
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 12 (2019), 230–238

Research Article

ISSN: 2008-1898

Journal Homepage: www.isr-publications.com/jnsa

Statistical analysis of Rayleigh competing risks model based
on partially step stress Type-II censoring samples

Abdullah M. Almarashia,∗, Ali Algarnia, G. A. Abd-Elmougodb, Sayed Abdel-Khalekc

aStatistic Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
bMathematics department, Faculty of Science, Taif University, Taif, Saudi Arabia.
cMathematics department, Faculty of Science, Sohag University, Sohag, Egypt.

Abstract
This paper, discusses the problem of partially step-stress ALTs (accelerated life tests) form Rayleigh competing risks model.

Type-II censored scheme is used in obtaining the observed censoring data. The method of MLE (maximum likelihood estimation)
of the model parameters for point and approximate confidence intervals are considered. Also, bootstrap confidence intervals
of model parameters are discussed. Simulation study is adopted to assess and compare our proposed method. Finally, some
comment to illustrate the behavior of numerical results.
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1. Introduction

The partially step-stress ALTs is a special case of ALTs, in which the experimenter allows to change
the stress levels during the experiment. The stress levels will be changed at prior pre-fixed time . The data
will be collected from such a partial step-stress ALTs, may then will be used to estimate the underlying
model of failure times under use stress level. Several works are presented in this context, Balakrishnan
[3], Balakrishnan et al. [5] and Balakrishnan and Xie [4]. The optimal step-stress test under discussed by
Guan and Tang [10] and Lin and Chou [15]. Recently, inference of step-stress model presented by David
and Kundu [13] and Soliman et all [19]. In a different area of reliable statistics, failure time of the units
associated with one or more fatal risk factor. It is necessary to assess one risk factors with respect to other
risk factor. This model is called competing risks model, in which observation is given in the bivariate form,
time to failure and it is the cause of failure, some investigated the competing risks models in Crowder
[6]. Different work exposed to lifetime distributions, with a competing risk model for example, Park [16],
Kunduand Sarhan [14], Sarhan [17], Sarhan et al. [18], and Bakobanand Abd-Elmougod [2]. In reliability
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experiments, for consideration of time and cost the censoring is common phenomenon. Type-I censoring
as well as Type-II censoring are a common censoring schemes in life test experiments. The experiment
in Type-I censoring terminates at a pre-fixed time point, but the experiment in Type-II censoring at a
pre-fixed number of failure.

The competing risks model with two different risk factors under Type-II censoring sample is described
as follows. Suppose that, the life test experiment beginning with independent units, each of time and
cause of failure (Ti;m,n, δi) where δi ∈ {1, 2} has recorded until (Tm;m,n, δi), where m 6 n. The observed
sample (Ti;m,n, δi), i = 1, 2, . . . ,m are called Type-II competing risks sample.

The likelihood function of the observed sample (Ti;m,n, δi), i = 1, 2, . . . ,m, is given by

L (Θ|T) = C

m∏
i=1

[h1(ti;m,n)]
η(δi=1) [h2(ti;m,n)]

η(δi=2) × [S1(tm;m,n)S2(tmm,n)]
(n−m) ,

0 < t1;m,n < t2;m,n < · · · < tm;m,n <∞,

(1.1)

where C = n!
(n−m)! , S(.) = 1 − F(.), h =

f(.)
F(.) , Θ is the model parameters vector, and

η(δi = j) =

{
1, δi = j,
2, δi 6= 2.

Our objective, is analyzing the competing risks model of partially step-stress ALTs under Type-II censoring
sample from Rayleigh lifetime random variable. The estimation procedures with the ML method of the
model parameters and accelerated factor is discussed. Also, the two, approximate information matrix
and bootstrap techniques are used to construct different confidence intervals of the Rayleigh parameters
and accelerated factor. The performances of the point estimates are measured in terms of mean estimate
and MSE (mean squared error) and interval estimates measured in terms of mean length and probability
coverage through Monte Carlo simulation .

