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Abstract

A new extension of exponential distribution, named as the Type I half logistic exponential distribution is introduced in this
paper. Explicit expressions for the moments, probability weighted, quantile function, mean deviation, order statistics, and Renyi
entropy are investigated. Parameter estimates of the new distribution are obtained based on maximum likelihood procedure.
Two real data sets are employed to show the usefulness of the new distribution.
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1. Introduction

In the last few years, new generated families of continuous distributions have attracted several statis-
ticians to develop new models. These families are obtained by introducing one or more additional shape
parameter(s) to the baseline distribution. Some of the genrated families are: the beta-G by Eugene et al.
[10], gamma-G (type 1) by Zografos and Balakrishanan [17], Kumaraswamy-G by Cordeiro and de Castro
[6], gamma-G (type 2) by Ristic and Balakrishanan [16], transformed-transformer (T-X) by Alzaatreh et al.
[2], Weibull-G by Bourguignon et al. [3], exponentiated half-logistic-G by Cordeiro et al. [5], type I half
logistic-G family by Cordeiro et al. [4], Garhy-G by Elgarhy et al. [9], exponentiated Weibull-G by Hassan
and Elgarhy [12], Kumaraswamy Weibull-G by Hassan and Elgarhy [13], type II half logistic-G by Hassan
et al. [14], exponentiated extended-G by Elgarhy et al. [8], Odd Frechet-G by Haq and Elgarhy [11], and
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Muth-G by Almarashi and Elgarhy [1] among others. The cumulative distribution function (cdf) and the
probability density function (pdf) of type I half logistic-G family are respectively given by

F (x) =
1 − (1 −G (x))λ

1 + (1 −G (x))λ
, x, λ > 0, (1.1)

and

f (x) =
2λ g (x) (1 −G (x))λ−1[

1 + (1 −G (x))λ
]2 , (1.2)

where λ is the shape parameter.
Let, the random variable X follows the exponential distribution with pdf and cdf are respectively given

by

g (x) = αe−αx, α > 0, x > 0, (1.3)
G (x) = 1 − e−αx, (1.4)

where, α is the scale parameter.
In this paper, we introduce a new two-parameter model as a competitive extension for exponential

distribution using the TIHL-G distributions. The organization of this paper is as follows. In Section 2,
we define the type I half-logistic exponential distribution (TIHLE) distribution. In Section 3, we derive a
very useful representation for the (TIHLE) density and distribution functions. In the same section, some
general mathematical properties of the proposed distribution are given. The maximum likelihood method
is applied to drive the estimates of the model parameters in Section 4. A simulation study is carried out to
estimate the model parameters of (TIHLE) distribution in section 5. Section 6 gives an illustrative example
to explain how the real data sets can be modeled by TIHLE distribution and finally this paper ends with
some conclusions in Section 7.

2. The new model

In this section, the two-parameter TIHLE distribution is obtained by substituting pdf in (1.3) and cdf
in (1.4) into cdf (1.1), then the cdf of type I half-logistic exponential distribution, denoted by TIHLE(λ,α)
takes the following form

F (x,ϕ) =
1 − e−αλx

1 + e−αλx
λ,α > 0, x > 0, (2.1)

where, ϕ = (λ,α) is the set of parameters. Inserting the pdf in (1.3) and cdf in (1.4) into (1.2), we obtain
the pdf of TIHLE distribution as the following form

f (x,ϕ) =
2λαe−αλx

[1 + e−αλx]
2 . (2.2)

The survival function, hazard rate, reversed-hazard rate and cumulative hazard rate functions of TIHLE
distribution are respectively given by

F (x,ϕ) = 1 − F (x,ϕ) =
2e−αλx

1 + e−αλx
,

h (x,ϕ) =
f(x,ϕ)
F (x,ϕ)

=
λα

1 + e−αλx
,
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τ (x,ϕ) =
f(x,ϕ)
F(x,ϕ)

=
2λαe−αλx

1 − e−2αλx ,

and

H (x,ϕ) = −ln (1 − F (x,ϕ)) = −ln
(

2e−αλx

1 + e−αλx

)
.

Plots of the pdf and hazard rate function of TIHLE distribution for some values of parameter are
displayed in Figures 1 and 2, respectively. It appears from Figure 1 is that the shape of the distribution
heavily depends on the value of the parameters. The shape could be uniform to right skewed, which
depends on the values of the parameters.

Figure 1: Plots of the pdf of the TIHLE distribution for some
parameter values.

Figure 2: Plots of the hazard rate function of the TIHLE distri-
bution for some parameter values.

3. Statistical properties

In this section some properties of the TIHLE distribution are obtained.

