Solvability of fractional p-Laplacian boundary value problems with controlled parameters


Tengfei Shen - School of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China.
Wenbin Liu - School of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China.


This paper aims to investigate existence of solutions of several boundary value problems for fractional one-dimensional p-Laplacian equation under controlled parameters. By employing fixed point theory and critical point theory, some new results are obtained, which enrich and generalize the previous results.



[1] R. P. Agarwal, D. O’Regan, S. Staněk,/ Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations,/ J. Math. Anal. Appl.,/ 371 (2010), 57–68.
[2] R. P. Agarwal, Y. Zhou, Y.-Y. He,/ Existence of fractional neutral functional differential equations,/ Comput. Math. Appl.,/ 59 (2010), 1095–1100.
[3] C.-Z. Bai,/ Existence of positive solutions for boundary value problems of fractional functional differential equations,/ Electron. J. Qual. Theory Differ. Equ.,/ 2010 (2010), 14 pages.
[4] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab,/ Existence results for fractional order functional differential equations with infinite delay,/ J. Math. Anal. Appl.,/ 338 (2008), 1340–1350.
[5] M. Bergounioux, A. Leaci, G. Nardi, F. Tomarelli,/ Fractional Sobolev spaces and functions of bounded variation,/ ArXiv,/ 2016 (2016), 19 pages.
[6] G. Bonanno, G. Riccobono,/ Multiplicity results for Sturm-Liouville boundary value problems,/ Appl. Math. Comput.,/ 210 (2009), 294–297.
[7] G. Bonanno, R. Rodríguez-López, S. Tersian,/ Existence of solutions to boundary value problem for impulsive fractional differential equations,/ Fract. Calc. Appl. Anal.,/ 17 (2014), 717–744.
[8] D. Bonheure, P. Habets, F. Obersnel, P. Omari,/ Classical and non-classical solutions of a prescribed curvature equation,/ J. Differential Equations,/ 243 (2007), 208–237.
[9] G. Cerami,/ An existence criterion for the critical points on unbounded manifolds,/ (Italian) Istit. Lombardo Accad. Sci. Lett. Rend. A,/ 112 (1978), 332–336.
[10] T.-Y. Chen, W.-B. Liu,/ Solvability of fractional boundary value problem with p-Laplacian via critical point theory,/ Bound. Value Probl.,/ 2016 (2016), 12 pages.
[11] B. Du, X.-P. Hu, W.-G. Ge,/ Positive solutions to a type of multi-point boundary value problem with delay and onedimensional p-Laplacian,/ Appl. Math. Comput.,/ 208 (2009), 501–510.
[12] I. Ekeland,/ Convexity methods in Hamiltonian mechanics,/ Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Springer-Verlag, Berlin,/ (1990).
[13] M. Fečkan, Y. Zhou, J.-R. Wang,/ On the concept and existence of solution for impulsive fractional differential equations,/ Commun. Nonlinear Sci. Numer. Simul.,/ 17 (2012), 3050–3060.
[14] D. J. Guo, V. Lakshmikantham,/ Nonlinear problems in abstract cones,/ Notes and Reports in Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA,/ (1988).
[15] D. Idczak, S. Walczak,/ Fractional Sobolev spaces via Riemann-Liouville derivatives,/ J. Funct. Spaces Appl.,/ 2013 (2013), 15 pages.
[16] W.-H. Jiang,/ The existence of solutions to boundary value problems of fractional differential equations at resonance,/ Nonlinear Anal.,/ 74 (2011), 1987–1994.
[17] F. Jiao, Y. Zhou,/ Existence of solutions for a class of fractional boundary value problems via critical point theory,/ Comput. Math. Appl.,/ 62 (2011), 1181–1199.
[18] F. Jiao, Y. Zhou,/ Existence results for fractional boundary value problem via critical point theory,/ Internat. J. Bifur. Chaos Appl. Sci. Engrg.,/ 22 (2012), 17 pages.