This paper is described as, the model formulation of the partially step-stress ALTs under Type-II
censoring and independently Rayleigh lifetime random variables of the risk factors in Section 2. The MLEs
of Rayleigh parameters and accelerated factor as well as asymptotic confidence intervals, are adopted in
Section 3. Also, in Section 4, we presented a parametric bootstrap confidence intervals. In Section 5, the
quality of points and intervals estimations are measured in terms of MSE and PC (probability coverage)
via Monte Carlo study. Some comments are presented in Section 6.

2. Model formulation and notation

Under the assumption that, there are only two causes of failure are exist. We describe different
notations we are going to use in this paper.

For ith unit, the lifetime random variable is presented byTi.
For ith unit and the cause j, j = 1, 2, the lifetime random variable is presented by Tij.
The cdf (cumulative distribution function) of Ti is presented by: F(.).
The pdf (probability density function) of F(.) is presented by f(.).
The cdf of Tij is presented by Fj(.).
The pdf of Fij(.) is presented by fj(.).
The survival function of Tij is presented by Sj(.).
For ith unit failure the cause of failure has the indicator presented by δi.
Let n identical units are tested under the use condition and each of failure times and risk factor caused

failure are recorded. At the prior fixed time τ, the units are tested under stress condition, then the test
runs until a prior fixed number of failures m is observed. Under consideration that, the two cause of
failure and the failure time has an independent Rayleigh distribution. To simplify the notation we will
use henceforth Ti instead of Ti:m:n, i = 1, 2, . . . ,m. The model studied in the paper satisfies the following
assumptions.
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I) The lifetime of the unit is denoted as Ti, i = 1, 2, . . . ,m. The time at which the unit i fails due to cause j
is Tji, and Ti = min{T1i, T2i}.
II) The distribution of the random variable Tji is is Rayleigh distribution with scale βj, j = 1, 2 and
i = 1, 2, · · · ,m. That is, the pdf and cdf, given by

fj1(t) = 2βjte−βjt
2
, i = 1, 2., t > 0, βj > 0, Fj1(t) = 1 − e−

βjt
2

. (2.1)

The corresponding reliability and failure rate functions of this distribution at some t, are given, respec-
tively by

Sj1(t) = e
−
βjt

2

, t > 0, hj1(t) = 2βjt, t > 0.

A wide applications of the Rayleigh distribution, is in communication engineering, and several applica-
tions in life tests experiment. Rayleigh distribution is considered as a special case of the Weibull distri-
bution. Also, for more about life testing of electrovacum devices and recently, more information about
Rayleigh lifetime distribution see Al-Matrafi and Abd-Elmougod [1].
III) The shorten from the lifetime of test units is appeared to multiply the remaining lifetime of the unit
by the inverse of the accelerated factor. The total lifetime of a test unit, denoted by Y, defined under, use
and accelerated conditions. So, the lifetime of the unit in partially step-stress ALTs, is define by

Y =

{
T , T < τ,
τ+ λ−1(T − τ), T > τ,

where the parameter λ present the accelerated factor, τ is the time at which stress is changed to higher
level and the lifetime of unit T computed at use condition. Under consideration that Rayleigh lifetime
distribution of units with parameters βj. Then, lifetime Y of an unit has the pdf presented by.

fj(y) =


fj2(y), y > τ,,
fj1(y), 0 < y 6 τ ,
0, y < 0

(2.2)

where
fj2(y) = 2λβj(τ+ λ(y− τ))e−βj(τ+λ(y−τ))

2
, (2.3)

and fj1(y) is given by (2.1).
(2.3) is obtained from (2.1) after transformation variable from (1.1) and (2.2). The cdf, reliability

function Sj2(y), and hazard rate function hj2(y), are respectively presented by

Fj2(x)=1 − e−βj(τ+λ(y−τ))
2
, Sj2(t) = e

−βj(τ+λ(y−τ))
2
, and hj2(t) = 2λβj(τ+ λ(y− τ)).

