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Abstract

This paper, discusses the problem of partially step-stress ALTs (accelerated life tests) form Rayleigh competing risks model.
Type-II censored scheme is used in obtaining the observed censoring data. The method of MLE (maximum likelihood estimation)
of the model parameters for point and approximate confidence intervals are considered. Also, bootstrap confidence intervals
of model parameters are discussed. Simulation study is adopted to assess and compare our proposed method. Finally, some
comment to illustrate the behavior of numerical results.
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1. Introduction

The partially step-stress ALTs is a special case of ALTs, in which the experimenter allows to change
the stress levels during the experiment. The stress levels will be changed at prior pre-fixed time . The data
will be collected from such a partial step-stress ALTs, may then will be used to estimate the underlying
model of failure times under use stress level. Several works are presented in this context, Balakrishnan
[3], Balakrishnan et al. [5] and Balakrishnan and Xie [4]. The optimal step-stress test under discussed by
Guan and Tang [10] and Lin and Chou [15]. Recently, inference of step-stress model presented by David
and Kundu [13] and Soliman et all [19]. In a different area of reliable statistics, failure time of the units
associated with one or more fatal risk factor. It is necessary to assess one risk factors with respect to other
risk factor. This model is called competing risks model, in which observation is given in the bivariate form,
time to failure and it is the cause of failure, some investigated the competing risks models in Crowder
[6]. Different work exposed to lifetime distributions, with a competing risk model for example, Park [16],
Kunduand Sarhan [14], Sarhan [17], Sarhan et al. [18], and Bakobanand Abd-Elmougod [2]. In reliability
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experiments, for consideration of time and cost the censoring is common phenomenon. Type-I censoring
as well as Type-II censoring are a common censoring schemes in life test experiments. The experiment
in Type-I censoring terminates at a pre-fixed time point, but the experiment in Type-II censoring at a
pre-fixed number of failure.

The competing risks model with two different risk factors under Type-II censoring sample is described
as follows. Suppose that, the life test experiment beginning with independent units, each of time and
cause of failure (Ti;;m n, i) where 6; € {1,2} has recorded until (Tyn;mn, i), where m < n. The observed
sample (Ti;mn, 8i), 1 =1, 2,..., m are called Type-II competing risks sample.

The likelihood function of the observed sample (Ti;mn, 61),1=1,2,...,m, is given by

m
L (@|T) = CH [hl (ti;m,n)]n(éizn [hZ(ti;m,n)]n(éiZZ) X [Sl(tm;m,n)SZ(tmm,n)](n_m) ’ (1 1)
i=1 .

0<timn <tomn < - <tmmn <00,

where C = (nfin)!, S(.)=1—F(.),h= ;E:)), O is the model parameters vector, and

a1 =),

Our objective, is analyzing the competing risks model of partially step-stress ALTs under Type-II censoring
sample from Rayleigh lifetime random variable. The estimation procedures with the ML method of the
model parameters and accelerated factor is discussed. Also, the two, approximate information matrix
and bootstrap techniques are used to construct different confidence intervals of the Rayleigh parameters
and accelerated factor. The performances of the point estimates are measured in terms of mean estimate
and MSE (mean squared error) and interval estimates measured in terms of mean length and probability
coverage through Monte Carlo simulation .

This paper is described as, the model formulation of the partially step-stress ALTs under Type-II
censoring and independently Rayleigh lifetime random variables of the risk factors in Section 2. The MLEs
of Rayleigh parameters and accelerated factor as well as asymptotic confidence intervals, are adopted in
Section 3. Also, in Section 4, we presented a parametric bootstrap confidence intervals. In Section 5, the
quality of points and intervals estimations are measured in terms of MSE and PC (probability coverage)
via Monte Carlo study. Some comments are presented in Section 6.

2. Model formulation and notation

Under the assumption that, there are only two causes of failure are exist. We describe different
notations we are going to use in this paper.

For i" unit, the lifetime random variable is presented byT;.

For ith unit and the cause j,j = 1,2, the lifetime random variable is presented by T;;.

The cdf (cumulative distribution function) of T; is presented by: F(.).

The pdf (probability density function) of F(.) is presented by f(.).

The cdf of Ty; is presented by F;(.).

