”(&;) < 0. Next, we certify i(&) > 0 on R. If not,
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denote & = inf {& € R|i(&) = 0}, then i(&,) = 0,1’ (&) = 0 and i”(&,) > 0. But, it follows from the second
equation of (1.5) that i” (52) < 0. Similarly, we have s(&) < 1 on R. Finally, we show i(&¢) < B on R. If not,
we assume that i(&3) = B for some &3 € R. Then i/(£3) = 0 and i”(&3) < 0. However, it follows from the
second equation of (1.5) and (A3) that 1" (£3) > 0.

Now we verify that (s,1)(+o0) = (s*,1*). For this purpose, we rewrite (1.5) as a system

s'(&) =w(é),
diw’(&) = ew(&) + u(s(&) = 1) + f(s(&))g(i(E —cT)), (3.1)
V(&) =y(&), '
day’(&) = cy(&) — f(s(&))g(i(& — 1)) + (L +V)i(E).
Construct the Lyapunov functional U by
U(s,w,1,y) = Us(s,w, 1,y) + Uz(s, w, 1, y) + c(u+v)i"Us(s, w, L, y), (32)

where
. d1W § 1
Ui(s,w,i,y) =— —cs—f(s*)—— f(s* ——do |,
1(s,w,1,y) (dlw cs —f(s )f(s) + cf(s )L* o) G)

. day L |
UQ(S,W,I,H) (dZU_C1_g( )9()+ 9( )J g((y)d()‘)/

9li(e—c0)) | g(i(t—co))

u3(s’w’i’”)zjo [9(1*)_ - ng(i*)] a0

Let x(&) == (s(&),w(&),1(&),y(&)) be the solution of (3.1). Then

LU X(E) = — dnw/(€) + ¢5'(€) + (5" [fw(s/((;)) B W(E)gig;y(a] B Cfii();ga
= ()5 E)) o + a1 —s(6)) — (s(Egile —e) (1 0o )
(s ((a))gfzg Hlls” —s(E) + (1 —5")
—f(s( (1 ffi?ii)
) = 0410 + g VS SYOTHOND _ el
—H{s(E)glile — )+ gl )g(i(e)) PN S £ T Y
-y i(e) — aagli7)g/ (30 2L —cqlin) 2L
S dzg(l*)g’(x(a))gﬁ’é(é))) + [f(s(&))g(i(& —cT)) — (v + Wi(E)] <1_ 9?530 ’
and
;aug(x(&)) =JO ;E [Q“f(ffe” ~1-n gh(ga(f)ce))] a0

LT d [glile—co) | glile—co)
CJO de[ g(i*) 1=In g(i*) ]de
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__ 1 [Q(i(i—cr)) glilg
¢ g(i*) g(i*

_ 1 [g(i(a—cm glilg
g(i*) g(ix

), 9HE—cT))
) g(i(&))
i) n T f(S(E))g(i(E—CT))}

c

f(s()) T f(s")g(i(L))

Consequently,

e YR(E)
2GE) drg(i*)g (1(5))92(1((2))

. () _e (1- Y
+ u(s s(&))(l f(s(&)))Jru(l S )<1 f(s(i)))

#1(s7)g(i1e —en) - glir) ITEVSRESED) _y 4 i (1- SEL)

( g(i(&))
g(i*) g(i*)

(v +wi* and f(s*)g(i*) =

Note that u(1—s*) =

d e WRE) e YE)
g UOK(E)) == i fls™) () 5y — gL (&)

. (s o, f s*) f(
THlsT —s(2)) (1 f(s(a))>+(””” (1 @) TG
+(v+u)1*g( i(&))

) — (v +wi* = (v +n)i(&) (1— g?&&})))
LT f(s(E)gli(E—cr)) f(s(a)g(i(é—cﬂ)}
LA [l f( T9GE) T (st )g(i(E))

(3.3)

9 1(& n) nf(S(E))g(i(E—CT))}
g(i(& )) f(s*)g(i(&))

Since f’(s) > 0 for any s € [0, 4+00),

« f(s*)
(s* —s(&)) (1— f(S(E))) <0, &eR
Note that 1 — &+ 1In & < 0 for any & > 0. Hence,

@) My S FER
f(s(&))g(i(& —cT)) f(s(&))g(i(& —cT))
T Ree@) T (s glile)
Furthermore, since the function g(i) is concave,

9(.* > i
9( )J

gt

g(l*) < *

i
i*
i
i

N
o

, &eR

if 0<igi®,

, if 1>1%,
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which implies that

i(&)) i* g(i
Hence, q
dfau(x(é)) <0, &£eR
Let

{Sn(a) = S(£+n)}n20 and {1TL(E:) = i(a‘i‘n)}n}O/
wn(&) =w(E+n)lnzo and {yn(&) =y(&+n)in>o.