The total test is terminated respected to Type-II censoring when the number of failure is reached tom < n.
The observed values of the total lifetime Y are (y1, δ1) < (y2, δ2) < · · · < (yJ, δJ) < τ < (yJ+1, δJ+1) < · · · <
(ym, δm), where J is the number of units failed at normal conditions and m− J at accelerated conditions.
The likelihood function of (y1, δ1) < (y2, δ2) < · · · < (yJ, δJ) < τ < (yJ+1, δJ+1) < · · · < (ym, δm) with
consideration that τ < ym, is given by

L (Θ|Y) = C

J∏
i=1

[h11(yi)]
I(δi=1) [h21(yi)]

I(δi=2)
m∏

i=J+1

[h12(ti)]
I(δi=1) [h22(ti)]

I(δi=2)

× [S21(ym)S22(ym)](n−m) ,
0 < (y1, δ1) < (y2, δ2) < ... < (yJ, δJ) < τ < (yJ+1, δJ+1) < ... < (ym, δm) <∞,

(2.4)

where C is given in (1.1).
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3. Maximum likelihood estimation

Let the original sample (y1, δ1) < (y2, δ2) < · · · < (yJ, δJ) < τ < (yJ+1, δJ+1) < · · · < (ym, δm) be
Rayleigh random variables with parameters βj for j = 1, 2. The joint likelihood function of (2.4), reduces
to the following function

L
(
λ,β1,β2|y

)
= βm1

1 βm2
2 λm−Je−(n−m)(β1+β1)(τ+λ(ym−τ))2

J∏
i=1

yi

m∏
i=J+1

(τ+ λ(yi − τ)),

where m1 and m2 are the number of units failure with cause 1 and 2, respectively. The log-likelihood
function is written as follows,

`
(
λ,β1,β2|y

)
= m1logβ1 +m2logβ2 + (m− J)logλ+

J∑
i=1

logyi +
m∑

i=J+1

log(τ+ λ(yi − τ))

− (n−m)(β1 +β1)(τ+ λ(ym − τ))2.

(3.1)

Equations (3.1) reduce to, after taken the first partial derivatives to β1 and β2, to the likelihood equations
presented by

∂`
(
λ,β1,β2|y

)
∂β1

=
m1

β1
− (n−m)(τ+ λ(ym − τ))2 = 0, (3.2)

∂`
(
λ,β1,β2|y

)
∂β2

=
m2

β2
− (n−m)(τ+ λ(ym − τ))2 = 0, (3.3)

hence from (3.2) and (3.3) we obtain the ML estimate of β1 and β2 as

β̂1(λ) =
m1

(n−m)(τ+ λ(ym − τ))2 ,

β̂2(λ) =
m2

(n−m)(τ+ λ(ym − τ))2 .

Also the derivatives of (3.1) to λ reduce to

∂`
(
λ,β1,β2|y

)
∂λ

=
(m− J)

λ
+

m∑
i=J+1

(yi − τ)

τ+ λ(yi − τ)
− 2(n−m)(β1 +β1)(ym − τ)(τ+ λ(ym − τ)) = 0. (3.4)

From (3.4) and the value of parameters in (3.2) and (3.3), we obtain the single nonlinear equation of λ, as
follows

(m− J)

λ
+

m∑
i=J+1

(yi − τ)

τ+ λ(yi − τ)
− 2(m1 +m2)

(ym − τ)

(τ+ λ(ym − τ))
= 0. (3.5)

Using (3.2), (3.3), and (3.1), we obtain

g(λ) = m1log
[

m1

(n−m)(τ+ λ(ym − τ))2

]
+m2log

[
m2

(n−m)(τ+ λ(ym − τ))2

]
+ (m− J)logλ+

J∑
i=1

logyi +
m∑

i=J+1

log(τ+ λ(yi − τ)) − (m1 +m2).
(3.6)

Therefore, the MLE λ̂ of λ, from (3.5) with respect to λ. Using Newton Raphson method or the same
arguments in Gupta and Kundu [11] with initial point obtained from the plot of profile log-likelihood
function given in (3.6).

