**Volume 10, Issue 5, pp 2296--2308**

**Publication Date**: 2017-05-22

http://dx.doi.org/10.22436/jnsa.010.05.02

Mi Zhou - School of Science and Technology, Sanya College, 572022, Sanya, Hainan, China.

Xiao-lan Liu - College of Science, Sichuan University of Science and Engineering, 643000, Zigong, Sichuan, China.

Yeol Je Cho - Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea.

Boško Damjanovic - Faculty of Agriculture, University of Belgrade, Belgrade, Serbia.

In this paper, first, we introduce several types of the Ulam-Hyers stability, the well-posedness and the limit shadowing property of fixed point problems in \(M_s\)-metric spaces. Second, we give such results for fixed point problems of Banach and Kannan contractive mappings in \(M_s\)-metric spaces. Finally, we give some examples to illustrate the validity of our main results.

Fixed point problem, Ulam-Hyers stability, well-posedness, limit shadowing property, \(M_s\)-metric spaces.

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.

[2] M. F. Bota, E. Karapınar, O. Mleşniţe, Ulam-Hyers stability results for fixed point problems via \(\alpha-\psi\)-contractive mapping in (b)-metric space, Abstr. Appl. Anal., 2013 (2013), 6 pages.

[3] M. F. Bota-Boriceanu, A. Petruşel, Ulam-Hyers stability for operatorial equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 57 (2011), 65–74.

[4] F. S. De Blasi, J. Myjak, Sur la porosité de l’ensemble des contractions sans point fixe, (French) [[On the porosity of the set of contractions without fixed points]] C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 51–54.

[5] R. Kannan, Some results on fixed points, II, Amer. Math. Monthly, 76 (1969), 405–408.

[6] B. K. Lahiri, P. Das, Well-posedness and porosity of a certain class of operators, Demonstratio Math., 38 (2005), 169–176.

[7] N. M. Mlaiki, A contraction principle in partial S-metric spaces, Univers. J. Math. Math. Sci., 5 (2014), 109–119.

[8] N. M. Mlaiki, N. Souayah, K. Abodayeh, T. Abdeljawad, Contraction principles inMs-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 575–582.

[9] A. Pansuwan, W. Sintunavarat, J. Y. Choi, Y. J. Cho, Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems in M-metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4489–4499.

[10] S. Reich, A. J. Zaslavski, Well-posedness of fixed point problems, Far East J. Math. Sci. (FJMS), Special Volume, Part III, (2001), 393–401.

[11] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (2012), 258–266.

[12] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math., 80 (1975), 325–330.