Since sn, in, sh, i; s, and i}] are uniformly bounded in R, up to a subsequence, we can assume that

Sn, Wn, in, and yn converge to some nonnegative functions s, Weo, ico, and Yoo, which satisfy (3.1).

Besides, since U(x(&)) is non-increasing on & and bounded below, there exists some v € R such that
Iim U(x(¢)) = v. Further,

&—+o0

llm u(snrwnrin/yn)(a) - hm U(S/W/i/y)(£+ ETL) =V

n—-+oo n——+oo

for any & € R. By (3.2) and Lebegue dominated convergence theorem, we obtain

lim U(Sn/Wn,in,yn)(E) - u(soorwooriooryoo)(a)/ E» € R.

n—+oo

Thus
u(sOO/WOOI looryoo)(E») =Y, (Z-v € R.

Therefore,

7u(SOOIWOOI 1'VOO/ yoo) — 0/

dg
which, together with (3.3), yields

So(€&) =87, Weo(E) =0, i(E) =17, yxo(E) =0, E€R

So, for any & € [0,1], sn (&) converges uniformly to s* as n — co. That is, for any & € [0,1] and € € (0,1),
there exists a positive number N such that

Isn(&) —s*l<e, mn=N,

then |s(&+n) —s*| < e and
s(&) —s"l<e, &=N.
Hence, lim s(&) = s*. Similarly, £lim (&) =1i*, lim s’(§) =0,and lim 1i’(&) = 0. This completes

E—+o00 ——+o00 E—+o0 E—+o0

the proof. 0

In the following, we prove the non-existence of nonnegative solution of system (1.5). Next, we first
give the following result.

Lemma 3.1. Assume that Ry > 1 and c € (0,c¢*) or Rg = 1. If system (1.5) exists a nontrivial and nonnegative

solution (s(&),1(&)) satisfying (1.4), then 0 < s(&) < 1 and (&) > O for any & € R, and ‘ghrf (&) =
ElirJr: i'(&) =0.

Proof. The proofs of s(&) > 0 and i(&) > 0 are similar to that of Theorem 1.1, we omit their proof. Next,
we prove s(&) < 1 for any & € R. On the contrary, note that s(+00) = s* and 0 < s* < 1, denote
&o =sup{& € R[s(&) =1}, then s(&) =1 and s’(&) < 0. If s’(&) =0, then s” (&) < 0. However, it follows
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from the first equation of (1.5) that s (&) > 0. If s’(&) < 0, note that s(—oo) = 1, then there exists an
& < & such that s(&) > 1, s’(§) = 0 and s”(&) < 0. But, it follows from the first equation of (1.5) that

s”(&) > 0. It is a contradiction.

Now, we claim that lim 1i’(§) =0. Let limsupi’(£) = a, liminfi’(§) = b, then a > b. If a > b, there
E—+o0 400 E—+o0

exist &,Mn — oo such that

lim i/(an) =aq, lim i,,(an) =0,
n—00 n—oo

lim i'(nn) =Y, lim i”’(mn) =0.

n—oo n—oo

It follows from the second equation of (1.5) that

ca=f(s")g(i") — (L+y)i*,  cb=~(s")g(i") — (n+y)i".

Note that ¢ > 0, we have a = b, a contradiction. Hence lim 1i/(&) exists, and lim i/(&) = lim i(é) =
&E—+o00 E—+o0 E—+o0
0. Similarly, alim i’(&) = 0. This completes the proof. O
——00

Proof of Theorem 1.2. For contradiction, assume that there exists a nonnegative solution (s(&),1(&)) of sys-
tem (1.5) satisfying (1.4).
We firstly consider Ry = 1. It follows from the second equation of (1.5) that

+00 +00 +o0 +oo
cj V(E)de = dzJ i”(&)dc€+J f(s(£))gli(E — ct))dE — (u+v)J i(£)dE.
Note that i(—o0) = 0,i(+00) = i*,1/(+00) = 0. It follows from Ry =1 that
—+00 —+00 —+00 —+00
(1+v) j {(£)dE = —ci” + j f(s(£))g(i(& — ct))dE < F(1)g’(0) J (6 —cr)de — (u+v)J i(£)dE.