3.1. Approximate confidence intervals
From the log-likelihood function given in (3.1) after taking the second derivatives, we obtain the
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following equations
∂2L(λ,β1,β2|y)

∂β2
1

= −m1
β2

1
, (3.7)

∂2L(λ,β1,β2|y)
∂β2

2
= −m2

β2
2

, (3.8)

∂2L(λ,β1,β2|y)
∂λ2 =

−(m− J)

λ2 −

m∑
i=J+1

(yi − τ)
2

(τ+ λ(yi − τ))
2 − 2(n−m)(β1 +β1)(ym − τ)2, (3.9)

∂2L(λ,β1,β2|y)
∂β1∂β2

=
∂2L(λ,β1,β2|y)

∂β2∂β1
= 0, (3.10)

∂2L(λ,β1,β2|y)
∂β1∂λ

=
∂2L(λ,β1,β2|y)

∂λ∂β1
= −2(n−m)(ym − τ)(τ+ λ(ym − τ)) (3.11)

with some mild regularity conditions the MLEs of parameters β1, β1 and λ is approximately Gaussian
distribution with mean (β1, β1, λ) and covariance matrix Σ−1 (β1, β1, λ) where Σ (β1, β1, λ) is the expec-
tation of negative equations (3.7)-(3.11). Practice, Σ−1 (β1, β1, λ) is estimated by Σ−1

0

(
β̂1, β̂1, λ̂

)
where

Σ0 (β1, β1, λ) is the observed information matrix with inverse, given by

Σ−1
0 (β̂1, β̂1, λ̂) =


−
∂2L(λ,β1,β2|y)

∂β2
1

−
∂2L(λ,β1,β2|y)

∂β1∂β2
−
∂2L(λ,β1,β2|y)

∂β1∂λ

−
∂2L(λ,β1,β2|y)
∂β2∂β1 −

∂2L(λ,β1,β2|y)
∂β2

2
−
∂2L(λ,β1,β2|y)

∂β2∂λ

−
∂2L(λ,β1,β2|y)

∂λ∂β1 −
∂2L(λ,β1,β2|y)

∂λ∂β2
−
∂2L(λ,β1,β2|yy)

∂λ2
2


−1

(β̂1, β̂1, λ̂)

.

Hence, the Gaussian approximation is used as follows

(β̂1, β̂1, λ̂)→ N
(
(β1, β1, λ),Σ−1

0 (β̂1, β̂1, λ̂)
)

,

The Gaussian distributed with mean (β1, β1, λ) and variance covariance matrix Σ−1
0

(
β̂1, β̂1, λ̂

)
is

applied to obtain the approximate confidence intervals of β1, β1and λ. Thus, the 100(1-2α)% approximate
confidence intervals of β1, β1, and λ are given by

β̂1 ∓ zα
√
C11, β̂2 ∓ zα

√
C22, and λ̂1 ∓ zα

√
C33,

respectively, where the elements C11, C22, and C33 are taken from the diagonal of Σ−1
0

(
β̂1, β̂1, λ̂

)
and zα

is the percentile right-tail with probable of α standard normal distribution.

4. Bootstrap confidence intervals

The estimations of confidence intervals, bias, ect., can be easily obtained with the bootstrap technique.
Different types of bootstrap technique are available. The parametric bootstrap technique [7] and non-
parametric bootstrap technique [9] are the common types of bootstrap technique. In the following, we
expose to the parametric bootstrap algorithm that is adopted for obtaining interval bootstrap estimation,
the percentile bootstrap [8], and bootstrap-t [12], confidence intervals .

1 From equations (3.2), (3.3), and (3.4) and the original Type-II sample, (y1, δ1)<(y2, δ2) < · · · <
(yJ, δJ) < τ < (yJ+1, δJ+1) < · · · < (ym, δm), the estimates β̂1, β̂2, and λ̂ can be obtained.

2 Based on the estimates β̂1, β̂2, and λ̂ and given prior values m and τ in distributions (2.1) and (2.3),
generate independent bootstrap samples (y∗1 , δ∗1)<(y

∗
2 , δ∗2) < · · · < (y∗J , δ

∗
J) < τ < (y∗J+1, δ∗J+1) < · · · <

(y∗m, δ∗m).
3 Compute the bootstrap sample estimates β̂∗

1 , β̂∗
2 , and λ̂∗ of β̂1, β̂2, and λ̂ as in step 1.