The pdf of Fyj(.) is presented by fj(.).

The survival function of Tj; is presented by S;(.).

For i" unit failure the cause of failure has the indicator presented by &;.

Let n identical units are tested under the use condition and each of failure times and risk factor caused
failure are recorded. At the prior fixed time T, the units are tested under stress condition, then the test
runs until a prior fixed number of failures m is observed. Under consideration that, the two cause of
failure and the failure time has an independent Rayleigh distribution. To simplify the notation we will
use henceforth T; instead of Ti.;.n, 1 =1,2,..., m. The model studied in the paper satisfies the following
assumptions.
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I) The lifetime of the unit is denoted as T;, 1 =1,2,..., m. The time at which the unit i fails due to cause j
is Tji, and Ti = min{Tu, TZi}-

II) The distribution of the random variable Tj; is is Rayleigh distribution with scale B;, j = 1,2 and
i=1,2,---,m. That is, the pdf and cdf, given by

12
Bjt

fi1(t) = 2Bte MY, i=1,2,t>0, B;>0, Fyu(t)=1—e" 2.1)

The corresponding reliability and failure rate functions of this distribution at some t, are given, respec-
tively by

2
Sjl(t) = e_ﬁ’t ,t>0, hjl(t) = ZBjt, t > 0.

A wide applications of the Rayleigh distribution, is in communication engineering, and several applica-
tions in life tests experiment. Rayleigh distribution is considered as a special case of the Weibull distri-
bution. Also, for more about life testing of electrovacum devices and recently, more information about
Rayleigh lifetime distribution see Al-Matrafi and Abd-Elmougod [1].

III) The shorten from the lifetime of test units is appeared to multiply the remaining lifetime of the unit

by the inverse of the accelerated factor. The total lifetime of a test unit, denoted by Y, defined under, use
and accelerated conditions. So, the lifetime of the unit in partially step-stress ALTSs, is define by

T T<r,
Tl A HT=71), T>r,

where the parameter A present the accelerated factor, T is the time at which stress is changed to higher
level and the lifetime of unit T computed at use condition. Under consideration that Rayleigh lifetime
distribution of units with parameters {3;. Then, lifetime Y of an unit has the pdf presented by.

fi2(y), y>m,
fily) =4 finly), 0<y<r, (2.2)
0, y<0
where i
fi2(y) = 2AB;(T+ Ay —1))e Bi(THALI=T)T (2.3)

and fj(y) is given by (2.1).
(2.3) is obtained from (2.1) after transformation variable from (1.1) and (2.2). The cdf, reliability
function Sj»(y), and hazard rate function hj»(y), are respectively presented by

sz(x)zl _ e*Bj(TJr?\(y*T))z’ sz(t) — e*Bj(TJr?\(y*T))z, and hjz(t) — 27\[5j(’t+7\(y —1)).

The total test is terminated respected to Type-II censoring when the number of failure is reached to m < n.
The observed values of the total lifetime Y are (yi,61) < (y2,82) < --- < (Y}, 8)) < T < (Yj41,0541) <--- <
(Ym, dm), where ] is the number of units failed at normal conditions and m — | at accelerated conditions.
The likelihood function of (y1, 81) < (Y2, 82) < -+ < (Y3, 85) < T < (Yj41, 8j4+1) < -+ < (Ym, Om) with
consideration that T < Y, is given by

] m
L(OY) =C] ] hau(y:) =Y Thyy (yo))1O 2 I1 [haa (£)] 7071 gy (1)) 102
. e (2.4)

% 1821 (Ym)S22(ym )] ™,
0 < (y1,81) < (y2,82) < ... < (Yy,87) < T < (Yj41,8541) < oo < (Ym, 8m) < 00,

where C is given in (1.1).
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3. Maximum likelihood estimation

Let the original sample (y1,81) < (y2,82) < - < (y5,07) < T < (Yj4+1,0741) < -+ < (Ym,0m) be
Rayleigh random variables with parameters 3; for j = 1, 2. The joint likelihood function of (2.4), reduces
to the following function

m

J
17— (1— _ 2
L (N B, Baly) = B By 2A™ T em (mmmIB1+Ba) (T A Yym—T)) Hyi H (T+A(yi — 1)),
i=1  i=J+1

where m; and m; are the number of units failure with cause 1 and 2, respectively. The log-likelihood
function is written as follows,