3.1. Useful expansions
In this subsection representations of the pdf and cdf for TIHLE distribution are derived.
Using the generalized binomial theorem, for β > 0 and |z| < 1,

(1 + z)−β =

∞∑
k=0

(−1)k
(
β+ k− 1

k

)
zk. (3.1)

Then, by applying the binomial theorem (3.1) in (2.2), the distribution function of TIHLE distribution
becomes

f (x) =

∞∑
k=0

ηke
−αλ(k+1)x, (3.2)

where ηk = 2λα (−1)k
(
β+k−1
k

)
.

An expansion for the cumulative function:
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Using binomial expansion for [F(x)]h, where h is an integer, leads to:

[F (x)]h =

[
1 − e−αλx

1 + e−αλx

]h
.

Using binomial expansion, leads to

[F (x)]h =

∞∑
z=0

Sze
−αλ(z+m)xβ , (3.3)

where Sz =
∑h
i=0 (−1)i+z

(
h
i

)(
h+z−1
z

)
.

3.2. Quantile and median

Quantile functions are used in theoretical aspects of probability theory, statistical applications and
simulations. Simulation methods utilize quantile function to produce simulated random variables for
classical and new continuous distributions. The quantile function, say Q(u) = F−1(u) of X is given by

u =
1 − e−αλ(Q(u))

1 + e−αλ(Q(u))
,

after some simplifications, it reduces to the following form

Q(u) =
−1
αλ

ln
[

1 − u

1 + u

]
, (3.4)

where, u is considered as a uniform random variable on the unit interval (0, 1).
In particular, the median can be derived from (3.4) by setting u = 0.5. That is, the median is obtained

as

median =
−1
αλ

ln
[

1
3

]
.

3.3. Moments

If X has the pdf (3.2), then its rth moment can be obtained through the following relation

µ̀r = E (X
r) =

∫∞
0
xrf (x)dx. (3.5)

Substituting (3.2) into (3.5) yields:

µ̀r =

∞∑
k=0

ηk

∫∞
0
xre−αλ(k+1)xdx.

Then, µ̀r becomes

µ̀r =

∞∑
k=0

ηk Γ (r+ 1)

[αλ(k+ 1)]r+1 .

Generally, the moment generating function of TIHLE distribution is obtained through the following
relation

MX (t) =

∞∑
r=0

tr

r!
E (Xr) =

∞∑
k,r=0

tr ηk Γ (r+ 1)

r![αλ (k+ 1)]r+1 .
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The incomplete moments, say ϕs (t), is given by

ϕs (t) =

∫t
0

xs f (x) dx.

Using (3.2), then ϕs (t) can be written as follows

ϕs (t) =

∞∑
k=0

ηk

∫t
0
xse−αλ(k+1)xdx.

Then, using the lower incomplete gamma function, we obtain

ϕs (t) =

∞∑
k=0

ηkγ (s+ 1,αλ (k+ 1) t)

[αλ (k+ 1)]s+1 ,

where ν (s, t) =
∫t

0 x
s−1e−xdx is the lower incomplete gamma function.

Further, the conditional moments, say τs (t), is given by

τs (t) =

∫∞
t

xs f (x)dx.

Hence, by using the pdf in (3.2), we can write

τs (t) =

∞∑
k=0

ηk

∫∞
t

xse−αλ(k+1)xdx.

Finally, using the upper incomplete gamma function, we obtain

τs (t) =

∞∑
k=0

ηk Γ (s+ 1,αλ (k+ 1) t)

[αλ(k+ 1)]s+1 ,

where Γ (s, t) =
∫t

0 x
s−1e−xdx is the upper incomplete gamma function.

3.4. Residual life function
The nth moment of the residual life of X is given by

mn (t) =
1
R(t)

∫∞
t

( x− t )n f (x)dx.

Applying the binomial expansion of (x− t)n into the above formula, we get

mn (t) =
1
R(t)

∞∑
k=0

n∑
d=0

(−t)d
(n
d

)ηkΓ (n− d+ 1,αλ (k+ 1) t)

[αλ(k+ 1)]n−d+1 ,

where Γ (s, t) is the upper incomplete gamma function.
The nth moment of the reversed residual life of X is given by

Mn (t) =
1
R(t)

∫t
0
(t− x )nf (x)dx.

Applying the binomial expansion of (t− x)n into the above formula, we get

Mn (t) =
1
R(t)

∞∑
k=0

n∑
d=0

(−1)n+dtd
(n
d

)ηkγ (n− d+ 1,αλ (k+ 1) t)

[αλ(k+ 1)]n−d+1 ,

where ν (s, t) is the lower incomplete gamma function.
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3.5. Rényi and q-entropies

The entropy of a random variable X is a measure of variation of uncertainty and has been used in
many fields such as physics, engineering and economics among others. The Rényi entropy is defined by

Iδ(X) =
1

1 − δ
log
∫∞
−∞ f(x)δdx, δ > 0 and δ 6= 1.