4 After repeating Steps 2 and 3 S times, then S different bootstrap samples are represented.
5 For Ψ∗=(β̂∗

1 , β̂∗
2 , λ̂∗) put the bootstrap sample estimates in assiding order (Ψ∗[1]

k ,Ψ∗[2]
k , . . . ,Ψ∗[S]

k ), k =
1, 2, 3.

4.1. Percentile bootstrap confidence intervals (PBCIs)
The cdf of Ψ∗

k is given byH(y) = P(Ψ̂∗
k 6 y). Then Ψ̂∗

k−boot = H
−1(y) for any given y. The approximate
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bootstrap 100(1 − 2α)% confidence interval of Ψ̂∗
k is given by[

Ψ̂∗
k−bootp(α), Ψ̂

∗
k−bootp(1 −α)

]
.

4.2. Bootstrap-t confidence intervals (BTCI)
From the relation

Φ
∗[j]
k =

Ψ̂
∗[i]
k − Ψ̂k√

var
(
Ψ̂
∗[i]
k

) , i = 1, 2, . . . ,S, k = 1, 2, 3,

where Ψ̂1 = β̂1, Ψ̂2 = β̂2, Ψ̂3 = λ̂. From the the order statistics Φ∗[1]
k , Φ∗[2]

k , . . . ,Φ∗[S]
k , we define the

cumulative distribution H(y) = P(Φ∗
k < y). For a given y, define

Ψ̂∗
k−boot-t = θ̂l +

√
Var(θ̂l)H−1(y).

Then 100(1 − 2α)% approximate confidence intervals of Ψ̂k is given by(
Ψ̂∗
k−boot-t(α), Ψ̂

∗
k−boot-t(1 −α)

)
.

5. Monte Carlo simulations

The simulation study is built in this section, to compare and assess our developed theoretical results.
Some numerical experiments performed for sample of sizes n, the effective sample sizes m, accelerated
time τ, and model parameters (β1, β1, λ). We consider two cases separately.

(i) The model parameters (β1, β1, λ)=(0.1, 0.2, 1.5) and accelerate time τ = (1.0, 3.0, 5.0).
(ii) The model parameters (β1, β1, λ)=(0.5, 0.7, 2.0) and accelerate time τ = (0.5, 1.0, 1.5).

Simulation results are computed to compare the MLEs and bootstrap estimators, that mainly are
compared in terms of their mean and MSE. The confidence intervals are compared in terms of their mean
lengths (AL) and the probability coverage (CP). The results in this paper are computed with Mathematica
version 8 and reported in Tables 1-4.

Table 1: The mean estimates and MSEs for the parameters (β1,β2, λ) at (0.1, 0.2, 1.5).

τ (n,m)
MLE Bootstrap

AVG MSE AVG MSE
β1 β2 λ β1 β2 λ β1 β2 λ β1 β2 λ

1.0

(30,15) 0.125 0.232 1.532 0.0885 0.0952 0.5542 0.136 0.241 1.555 0.0954 0.1233 0.6622
(30,25) 0.121 0.239 1.530 0.0754 0.0840 0.4129 0.130 0.232 1.541 0.0821 0.1109 0.5219
(50,25) 0.119 0.232 1.528 0.0749 0.0839 0.4091 0.131 0.230 1.543 0.0818 0.1080 0.5178
(50,40) 0.121 0.222 1.526 0.0540 0.0814 0.3893 0.126 0.218 1.536 0.0742 0.0954 0.3295
(75,50) 0.116 0.219 1.519 0.0519 0.0742 0.3860 0.122 0.216 1.524 0.0719 0.0900 0.3158

3.0

(30,15) 0.113 0.221 1.529 0.0864 0.0901 0.5472 0.132 0.233 1.545 0.0824 0.1198 0.6423
(30,25) 0.114 0.218 1.514 0.0812 0.0821 0.5265 0.129 0.228 1.548 0.0800 0.1107 0.6318
(50,25) 0.121 0.214 1.511 0.0801 0.0814 0.5249 0.130 0.219 1.543 0.0791 0.1088 0.5249
(50,40) 0.120 0.213 1.510 0.0741 0.0795 0.4795 0.132 0.221 1.540 0.0762 0.1047 0.5209
(75,50) 0.119 0.220 1.511 0.0720 0.0766 0.4788 0.129 0.222 1.539 0.0701 0.1002 0.5144

