Integral inequalities of extended Simpson type for (\(\alpha,m\))-varepsilon-convex functions

Authors

Jun Zhang - College of Computer Science and Technology, Jilin University, Changchun 130012, China.
Zhi-Li Pei - College of Computer Science and Technology, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China.
Gao-Chao Xu - College of Computer Science and Technology, Jilin University, Changchun 130012, China.
Xiao-Hui Zou - College of Computer Science and Technology, Jilin University, Changchun 130012, China.
Feng Qi - Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China.

Abstract

In the paper, the authors establish some integral inequalities of extended Simpson type for \((\alpha,m)-\varepsilon\)-convex functions.

Keywords

Integral inequality, extended Simpson type, \((\alpha،m)-\varepsilon\)-convex function

References

[1] S. S. Dragomir, R. P. Agarwal,/ Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,/ Appl. Math. Lett.,/ 11 (1998), 91–95.
[2] S. S. Dragomir, G. Toader,/ Some inequalities for m-convex functions,/ Studia Univ. Babe-Bolyai Math.,/ 38 (1993), 21–28.
[3] J. Hua, B.-Y. Xi, F. Qi,/ Inequalities of Hermite-Hadamard type involving an s-convex function with applications,/ Appl. Math. Comput.,/ 246 (2014), 752–760.
[4] D. H. Hyers, S. M. Ulam,/ Approximately convex functions,/ Proc. Amer. Math. Soc.,/ 3 (1952), 821–828.
[5] U. S. Kirmaci,/ Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula,/ Appl. Math. Comput.,/ 147 (2004), 137–146.
[6] M. Klaričić Bakula, M. E. Özdemir, J. Pečarić,/ Hadamard type inequalities for m-convex and \((\alpha,m)\)-convex functions,/ JIPAM. J. Inequal. Pure Appl. Math.,/ 9 (2008), 12 pages.
[7] V. G. Miheşan,/ A generalization of the convexity,/ Seminar on Functional Equations, Approx. and Convex., Cluj- Napoca, Romania/, (1993).
[8] C. E. M. Pearce, J. Pečarić,/ Inequalities for differentiable mappings with application to special means and quadrature formul,/ Appl. Math. Lett.,/ 13 (2000), 51–55.
[9] F. Qi, B.-Y. Xi,/ Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions,/ Proc. Indian Acad. Sci. Math. Sci.,/ 124 (2014), 333–342.
[10] F. Qi, T.-Y. Zhang, B.-Y. Xi,/ Hermite-Hadamard-type integral inequalities for functions whose first derivatives are convex,/ Reprint of Ukraïn. Mat. Zh.,/ 67 (2015), 555–567, Ukrainian Math. J., 67 (2015), 625–640.
[11] G. Toader,/ Some generalizations of the convexity,/ Proceedings of the colloquium on approximation and optimization, Cluj-Napoca, (1985), 329–338, Univ. Cluj-Napoca, Cluj-Napoca,/ (1985).
[12] B.-Y. Xi, F. Qi,/ Hermite-Hadamard type inequalities for geometrically r-convex functions,/ Studia Sci. Math. Hungar.,/ 51 (2014), 530–546.
[13] B.-Y. Xi, F. Qi,/ Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means,/ J. Nonlinear Convex Anal.,/ 16 (2015), 873–890.
[14] B.-Y. Xi, S.-H. Wang, F. Qi,/ Some inequalities for (h,m)-convex functions,/ J. Inequal. Appl.,/ 2014 (2014), 12 pages.
[15] B.-Y. Xi, T.-Y. Zhang, F. Qi,/ Some inequalities of Hermite–Hadamard type for m-harmonic-arithmetically convex functions,/ ScienceAsia,/ 41 (2015), 357–361.

Downloads

XML export