J m
L (N, B1, B2ly) = mylogPy + malogBs + (m — J)logA + Z logy; + Z log(t+A(yi — 1))
i=1 i=J+1

—(n=m)(B1 + B1)(T+Alym —7))*

Equations (3.1) reduce to, after taken the first partial derivatives to 31 and (32, to the likelihood equations
presented by

(3.1)

N BuBaly) (i Ay — ) =0, (3.2)
0B B1
wzﬂ_(n—m)(wﬂ\(ym—ﬂ)zza (3.3)
B2 P2
hence from (3.2) and (3.3) we obtain the ML estimate of 31 and {3, as
o m
P = ) e Ay — )
B2(A) = =

(M —m)(t+A(Ym —1))*
Also the derivatives of (3.1) to A reduce to

m

ol (A, B1, Baly) (m-J)) 5 (yi — 1)

A D T+ Ay —T)

—2n—m)(B1+BF1)(ym — DT+ Alym —71)) =0. (3.4)
i=J+1
From (3.4) and the value of parameters in (3.2) and (3.3), we obtain the single nonlinear equation of A, as

follows
m

(m—1J) (yi — 1) (Ym—1)
— +i_Z]H T Am M) S = O (3.5)
Using (3.2), (3.3), and (3.1), we obtain
o my mp
90A) = malog [(n—m)(wx(ym —T))Z] +malog [(n—m)(wx(ym —1)

] m (36)
+ (m —J)logA + Z logyi + Z log(T+A(yi — 1)) — (Mq +my).
i=1 i=J+1

Therefore, the MLE A of A, from (3.5) with respect to A. Using Newton Raphson method or the same
arguments in Gupta and Kundu [11] with initial point obtained from the plot of profile log-likelihood
function given in (3.6).

3.1. Approximate confidence intervals
From the log-likelihood function given in (3.1) after taking the second derivatives, we obtain the



A. M. Almarashi, et al., J. Nonlinear Sci. Appl., 12 (2019), 230-238 234

following equations

PLOBLBY) | my
o)y 3.7)
PL(AB1LB2Y) _  my
o . (3.8)
O’L(AB1B2ly)  —(m—]) - (yi —1)? 2
Paly) _ _ — =~ - 2(n-—m)(B1+B1)(Ym —T)%, (39)
oA A2 i_%l (T+Ay; — 1)
L(AB1Baly) _ PL(AB1Baly) _
(ofi) _ PLO ) (3.10)
2L (A,B1, 2L (A,B1,
(a (5(?167[\52‘3) = (axglﬁrfz@ ==2n—m)(ym — (T +Alym — 7)) 1D

with some mild regularity conditions the MLEs of parameters 31, 31 and A is approximately Gaussian
distribution with mean (31, 1, A) and covariance matrix £~ (1, B1, A) where £ (B, B1, A) is the expec-
tation of negative equations (3.7)-(3.11). Practice, Y1 (B1, B1, A) is estimated by &, 1 (31, B4, 7\) where
Zo (B1, B1, A) is the observed information matrix with inverse, given by

_aZL(}\lﬁerZ‘E) _ aZL(}\lﬁerZIE) _ azL()\/BLBZIH) -1

op2 0p310B: 0p310A
R O*L(AB1,B2ly)  OL(AB1B2lY)  9’L(AB1,B2lY)
Zo (B1, B1, A) = - 0B.0p1 - op2 - 0B20A
_O’L(AB1B2ly)  ’L(AB1Baly)  PL(AB1B2lyy)
NP1 NI, O3 (B1, B1, )

Hence, the Gaussian approximation is used as follows
(Bl/ Blr 5\) — N ((ﬁl/ 61/ )\),261(61, Blr 5\)) ’

The Gaussian distributed with mean (1, f1, A) and variance covariance matrix Xy 1 (f51, [31, 7\) is
applied to obtain the approximate confidence intervals of 31, 1and A. Thus, the 100(1-2x)% approximate
confidence intervals of 31, 31, and A are given by

B1Fzav/C11, B2Fzav/Cx, and A; Fzay/Cas,

respectively, where the elements Cq1, C2, and Cs3 are taken from the diagonal of X 1 ([31, By, 7\) and zy
is the percentile right-tail with probable of « standard normal distribution.