5.0

(30,15) 0.131 0.242 1.550 0.0987 0.1042 0.5987 0.154 0.261 1.560 0.0998 0.1252 0.6741
(30,25) 0.128 0.235 1.542 0.0960 0.1011 0.5920 0.151 0.249 1.540 0.0961 0.1219 0.6041
(50,25) 0.130 0.232 1.535 0.0940 0.1002 0.5908 0.144 0.248 1.523 0.0920 0.1200 0.5642
(50,40) 0.128 0.226 1.534 0.0796 0.0821 0.5007 0.140 0.236 1.521 0.0865 0.0989 0.4523
(75,50) 0.123 0.212 1.520 0.0701 0.0741 0.452 0.131 0.200 1.509 0.0652 0.0974 0.4185
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Table 2: The AL and (CP) of MLE, PBCIs and PTCIs of 95% CIs for the parameters (β1,β2, λ) at (0.1, 0.2, 1.5).

τ (n,m)
MLE PBCIs PTCIs

β1 β2 λ β1 β2 λ β1 β2 λ

1.0

(30,15) 0.3954 0.5814 4.2145 0.4918 0.7124 5.2333 0.3690 0.5714 4.2092
(0.88) (0.89) (0.90) (0.88) (0.88) (0.87) (0.90) (0.91) (0.89)

(30,25) 0.3886 0.5790 4.2080 0.4900 0.7009 5.2301 0.3642 0.5650 4.2003
(0.89) (0.90) (0.91) (0.89) (0.90) (0.89) (0.91) (0.91) (0.92)

(50,25) 0.3870 0.5782 4.2083 0.4910 0.7004 5.2312 0.3641 0.5644 4.2001
(0.88) (0.91) (0.93) (0.89) (0.91) (0.90) (0.92) (0.94) (0.96)

(50,40) 0.3741 0.5700 4.2001 0.4880 0.6520 5.2210 0.3524 0.5498 4.0321
(0.91) (0.91) (0.91) (0.90) (0.92) (0.91) (0.93) (0.95) (0.93)

(75,50) 0.3521 0.5421 4.0092 0.4690 0.6321 5.1213 0.3109 0.5321 4.0009
(0.93) (0.92) (0.96) (0.91) (0.93) (0.93) (0.92) (0.94) (0.94)

3.0

(30,15) 0.3261 0.5351 3.9995 0.4521 0.6830 4.9800 0.3219 0.5314 3.9901
(0.89) (0.90) (0.91) (0.88) (0.87) (0.89) (0.90) (0.91) (0.90)

(30,25) 0.3199 0.5289 3.9874 0.4401 0.6723 4.9650 0.3188 0.5218 3.9841
(0.89) (0.91) (0.91) (0.89) (0.90) (0.91) (0.91) (0.93) (0.92)

(50,25) 0.3180 0.5262 3.9849 0.4390 0.6700 4.9618 0.3152 0.5201 3.9822
(0.90) (0.92) (0.91) (0.90) (0.90) (0.92) (0.93) (0.93) (0.96)

(50,40) 0.3074 0.5123 3.9709 0.4265 0.6601 4.9555 0.3100 0.5001 3.9650
(0.91) (0.93) (0.92) (0.92) (0.91) (0.90) (0.94) (0.95) (0.92)

(75,50) 0.3001 0.5088 3.9611 0.4202 0.6554 4.9501 0.2952 0.4129 3.9564
(0.92) (0.91) (0.94) (0.91) (0.91) (0.91) (0.93) (0.94) (0.94)

5.0

(30,15) 0.4213 0.5992 4.2854 0.5214 0.8546 5.3695 0.38421 0.58219 4.2991
(0.87) (0.88) (0.88) (0.88) (0.87) (0.89) (0.89) (0.90) (0.89)

(30,25) 0.4188 0.5940 4.2801 0.5178 0.8513 5.3665 0.3840 0.58201 4.2974
(0.89) (0.90) (0.89) (0.89) (0.89) (0.90) (0.91) (0.91) (0.90)

