Fixed point theorems on generalized metric space endowed with graph

1071
Downloads

1066
Views
Authors
Tayyab Kamran
 Department of Mathematics, QuaidiAzam University, Islamabad, Pakistan.
Mihai Postolache
 Department of Mathematics and Informatics, University Politehnica of Bucharest, 060042 Bucharest, Romania.
Fahimuddin
 Department of Mathematics, QuaidiAzam University, Islamabad, Pakistan.
Muhammad Usman Ali
 Department of Sciences and Humanities, National University of Computer and Emerging Sciences (FAST), H11/4 Islamabad, Pakistan.
Abstract
In this paper, we prove some fixed point theorems for mappings of generalized metric space endowed
with graph. We also construct examples to support our results.
Keywords
 Generalized metric space
 GContraction
 Gcontinuity.
References
[1] F. Bojor, Fixed point of \(\phi\)contraction in metric spaces endowed with a graph, An. Univ. Craiova Ser. Mat. Inform., 37 (2010), 8592.
[2] A. Bucur, L. Guran, A. Petrusel, Fixed points for multivalued operators on a set endowed with vectorvalued metrics and applications, Fixed Point Theory, 10 (2009), 1934.
[3] A.D. Filip, A. Petrusel, Fixed point theorems on spaces endowed with vectorvalued metrics, Fixed Point Theory Appl., 2010 (2010), 15 pages.
[4] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc., 136 (2008), 13591373.
[5] T. Kamran, M. Samreen, N. Shahzad, Probabilistic Gcontractions, Fixed Point Theory Appl., 2013 (2013), 14 pages.
[6] D. O'Regan, N. Shahzad, R. P. Agarwal, Fixed Point Theory for Generalized Contractive Maps on Spaces with VectorValued Metrics, Fixed Point Theory Appl., 6 (2007), 143149.
[7] A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pribli. Metod. Reen. Differencial. Uravnen. Vyp., 2 (1964), 115134.
[8] I. A. Rus, Principles and Applications of the Fixed Point Theory, Dacia, ClujNapoca, Romania, (1979).
[9] M. Samreen, T. Kamran, Fixed point theorems for integral Gcontractions, Fixed Point Theory Appl., 2013 (2013), 11 pages.
[10] M. Samreen, T. Kamran, N. Shahzad, Some fixed point theorems in bmetric space endowed with a graph, Abstr. Appl. Anal., 2013 (2013), 9 pages.
[11] T. Sistani, M. Kazemipour, Fixed point theorems for \(\alpha\psi\)contractions on metric spaces with a graph, J. Adv. Math. Stud., 7 (2014), 6579.
[12] M. Turinici, Finitedimensional vector contractions and their fixed points, Studia Univ. BabeBolyai Math., 35 (1990), 3042.
[13] R. S. Varga, Matrix Iterative Analysis, SpringerVerlag, Berlin, (2000).
[14] C. Vetro, F. Vetro, Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results, Topology Appl., 164 (2014), 125137.