4. Bootstrap confidence intervals

The estimations of confidence intervals, bias, ect., can be easily obtained with the bootstrap technique.
Different types of bootstrap technique are available. The parametric bootstrap technique [7] and non-
parametric bootstrap technique [9] are the common types of bootstrap technique. In the following, we
expose to the parametric bootstrap algorithm that is adopted for obtaining interval bootstrap estimation,
the percentile bootstrap [8], and bootstrap-t [12], confidence intervals .

1 From equations (3.2), (3.3), and (3.4) and the original Type-II sample, (yi,01)<(y2,82) < --- <
(Y5, 85) < T < (Yj41, 6]+1) <o < (ym, §m ), the estimates 1, B2, and A can be obtained.

2 Based on the estimates (31, 32, and A and given prior values m and 7 in distributions (2.1) and (2.3),
generate independent bootstrap samples (y7,7)<(y;,0;) < --- < (y’f, 6}‘) <T< (y’fﬂ, 6’]‘“) < <
(Y Sin). S

3 Compute the bootstrap sample estimates (37, 35, and A* of 31, 32, and A as in step 1.

4 After repeating Steps 2 and 3 S times, then S different bootstrap samples are represented.

5 ForV* = (BT, B;, A) put the bootstrap sample estimates in assiding order (‘P]tm,‘if]i[z], .. .,‘PE[S} ), k=
1,2,3.

4.1. Percentile bootstrap confidence intervals (PBCls)
The cdf of ¥ is given by H(y) = P(‘Pi < y). Then ‘I’l’ifb oot = H~!(y) for any given y. The approximate
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bootstrap 100(1 —2x)% confidence interval of ‘I/;i is given by

|:q’l*<—b00tp (), \Aylt—bootp (I—oa)

4.2. Bootstrap-t confidence intervals (BTCI)
From the relation

~x i) 0
B L
(ka — k—k, 1:1,2,...,5, k:l/ 2/ 3/

Ak (1]
var (‘Pk )
*[S]

where ¥; = By, ¥, = B, ¥3 = A. From the the order statistics d);m, (Dzm,...,d)k , we define the
cumulative distribution H(y) = P(®} < y). For a given y, define

‘i]lt—boot-t = é[ + 4/ Var(él)Hfl(y).

Then 100(1 — 2e)% approximate confidence intervals of ¥y is given by

(\I]lt—boot—t (o), \Ay]t—boot-t (1—o) ) .

5. Monte Carlo simulations

The simulation study is built in this section, to compare and assess our developed theoretical results.
Some numerical experiments performed for sample of sizes n, the effective sample sizes m, accelerated
time 1, and model parameters (31, 31, A). We consider two cases separately.

(i) The model parameters (31, 31, A)=(0.1, 0.2, 1.5) and accelerate time T = (1.0, 3.0, 5.0).
(ii) The model parameters (31, 31, A)=(0.5, 0.7, 2.0) and accelerate time T = (0.5, 1.0, 1.5).

Simulation results are computed to compare the MLEs and bootstrap estimators, that mainly are
compared in terms of their mean and MSE. The confidence intervals are compared in terms of their mean
lengths (AL) and the probability coverage (CP). The results in this paper are computed with Mathematica
version 8 and reported in Tables 1-4.

Table 1: The mean estimates and MSEs for the parameters (31, 32,A) at (0.1,0.2,1.5).