By applying the binomial theory (3.1) in the pdf (2.2), then the pdf f(x)δ can be expressed as follows

(f (x))δ =

∞∑
k=0

tk e−αλ(k+δ)x,

where tk = (−1)k (2λα)
δ
(

2δ+k−1
k

)
. Therefore, the Rényi entropy of TIHLE distribution is given by

Iδ(X) =
1

1 − δ
log

[ ∞∑
k=0

tk

∫∞
0
e−αλ[k+δ]xdx

]
,

That is,

Iδ(X) =
1

1 − δ
log

[ ∞∑
k=0

tk
αλ[k+δ]

]
.

The q-entropy is defined by

Hq(X) =
1

1 − q
log
(

1 −

∫∞
−∞ f(x)qdx

)
,q > 0 and q 6= 1.

Therefore, the q-entropy of TIHLE distribution is given by

Hq(X) =
1

1 − q
log

{
1 −

[ ∞∑
k=0

tk
αλ[k+δ]

]}
.

3.6. The probability weighted moments

The probability weighted moments can be obtained from the following relation

τr,s = E (X
rF(x)s) =

∫∞
−∞ xrf (x)F(x)

sdx. (3.6)

By substituting equations (3.2) and (3.3) into (3.6), replacing h with s, leads to:

τr,s =

∞∑
k,z=0

ηk Sz

∫∞
0
xre−αλ(k+z+1)xdx.

Hence, the PWM of TIHLE distribution takes the following form

τr,s =

∞∑
k,s=0

ηk SzΓ (r+ 1)

[αλ(k+ z+ 1)]r+1 .

3.7. Order statistics

Let X1:n < X2:n < · · · < Xn:n be the order statistics of a random sample of size n following the TIHLE
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distribution, with parameters α and λ, then, the pdf of the kth order statistic ([7]), can be written as follows

fk:n(x) =
f(x)

B(k,n− k+ 1)

n−k∑
v=0

(−1)v
(
n− k
v

)
F(x)v+k−1, (3.7)

where, B(., .) is the beta function. By substituting equations (3.2) and (3.3) in (3.7), replacing h with
v+ k− 1, leads to

fk:n(x) =
1

B(k,n− k+ 1)

n−k∑
v=0

∞∑
k,z=0

η∗e−αλ[k+z+1]x, (3.8)

where η∗ = (−1)v
(
n− k
v

)
ηksz.

Moments of the order statistics is given by:

E(Xk;n
r) =

∫∞
−∞ xrf(x)dx. (3.9)

Substituting (3.8) in (3.9) leads to

E(Xk;n
r) =

1
B(k,n− k+ 1)

n−k∑
v=0

∞∑
k,z=0

η∗Γ (r+ 1)

[αλ [k+ z+ 1]]r+1 .

4. Maximum likelihood estimation

The maximum likelihood estimates (MLEs) of the unknown parameters for the TIHLE distribution are
determined based on complete samples. Let X1,X2, . . . ,Xn be observed values from the TIHLE distribu-
tion with set of parameters ϕ = (λ,α)T . The total log-likelihood function for the vector of parameters ϕ
can be expressed as

lnL (ϕ) = nln (2λ) +nln (α) +nln (β) − αλ

n∑
i=1

xi − 2
n∑
i=1

ln
(
1 + e−αλxi

)
.

The elements of the score function U (ϕ) = (Uλ,Uα) are given by

Uλ =
n

λ
−α

n∑
i=1

xi + 2α
n∑
i=1

xie
−αλxi

1 + e−αλxi
and Uα =

n

α
− λ

n∑
i=1

xi + 2λ
n∑
i=1

xie
−αλxi

1 + e−αλxi
.

Then the maximum likelihood estimates of the parameters λ and α are obtained by setting the last two
equations to be zero and solving them. Clearly, it is difficult to solve them, therefore applying the Newton-
Raphson’s iteration method and using the computer package such as Maple or R or other software one
can solve these equations and obtain the maximum likelihood estimators.

5. Simulation study

It is very difficult to compare the theoretical performances of the different estimators (MLE) for the
TIHLE distribution. Therefore, a simulation is needed to compare the performances of the different
methods of estimation mainly with respect to their biases, mean square errors and variances (MLEs) for
different sample sizes. A numerical study is performed using Mathematica 9 software. Different sample
sizes are considered through the experiments at size n = 50, 100, 150, and 200. In addition, the different
values of parameters λ and α are considered.