This is a contradiction.
Secondly, we discuss the case that Ry > 1 and ¢ € (0,c*). For any € € (0,g’(0)), there exists a small
positive number 8 such that
921)29’(0)—(—:, 0<1i< 8. (3.4)
Note that f(s(&)) — (1) and i(§) — 0 as & — —oo. It follows from Ry > 1 that there exists & < 0 such that
(&) < §p and
f(1)g'(0) — (n+v) _ f(1)g'(0) +vy+p

f(s(&)) > f(1) — 29’(0) - 2g’(0)

for any & < E Then, for any & < E,
ci’(&) =dai” (&) + f(s(&))g(i(& —cT)) — (L +V)i(E)

f(1)g'(0) +v+ B9/ (0) — €)i(& — c1) — (k£ Y)ilE),

>doi” (&) + 29'(0)

which implies

f(1)g’'(0)+y+u

ci’(&) > doi” (&) + 5

[((&—cT) —i(&)] + i(&). (3.5)

Denote k(&) := fioo i(x)dx. Integrating the two sides of (3.5) from —oo to & with & < E, we have

f(l)g’(O)—v—uk

> (&) < ci(&) —dai’(E) +

/ &
F1)g"(0) +v+ “J i(x)dx. (3.6)

2

&—ct
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Note that

EOO JX i(s)dsdx = Jam JHCT i(s)dxds + Ja Ja i(s)dxds

X—CT —00 s E—ctJs

&—ct & &
:CTJ i(s)ds —I—J i(s)(&—s)ds < CTJ i(s)ds = ctk(§).

—00 &—cT

Integrating the both sides of (3.6) from —oo to & yields

f(1)g’(0) =y —n

g g / g x
J K(s)ds + di(£) <CJ i(s)ds 4 IO +v+ “J J i(s)dsdx
2 —00 —00 ‘1 , 0 2 —00 JX—CT (37)
<ek(e) + I IV TR o) = mke),
where m =c¢ + fmg,w%c*c. Since k(&) is increasing in &, for any n > 0,
g g
nk(&—1n) < J k(s)ds < J k(s)ds,

& —00

which, together with (3.7), for a large np > 0, yields

k(& —mp) < k(;) £ <E

Define yy = 1;‘—02 > (0 and p(x) = k(x)e~"*. Then

k ~
p(&—"10) = k(& —mg)e HoltTm0) < %e*me“ﬂ”o =p(&), &<§,

which implies that p(x) is bounded on (—oo, £). Tt follows from 1_1}}) p(x) = 0 that there exists py > 0
X o

satisfying p(x) < po for any x € R. This implies
k(x) < poeto¥, x € R. (3.8)

It follows from (3.7) that

This, together with (3.8), implies

! g
ari/ () <ci(e) + 119 (0;” il L i(x)dx
—ci(e) + THIOVFY TR )y —cr))

<ci(E) + (f(1)g’(0) +7v + wpoetos.

Thus, [i(&)le” w& is bounded on (—oo, &). Further, it follows from (3.5) that [i”(&)le "¢ is bounded on
(—oo, &). Note that lim 1i(§), lim 1i/(&), lim 1i”(&) all exist. Hence,
£ too £ 400 £—+00

sup{i(&)e ™%} < 0o, sup{i’(£)e ™} < oo, sup{i”(&)e M8} < oo.
£eR EER EER
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For A € C with 0 < ReA < py, we define a two-sided Laplace transform of i by

L(A) = rm e Moi(8)dE.

—00

It follows from the second equation of (1.5) that

dai" (&) — ¢t/ (&) + F(1)g (01L& — ) — (w+Y)U(E) = Fa(8),

where
Fi(&) == f(1)g’(0)i(& —cT) — f(s(&))g(i(& —cT))
Further,
+o0
AN c)L(A) = J e MoF (8)dE. (3.9)
When 0 < i < §y, it follows from (3.4) that
Fu(e) = (g0~ 1s(e) £ Y ige e
i(&—cT . 2
_ (f(l)g'm) —f(s(a))gzg((;ﬂﬂ) +1(am)) 610

< (f(1)g"(0) — £(s(&))(g'(0) — €) +i(& — cT))”.
Since f(s(&)) — f(1) as & — —oo and the inequality (3.10) is valid for any ¢, we have
Fi(&) < (& —c).