MLE Bootstrap

T | (n,m) AVG MSE AVG MSE

P B2 A B1 P2 A P B2 A B1 P2 A
(30,15) 0.125 0.232 1532 | 0.0885 0.0952 0.5542 | 0.136 0.241 1.555 | 0.0954 0.1233 0.6622
(30,25) 0.121  0.239 1530 | 0.0754 0.0840 0.4129 | 0.130 0.232 1.541 | 0.0821 0.1109 0.5219
1.0 | (50,25) 0.119 0.232 1528 | 0.0749 0.0839 0.4091 | 0.131 0.230 1.543 | 0.0818 0.1080 0.5178
(50,40) 0.121 0.222 1526 | 0.0540 0.0814 0.3893 | 0.126 0.218 1.536 | 0.0742 0.0954 0.3295
(75,50) 0.116  0.219 1519 | 0.0519 0.0742 0.3860 | 0.122 0.216 1.524 | 0.0719 0.0900 0.3158
(30,15) 0.113 0.221 1.529 | 0.0864 0.0901 0.5472 | 0.132 0.233 1.545 | 0.0824 0.1198 0.6423
(30,25) 0.114 0.218 1.514 | 0.0812 0.0821 0.5265 | 0.129 0.228 1.548 | 0.0800 0.1107 0.6318
3.0 | (50,25) 0.121 0.214 1511 | 0.0801 0.0814 0.5249 | 0.130 0.219 1.543 | 0.0791 0.1088 0.5249
(50,40) 0.120 0.213 1.510 | 0.0741 0.0795 0.4795 | 0.132 0.221 1.540 | 0.0762 0.1047 0.5209
(75,50) 0.119 0.220 1511 | 0.0720 0.0766  0.4788 | 0.129 0.222 1.539 | 0.0701 0.1002 0.5144
(30,15) 0.131 0.242 1550 | 0.0987 0.1042 05987 | 0.154 0.261 1.560 | 0.0998 0.1252  0.6741
(30,25) 0.128 0.235 1542 | 0.0960 0.1011 0.5920 | 0.151 0.249 1.540 | 0.0961 0.1219 0.6041
5.0 | (50,25) 0.130 0.232 1535 | 0.0940 0.1002 0.5908 | 0.144 0.248 1.523 | 0.0920 0.1200 0.5642
(50,40) 0.128 0.226 1534 | 0.0796 0.0821 0.5007 | 0.140 0.236 1.521 | 0.0865 0.0989 0.4523
(75,50) 0.123 0.212 1520 | 0.0701 0.0741 0.452 0.131  0.200 1.509 | 0.0652 0.0974 0.4185
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Table 2: The AL and (CP) of MLE, PBCIs and PTClIs of 95% ClIs for the parameters (31, 32,A) at (0.1,0.2,1.5).

| (nm) MLE PBClIs PTCIs
B1 B2 A P1 B2 A 1 B2 A
(30,15) | 03954 05814 42145 | 04918 07124 52333 | 03690 05714  4.2092
(0.8%) (0.89) (0.90) | (0.88) (0.88) (0.87) | (0.90)  (091)  (0.89)
(30,25) | 03886 05790 42080 | 04900 07009 52301 | 03642 05650  4.2003
(0.89)  (090) (091) | (0.89) (0.90) (0.89) | (0.91)  (091)  (0.92)
Lo | G025 | 03870 05782 42083 | 04910 07004 52312 | 03641 05644 42001
0.88)  (091) (093) | (0.89) (091) (0.90) | (0.92)  (0.94)  (0.96)
(5040) | 0.3741 05700 42001 | 04880 0.6520 52210 | 0.3524 05498  4.0321
091)  (091)  (091) | (090) (092) (091) | (0.93)  (0.95)  (0.93)
(7550) | 03521 05421 40092 | 04690 06321 51213 | 03109 05321  4.0009
093)  (092) (096) | (091) (093) (093) | (0.92)  (0.94)  (0.94)
(30,15) | 03261 05351 39995 | 04521 0.6830 49800 | 0.3219 05314  3.9901
(0.89)  (090) (091) | (0.88) (0.87) (0.89) | (0.90)  (0.91)  (0.90)
(30,25) | 03199 05289 39874 | 04401 0.6723 49650 | 0.3188 05218  3.9841
(0.89) (091) (091) | (0.89) (090) (091) | (091)  (093)  (0.92)
S0 | B025) | 03180 05262 39849 | 04390 06700 49618 | 03152 05201 39822
090)  (092)  (091) | (0.90) (0.90) (0.92) | (0.93)  (0.93)  (0.96)
(5040) | 03074 05123 39709 | 04265 0.6601 49555 | 0.3100 05001  3.9650
091)  (093) (092) | (092) (091) (0.90) | (0.94)  (0.95)  (0.92)
(7550) | 03001 05088 39611 | 04202 0.6554 49501 | 02952 04129  3.9564
092)  (091) (094) | (091) (091) (091) | (0.93)  (0.94)  (0.94)
(30,15) | 04213 05992 42854 | 05214 08546 53695 | 0.38421 058219 4.2991
(0.87) (0.88) (0.88) | (0.88) (0.87) (0.89) | (0.89)  (0.90)  (0.89)
(30,25) | 04188 05940 42801 | 05178 08513 53665 | 0.3840 058201 4.2974
(0.89)  (090) (0.89) | (0.89) (0.89) (0.90) | (0.91)  (091)  (0.90)
5o | G025 | 04179 05932 42798 | 05162 08510 53666 | 03835 05820 42969
(090)  (090)  (0.90) | (091) (0.89) (0.90) | (0.92)  (091)  (0.92)
(5040) | 04112 05889 42752 | 05114 08490 53608 | 0.3800 05791  4.2911
091)  (092) (091) | (092) (0.90) (091) | (092)  (0.93)  (0.96)
(7550) | 04019 05812 42701 | 05100 08460 53542 | 03762 05745  4.2889
092) (092 (093) | (091) (091) (092) | (0.91)  (093)  (0.95)