The experiment was repeated 10000 times. In each experiment, the estimates of the parameters are
obtained by maximum likelihood methods of estimation. The means, MSEs and biases for the different
estimators are reported from these experiments and presented in Table 1.
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Table 1: The parameter estimation from TIHLE distribution using MLE.
n Par Init MLE Bais MSE Init MLE Bais MSE

50
λ 0.9 0.9255 0.0255 0.0271 1.5 1.5426 0.0426 0.0739
α 0.5 0.5142 0.0142 0.0084 0.5 0.5142 0.0142 0.0082

100
λ 0.9 0.9136 0.0136 0.0127 1.5 1.5191 0.0191 0.0348
α 0.5 0.5076 0.0076 0.0039 0.5 0.5064 0.0064 0.0039

150
λ 0.9 0.9104 0.0104 0.0083 1.5 1.5143 0.0143 0.0229
α 0.5 0.5058 0.0058 0.0026 0.5 0.5048 0.0048 0.0025

200
λ 0.9 0.9058 0.0058 0.0059 1.5 1.5114 0.0114 0.0172
α 0.5 0.5032 0.0032 0.0018 0.5 0.5038 0.0038 0.0019

50
λ 2 2.0602 0.0602 0.1355 3 3.0911 0.0911 0.3185
α 0.5 0.5151 0.0151 0.0085 0.5 0.5152 0.0152 0.0088

100
λ 2 2.0311 0.0311 0.0635 3 3.0513 0.0513 0.1439
α 0.5 0.5078 0.0078 0.0040 0.5 0.5086 0.0086 0.0040

150
λ 2 2.0186 0.0186 0.0396 3 3.0316 0.0316 0.0908
α 0.5 0.5047 0.0047 0.0025 0.5 0.5053 0.0053 0.0025

200
λ 2 2.0140 0.0140 0.0292 3 3.0247 0.0247 0.0683
α 0.5 0.5035 0.0035 0.0018 0.5 0.5041 0.0041 0.0019

6. Data analysis

In this section, two real data sets are employed to compare the fits of the TIHLE distribution with
other exponential (E). For both data, the parameters are estimated by maximum likelihood method. We
consider criteria like, Akaike information criterion (AIC), Corrected Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Anderson and Darling
test statistic (A∗), and Cramer Von Mises test statistic (W∗). Generally, the lower values of these criteria
indicate the better fit to the data.
DATA SET 1: The first data set illustrate the failure and service times for a particular model windshield
service times for a particular model windshield of [15]. The data represent the service times of 63 Aircraft
Windshield and listed as follows: 0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719,
2.717, 0.280, 1.794, 2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900,
2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483,1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665,
1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881,1.262, 2.543,
5.140.
DATA SET 2: The first data set represents 84 observations of failure time for particular windshield model
given in Table 16.11 of [15]. The data are recorded as follows: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481,
3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699,
1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303,
2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190,
3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166,
4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

Tables 2 and 4 list the MLEs and their corresponding standard errors (SEs) of the model parameters
for data sets 1 and 2, respectively. The numerical values of the AIC, CAIC, BIC, HQIC, (A∗), and (W∗)
statistics are listed in Tables 3 and 5 for data sets 1 and 2, respectively. We note that the OGHLE model
gives the lowest values for the AIC, CAIC, BIC, HQIC, (A∗), and (W∗) statistics for both data sets among
the fitted models. So, the TIHLE distribution performed better than the exponential distribution.

Further, the fitted densities for the first and second data sets are displayed in Figures 3 and 4 (together
with the data histogram), respectively. These results illustrate the potentiality of the TIHLE distribution
over exponential distribution.
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Table 2: ML estimates of the model parameters and the corresponding SEs for first data set.

Distribution
Estimated parameters and SE
α λ SE (α) SE (λ)

TIHLE 6.576 0.105 4.837 0.07686
E 0.48 - 0.06 -

Table 3: Goodness of measures for estimates for first data set.
Model AIC CAIC BIC HQIC A∗ W∗

TIHLE 211.706 211.906 211.305 213.392 1.4792 0.17189
E 222.597 223.196 226.883 224.283 2.97205 0.31826

Table 4: ML estimates of the model parameters and the corresponding SEs for second data set.

Distribution
Estimated parameters and SE
α λ SE (α) SE (λ)

TIHLE 6.264 0.092 2.646 0.03901
E 0.391 - 0.043 -

Table 5: Goodness of measures for estimates for second data set.
Model AIC CAIC BIC HQIC A∗ W∗

TIHLE 307.473 307.621 307.321 309.427 6.2578 0.49244
E 329.754 330.603 334.616 313.708 9.63216 0.70401

Figure 3: Estimates of the density functions for the: (a) first data and (b) second data.
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Figure 4: Estimates of the distribution function and empirical distribution (a) first data and (b) second data.

7. Conclusions

This paper developed a new extension of the exponential distribution, named as the Type I half logistic
exponential distribution. Some of the important properties of the distribution, namely, the moments,
probability weighted moments, quantile function, mean deviation, order statistics and Renyi entropy are
investigated. Maximum likelihood method is used to estimate the parameters of the new distribution.
Two real data sets are employed to show the usefulness of the new distribution. Hope this distribution
will be useful for the researchers of various fields.
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