On nonexpansive and accretive operators in Banach spaces
Authors
Dongfeng Li
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
Abstract
The purpose of this article is to investigate common solutions of a zero point problem of a accretive operator and a fixed
point problem of a nonexpansive mapping via a viscosity approximation method involving a \(\tau\) -contractive mapping
Keywords
- Accretive operator
- approximation solution
- viscosity method
- variational inequality.
References
[1] I. K. Argyros, S. George,/ Iterative regularization methods for nonlinear ill-posed operator equations with m-accretive mappings in Banach spaces,/ Acta Math. Sci. Ser. B Engl. Ed.,/ 35 (2015), 1318–1324.
[2] I. K. Argyros, S. George,/ Extending the applicability of a new Newton-like method for nonlinear equations,/ Commun. Optim. Theory,/ 2016 (2016), 9 pages.
[3] V. Barbu,/ Nonlinear semigroups and differential equations in Banach spaces,/ Translated from the Romanian, Editura Academiei Republicii Socialiste Romˆania, Bucharest; Noordhoff International Publishing, Leiden,/ (1976).
[4] B. A. Bin Dehaish, A. Latif, H. O. Bakodah, X.-L. Qin,/ A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces,/ J. Inequal. Appl.,/ 2015 (2015), 14 pages.
[5] B. A. Bin Dehaish, X.-L. Qin, A. Latif, H. O. Bakodah,/ Weak and strong convergence of algorithms for the sum of two accretive operators with applications,/ J. Nonlinear Convex Anal.,/ 16 (2015), 1321–1336.
[6] F. E. Browder,/ Existence and approximation of solutions of nonlinear variational inequalities,/ Proc. Nat. Acad. Sci. U.S.A.,/ 56 (1966), 1080–1086.
[7] R. E. Bruck, Jr.,/ A strongly convergent iterative solution of \(0 \in U(x)\) for a maximal monotone operator U in Hilbert space,/ J. Math. Anal. Appl.,/ 48 (1974), 114–126.
[8] S.-S. Chang, H. W. J. Lee, C. K. Chan,/ Strong convergence theorems by viscosity approximation methods for accretive mappings and nonexpansive mappings,/ J. Appl. Math. Inform.,/ 27 (2009), 59–68.
[9] C. E. Chidume,/ Iterative solutions of nonlinear equations in smooth Banach spaces,/ Nonlinear Anal.,/ 26 (1996), 1823– 1834.
[10] S. Y. Cho, B. A. Bin Dehaish, X.-L. Qin,/ Weak convergence of a splitting algorithm in Hilbert spaces,/ J. Appl. Anal. Comput.,/ 7 (2017), 427–438.
[11] S. Y. Cho, X.-L. Qin, L. Wang,/ Strong convergence of a splitting algorithm for treating monotone operators,/ Fixed Point Theory Appl.,/ 2014 (2014), 15 pages.
[12] J. S. Jung, Y. J. Cho, H.-Y. Zhou,/ Iterative processes with mixed errors for nonlinear equations with perturbed m-accretive operators in Banach spaces,/ Appl. Math. Comput.,/ 133 (2002), 389–406.
[13] T. Kato,/ Nonlinear semigroups and evolution equations,/ J. Math. Soc. Japan,/ 19 (1967), 508–520.
[14] L. S. Liu,/ Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces,/ J. Math. Anal. Appl.,/ 194 (1995), 114–125.
[15] A. Moudafi,/ Viscosity approximation methods for fixed-points problems,/ J. Math. Anal. Appl.,/ 241 (2000), 46–55.
[16] X.-L. Qin, S. Y. Cho,/ Convergence analysis of a monotone projection algorithm in reflexive Banach spaces,/ Acta Math. Sci. Ser. B Engl. Ed.,/ 37 (2017), 488–502.
[17] X.-L. Qin, S. Y. Cho, J. K. Kim,/ On the weak convergence of iterative sequences for generalized equilibrium problems and strictly pseudocontractive mappings,/ Optimization,/ 61 (2012), 805–821.
[18] X.-L. Qin, S. Y. Cho, L. Wang,/ Iterative algorithms with errors for zero points of m-accretive operators,/ Fixed Point Theory Appl.,/ 2013 (2013), 10 pages.
[19] X.-L. Qin, J.-C. Yao,/ Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators,/ J. Inequal. Appl.,/ 2016 (2016), 9 pages.
[20] S. Reich,/ On fixed point theorems obtained from existence theorems for differential equations,/ J. Math. Anal. Appl.,/ 54 (1976), 26–36.
[21] R. T. Rockafellar,/ Monotone operators and the proximal point algorithm,/ SIAM J. Control Optim.,/ 14 (1976), 877–898.
[22] T. Suzuki,/ Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces,/ Fixed Point Theory Appl.,/ 2005 (2005), 21 pages.
[23] H.-Y. Zhou,/ A characteristic condition for convergence of steepest descent approximation to accretive operator equations,/ J. Math. Anal. Appl.,/ 271 (2002), 1–6.
[24] H.-Y. Zhou,/ Strong convergence of an explicit iterative algorithm for continuous pseudo-contractions in Banach spaces,/ Nonlinear Anal.,/ 70 (2009), 4039–4046.