Table 3: The mean estimates and MSEs for the parameters (31, 32,A) at (0.5,0.7,2.0).

MLE Bootstrap
T | (n,m) AVG MSE AVG MSE
Br B2 A P1 P2 A B1 Pa A B1 Pa A
(30,15) 0.532  0.746 2326 | 0.1423 0.2149 0.8642 | 0.556 0.779 2353 | 0.2145 0.2362 0.8891
(30,25) 0528 0.742 2219 | 0.1324 0.2084 0.8542 | 0.545 0.741 2311 | 0.2102 0.2318 0.8831
0.5 | (50,25) 0.525 0.639 2211 | 0.1315 0.2070 0.8533 | 0.540 0.733 2302 | 0.2092 0.2301  0.8802
(50,40) 0.521 0.636 2203 | 0.1153 0.2001 0.7362 | 0.533 0.728 2284 | 0.2042 0.2222  0.8741
(75,50) | 0519 0.627 2198 | 0.0987 0.1423 0.7105 | 0.522 0.725 2214 | 0.1441 0.2210 0.8524
(30,15) 0522 0732 2221 | 01012 0.2016 0.7521 | 0.5421 0.766 2.229 | 0.1458 0.2018 0.8258
(30,25) 0521 0.723 2202 | 0.1000 0.2009 0.7501 | 0.5407 0.742 2211 | 0.1400 0.1992 0.8211
1.0 | (50,25) 0519 0719 2213 | 0.0984 0.2004 0.7498 | 0.5399 0.733 2201 | 0.1328 0.1849 0.8011
(50,40) 0.512 0718 2210 | 0.0920 0.1842 0.6231 | 0.5302 0.731 2198 | 0.1142 0.1600 0.7012
(75,50) | 0510 0.714 2207 | 0.0911 0.1741 0.6124 | 05211 0.711 2177 | 0.1147 0.1548 0.6321
(30,15) 0.555 0.765 2342 | 0.1460 0.2189 0.8690 | 0.558 0799 2392 | 02177 0.2388  0.8911
(30,25) 0535 0.762 2238 | 0.1340 0.2095 0.8559 | 0.547 0743 2322 | 0.2121 0.2332  0.8852
1.5 | (50,25) 0.534 0.761 2236 | 0.1338 0.2092 0.8553 | 0.539 0.741 2320 | 0.2118 0.2323  0.8847
(50,40) 0.532  0.758 2.229 | 0.1300 0.2052  0.8539 | 0.536 0.730 2309 | 0.2111  0.2300  0.8813
(75,50) | 0524 0.744 2224 | 0.1142 0.1754 0.8501 | 0.529 0.719 2208 | 0.2006 0.2189  0.8610
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Table 4: The AL and (CP) of MLE, PBCIs and PTClIs of 95% ClIs for the parameters (31, 32,A) at (0.1,0.2,1.5).