(50,25) 0.4179 0.5932 4.2798 0.5162 0.8510 5.3666 0.3835 0.5820 4.2969
(0.90) (0.90) (0.90) (0.91) (0.89) (0.90) (0.92) (0.91) (0.92)

(50,40) 0.4112 0.5889 4.2752 0.5114 0.8490 5.3608 0.3800 0.5791 4.2911
(0.91) (0.92) (0.91) (0.92) (0.90) (0.91) (0.92) (0.93) (0.96)

(75,50) 0.4019 0.5812 4.2701 0.5100 0.8460 5.3542 0.3762 0.5745 4.2889
(0.92) (0.92) (0.93) (0.91) (0.91) (0.92) (0.91) (0.93) (0.95)

Table 3: The mean estimates and MSEs for the parameters (β1,β2, λ) at (0.5, 0.7, 2.0).

τ (n,m)
MLE Bootstrap

AVG MSE AVG MSE
β1 β2 λ β1 β2 λ β1 β2 λ β1 β2 λ

0.5

(30,15) 0.532 0.746 2.326 0.1423 0.2149 0.8642 0.556 0.779 2.353 0.2145 0.2362 0.8891
(30,25) 0.528 0.742 2.219 0.1324 0.2084 0.8542 0.545 0.741 2.311 0.2102 0.2318 0.8831
(50,25) 0.525 0.639 2.211 0.1315 0.2070 0.8533 0.540 0.733 2.302 0.2092 0.2301 0.8802
(50,40) 0.521 0.636 2.203 0.1153 0.2001 0.7362 0.533 0.728 2.284 0.2042 0.2222 0.8741
(75,50) 0.519 0.627 2.198 0.0987 0.1423 0.7105 0.522 0.725 2.214 0.1441 0.2210 0.8524

1.0

(30,15) 0.522 0.732 2.221 0.1012 0.2016 0.7521 0.5421 0.766 2.229 0.1458 0.2018 0.8258
(30,25) 0.521 0.723 2.202 0.1000 0.2009 0.7501 0.5407 0.742 2.211 0.1400 0.1992 0.8211
(50,25) 0.519 0.719 2.213 0.0984 0.2004 0.7498 0.5399 0.733 2.201 0.1328 0.1849 0.8011
(50,40) 0.512 0.718 2.210 0.0920 0.1842 0.6231 0.5302 0.731 2.198 0.1142 0.1600 0.7012
(75,50) 0.510 0.714 2.207 0.0911 0.1741 0.6124 0.5211 0.711 2.177 0.1147 0.1548 0.6321

1.5

(30,15) 0.555 0.765 2.342 0.1460 0.2189 0.8690 0.558 0.799 2.392 0.2177 0.2388 0.8911
(30,25) 0.535 0.762 2.238 0.1340 0.2095 0.8559 0.547 0.743 2.322 0.2121 0.2332 0.8852
(50,25) 0.534 0.761 2.236 0.1338 0.2092 0.8553 0.539 0.741 2.320 0.2118 0.2323 0.8847
(50,40) 0.532 0.758 2.229 0.1300 0.2052 0.8539 0.536 0.730 2.309 0.2111 0.2300 0.8813
(75,50) 0.524 0.744 2.224 0.1142 0.1754 0.8501 0.529 0.719 2.208 0.2006 0.2189 0.8610
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Table 4: The AL and (CP) of MLE, PBCIs and PTCIs of 95% CIs for the parameters (β1,β2, λ) at (0.1, 0.2, 1.5).