[19] H. Jin, W.-B. Liu,/ Eigenvalue problem for fractional differential operator containing left and right fractional derivatives,/ Adv. Difference Equ.,/ 2016 (2016), 12 pages.
[20] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo,/ Theory and applications of fractional differential equations,/ North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam,/ (2006).
[21] N. Kosmatov,/ A boundary value problem of fractional order at resonance,/ Electron. J. Differential Equations,/ 2010 (2010), 10 pages.
[22] V. Lakshmikantham,/ Theory of fractional functional differential equations,/ Nonlinear Anal.,/ 69 (2008), 3337–3343.
[23] K. Q. Lan, W. Lin,/ Positive solutions of systems of Caputo fractional differential equations,/ Commun. Appl. Anal.,/ 17 (2013), 61–85.
[24] J. Leszczynski, T. Blaszczyk,/ Modeling the transition between stable and unstable operation while emptying a silo,/ Granul. Matter,/ 13 (2011), 429–438.
[25] Y.-J. Liu, W.-G. Ge,/ Multiple positive solutions to a three-point boundary value problem with p-Laplacian,/ J. Math. Anal. Appl.,/ 277 (2003), 293–302.
[26] F. Mainardi,/ Fractional diffusive waves in viscoelastic solids,/ J. L. Wegner, F. R. Norwood (Eds.), IUTAM Symposium– Nonlinear Waves in Solids, ASME/AMR, Fairfield, NJ,/ (1995), 93–97.
[27] J. Mawhin,/ Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian, Lakshmikantham’s legacy: a tribute on his 75th birthday,/ Nonlinear Anal.,/ 40 (2000), 497–503.
[28] J. Mawhin, M. Willem,/ Critical point theory and Hamiltonian systems,/ Applied Mathematical Sciences, Springer- Verlag, New York,/ (1989).
[29] M. L. Morgado, N. J. Ford, P. M. Lima,/ Analysis and numerical methods for fractional differential equations with delay,/ J. Comput. Appl. Math.,/ 252 (2013), 159–168.
[30] I. Podlubny,/ Fractional differential equations,/ An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA,/ (1999).
[31] P. H. Rabinowitz,/ Minimax methods in critical point theory with applications to differential equations,/ CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,/ (1986).
[32] S. G. Samko, A. A. Kilbas, O. I. Marichev,/ Fractional integrals and derivatives,/ Theory and applications, Edited and with a foreword by S. M. Nikolski˘ı, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon,/ (1993).
[33] T.-F. Shen,W.-B. Liu, X.-H. Shen,/ Existence and uniqueness of solutions for several BVPs of fractional differential equations with p-Laplacian operator,/ Mediterr. J. Math.,/ 13 (2016), 4623–4637.
[34] J. Simon,/ Régularité de la solution d’un probléme aux limites non linéaires,/ (French) [[Regularity of the solution of a nonlinear boundary problem]] Ann. Fac. Sci. Toulouse Math.,/ 3 (1981), 247–274.
[35] E. Szymanek,/ The application of fractional order differential calculus for the description of temperature profiles in a granular layer,/ Adv. Theory Appl. Non-integer Order Syst., Springer Inter. Publ., Switzerland,/ (2013).
[36] X. H. Tang, L. Xiao,/ Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential,/ Nonlinear Anal.,/ 71 (2009), 1124–1132.
[37] Y. Tian, W.-G. Ge,/ Second-order Sturm-Liouville boundary value problem involving the one-dimensional p-Laplacian,/ Rocky Mountain J. Math.,/ 38 (2008), 309–327.
[38] C. Torres,/ Mountain pass solution for a fractional boundary value problem,/ J. Fract. Calc. Appl.,/ 5 (2014), 1–10.
[39] Y. Zhou, F. Jiao, J. Li,/ Existence and uniqueness for fractional neutral differential equations with infinite delay,/ Nonlinear Anal.,/ 71 (2009), 3249–3256.