Then, when & — —o0, we obtain

2
e 2MEF () e 2Mbi2(E — ) < [ M(ETCT)i(g — cr)|PeHCT [sup{e”‘)(a”)i(é— CT)}] < o0.
£€eR

Note that alim e 2M0&F; (&) = 0. Hence, we obtain sup{e 2H&F; (&)} < oo. Thus the right-hand integral
—+00 £ER

of (3.9) is defined for A € C with 0 < ReA < 2ug. For ¢ € (0,c*), since A(A,c) > 0 for all A > 0, we get that
L(A) is defined with A € C with ReA > 0. However, (3.9) can be rewritten as

+o00
| eream oo - Rignde —o,
But, lim A(A,c) = +oo for any fixed ¢ € (0,c*). This leads to a contradiction. O

A—+o00

4. Numerical simulation

In this section, to further illustrate our conclusions, we perform some numeric simulations. Take

St(x,t) = diSxx (X, 1) + (1= S(x, 1)) — BpRerlet=t),
T, ) = dalen (x, 1) + BEREICATTL (g )T, 1),
wheret=1,v=025,d;=1,dy =1, u=0.75,0 =2, p =4, and the initial susceptible S(1,x) = 10.
Let S(x,t) = s(&), I(x,t) =1i(¢&), & = x + ct, then
cs(£) = d1s” (&) + u(1 —s(£)) — s(&) {Paieonks,
ci’(&) = i (&) + s(£) T EEEST — (n+v)il&).
It is easy to verify that the conditions of Theorem 1.1 are satisfied. Then the traveling wave solutions of
system (4.1) are presented in Figs.1 and 2.

(4.1)
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Seeb Iect)

Distance x 500 0 Time t Distance x -500 0 Time t

Figure 1: The traveling wave solution S(x, t). Figure 2: The traveling wave solution I(x, t).

5. Discussion

In this paper, we consider a diffusive SIR model with delay and a general nonlinear incidence. By
using Schauder’s fixed point theorem and constructing a suitable Lyapunov functional, we establish the
existence of traveling wave solution satisfying system (1.3). The non-existence of traveling wave solution
of system (1.3) is obtained by two-sided Laplace transform. Here we prove the existence and non-existence
of such a traveling wave solution is totally determined by Ry. Moreover, by Lemma 2.1, we know that c*
is dependent on the latent period T of disease and the diffusion rate d; of the infected individuals. More
specifically, the minimum wave speed c* is determined by the following equation

AN, ¢) = daA? — A+ f(1)g’(0)e T —u—vy =0,

%AD\, ¢) = 2dyA —c — ctf(1)g’(0)e T = 0.

And a direct calculation yields that

oc* c*f(1)g’(0)e ¢t oc* A*

- O’ = * * .
ot~ 1+f(1)g/(0)e NeT dd, T+ rf()g/(0)e vew 0
g

Hence the minimal wave speed c* is decreasing with respect to the latent period T and increasing with
respect to the diffusion rate d, of infected individuals.
Further, our model includes more general nonlinear incidences. In particular, if we take

O e

with o, 3 > 0, system (1.3) reduces to the model in [4]. Obviously, for any ¢ > c*, our results directly
extend those in [4] to a more general case. In addition, for Ry > 1 and ¢ € (0,c*), we prove the non-
existence of traveling wave of (1.3).

Appendix

Lemma A.1 Suppose that (A1) and (Ay) hold and Ry > 1. Then system (1.3) exists a unique positive endemic
equilibrium (s*,i*).
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Proof. Let
+ . . .
Gi(i) = f(r—“uy>ghm Gali) = (n+Y)i
Then
Gl(i) = Yy (1— ””i) gli) + (1— “”i) g'(0).
m m m
Note that

foy , L L R
G{(0) =f(1)g’(0) > u+vy, G (u+v> = f(0)g <u+v> =

We obtain that G;(i) and G, (i) have at least one intersection point. Suppose that (s*,1*) is the first positive
endemic equilibrium of system (1.3). Next, we prove (s*,i*) is a unique positive endemic equilibrium.

For contradiction, we assume that (sq, 1;) is the second positive endemic equilibrium, then G{(i;) > u+.
On the other hand,

Gl(iy) = “:Vf' (1— “:Vq) gliy) +f (1— H

It follows from (A;) that

+yu>g%n»

9(_11) _ Q(il).—g(o) =g'(&,) > g'(l1), 0<é&, <iy.
11 11

This, together with f (1 — &u"io — (HL, yields

i1g’(i1)
g(i1)

This is a contradiction. O

Gi(lh) =

+ +v.
uv(uv <ty

u)ﬁh%ﬂu+w
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