τ (n,m)
MLE PBCIs PTCIs

β1 β2 λ β1 β2 λ β1 β2 λ

0.5

(30,15) 1.3951 1.9814 6.2143 1.5210 2.9012 6.998 1.3854 1.9621 6.2009
(0.89) (0.90) (0.90) (0.88) (0.87) (0.89) (0.90) (0.91) (0.90)

(30,25) 1.3748 1.9621 5.2001 1.5128 2.8742 5.3965 1.3711 1.9598 5.0952
(0.90) (0.91) (0.91) (0.89) (0.90) (0.90) (0.92) (0.91) (0.93)

(50,25) 1.3722 1.9627 5.1854 1.5109 2.8733 5.3949 1.3712 1.9580 5.0934
(0.91) (0.89) (0.92) (0.90) (0.90) (0.91) (0.92) (0.93) (0.96)

(50,40) 1.3511 1.9490 5.1611 1.5002 2.8554 5.3711 1.3518 1.9487 5.0799
(0.92) (0.91) (0.92) (0.92) (0.90) (0.91) (0.94) (0.94) (0.95)

(75,50) 1.3312 1.9385 5.1501 1.4854 2.8495 5.3621 1.3471 1.9400 5.0601
(0.92) (0.92) (0.92) (0.92) (0.91) (0.92) (0.92) (0.97) (0.93)

1.0

(30,15) 1.3900 1.9712 6.2095 1.5152 2.8541 6.9780 1.3756 1.9521 6.1247
(0.88) (0.91) (0.89) (0.89) (0.89) (0.90) (0.91) (0.91) (0.91)

(30,25) 1.3701 1.9590 5.1852 1.5065 2.8700 5.3901 1.3623 1.9502 5.0821
(0.90) (0.91) (0.91) (0.89) (0.90) (0.90) (0.92) (0.91) (0.93)

(50,25) 1.3722 1.9582 5.1849 1.5058 2.8701 5.3889 1.3619 1.9501 5.0819
(0.91) (0.90) (0.92) (0.91) (0.90) (0.91) (0.93) (0.93) (0.94)

(50,40) 1.3690 1.9501 5.1780 1.4985 2.8650 5.3801 1.3523 1.9458 5.0713
(0.92) (0.91) (0.92) (0.92) (0.90) (0.93) (0.93) (0.94) (0.97)

(75,50) 1.3574 1.9482 5.1645 1.4750 2.8590 5.3774 1.3451 1.9362 4.9921
(0.93) (0.92) (0.92) (0.91) (0.91) (0.94) (0.96) (0.94) (0.93)

1.5

(30,15) 1.3988 1.9862 6.2170 1.5243 2.9060 7.1129 1.3882 1.9654 6.2032
(0.88) (0.89) (0.90) (0.88) (0.87) (0.88) (0.89) (0.90) (0.90)

(30,25) 1.3775 1.9654 5.2039 1.5143 2.8767 5.3980 1.3733 1.9621 5.0984
(0.89) (0.90) (0.91) (0.89) (0.91) (0.91) (0.91) (0.91) (0.92)

(50,25) 1.3772 1.9644 5.2034 1.5140 2.8759 5.3969 1.3729 1.9620 5.0979
(0.92) (0.90) (0.92) (0.90) (0.90) (0.90) (0.93) (0.93) (0.94)

(50,40) 1.3522 1.9584 5.1629 1.5040 2.8570 5.3746 1.3553 1.9521 5.0814
(0.90) (0.91) (0.93) (0.92) (0.91) (0.91) (0.92) (0.96) (0.95)

(75,50) 1.3322 1.9399 5.1536 1.4878 2.8511 5.3650 1.3497 1.9425 5.0633
(0.91) (0.92) (0.92) (0.93) (0.91) (0.91) (0.93) (0.92) (0.92)

6. Conclusions

In this paper, we have discussed the Type-II censoring competing risks model in the presence of par-
tially step stress ALT. Specially, we have proposed that the latent failure times under the competing risks
follow independent Rayleigh distributions. The MLEs of the unknown model parameters are derived.
We proposed the asymptotic distribution of MLEs and bootstrap method for constructing CIs. From the
results in Tables 1-4 of the simulation study, some points are observed as follows.

(1): From the Tables 2 and 4, we observe that PTCIs performs the best as its CIs has a small length and
coverage probabilities are much closer to the nominal levels than ACIs and PBCIs.

(2): From the Tables 1 and 2, we observe the point estimate of MLE performs the best than bootstrap
estimates.

(3): From all tables, we observe that results for the value of accelerate change time τ performs the best for
the value of τ close to distribution mean.

(4): For the effective m effect sample size increases, the MSEs and the average length of different estima-
tors are reduced.
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