MLE PBClIs PTClIs

T | (n,m)
B1 B2 A B1 B2 A 1 B2 A
(30,15) | 1.3951 19814 62143 | 15210 29012 6998 | 1.3854 19621  6.2009
(0.89)  (0.90) (0.90) | (0.88) (0.87)  (0.89) | (0.90)  (0.91)  (0.90)
(3025) | 13748 19621 52001 | 15128 28742 53965 | 1.3711 19598  5.0952
090) (091) (091) | (0.89) (0.90) (0.90) | (0.92)  (0.91)  (0.93)
o5 | 602 | 13722 19627 51854 | 15109 28733 53949 | 13712 19580 50934
091)  (0.89) (092) | (0.90) (0.90) (0.91) | (0.92)  (0.93)  (0.96)
(50,40) | 13511 1.9490 51611 | 15002 2.8554 53711 | 1.3518 19487 5.0799
092) (091) (092) | (092) (0.90) (0.91) | (0.94) (0.94)  (0.95)
(7550) | 13312 19385 51501 | 14854 2.8495 53621 | 1.3471 19400 5.0601
092)  (092) (092) | (092) (091) (0.92) | (0.92) (0.97)  (0.93)
(30,15) | 1.3900 19712 62095 | 15152 2.8541 69780 | 13756 19521 6.1247
(0.88) (091) (0.89) | (0.89) (0.89)  (0.90) | (0.91)  (0.91)  (0.91)
(3025) | 13701 19590 5.1852 | 15065 2.8700 53901 | 1.3623 19502 5.0821
090) (091) (091) | (0.89) (0.90) (0.90) | (0.92)  (0.91)  (0.93)
Lo | G025 | 13722 19582 51849 | 15058 28701 53889 | 13619 19501 50819
091)  (090) (092) | (091)  (0.90) (0.91) | (0.93) (0.93)  (0.94)
(50,40) | 13690 1.9501 5.1780 | 1.4985 2.8650 53801 | 1.3523 19458 5.0713
092)  (091)  (092) | (092) (0.90) (0.93) | (0.93) (0.94)  (0.97)
(7550) | 13574 19482 51645 | 14750 2.8590 53774 | 1.3451 19362 4.9921
093) (092) (092) | (091) (091)  (0.94) | (0.96) (0.94)  (0.93)
(30,15) | 1.3988 19862 62170 | 15243 29060 7.1129 | 1.3882 19654 6.2032
(0.88)  (0.89) (0.90) | (0.88) (0.87)  (0.88) | (0.89)  (0.90)  (0.90)
(3025) | 13775 19654 52039 | 15143 28767 53980 | 13733 19621  5.0984
(0.89)  (090) (091) | (0.89) (0.91) (0.91) | (0.91) (0.91)  (0.92)
L5 | G029 | 13772 19644 52034 | 15140 28759 53969 | 13729 19620 50979
092)  (090) (092) | (0.90) (0.90) (0.90) | (0.93)  (0.93)  (0.94)
(50,40) | 13522 1.9584 51629 | 15040 2.8570 53746 | 13553 19521 5.0814
090) (091) (093) | (092) (091) (0.91) | (0.92) (0.96)  (0.95)
(7550) | 13322 19399 51536 | 14878 28511 53650 | 1.3497 19425 5.0633
091)  (092) (092) | (093) (091) (091) | (0.93) (0.92)  (0.92)

6. Conclusions

In this paper, we have discussed the Type-II censoring competing risks model in the presence of par-
tially step stress ALT. Specially, we have proposed that the latent failure times under the competing risks
follow independent Rayleigh distributions. The MLEs of the unknown model parameters are derived.
We proposed the asymptotic distribution of MLEs and bootstrap method for constructing CIs. From the
results in Tables 1-4 of the simulation study, some points are observed as follows.

(1): From the Tables 2 and 4, we observe that PTCIs performs the best as its CIs has a small length and
coverage probabilities are much closer to the nominal levels than ACIs and PBClIs.
(2): From the Tables 1 and 2, we observe the point estimate of MLE performs the best than bootstrap

estimates.

(3): From all tables, we observe that results for the value of accelerate change time T performs the best for
the value of T close to distribution mean.
(4): For the effective m effect sample size increases, the MSEs and the average length of different estima-
tors are reduced.
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