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Abstract
Based upon the Mittag-Leffler function, new derivatives with fractional order were constructed. With the same line of

idea, improper derivatives based on the Weyl approach are constructed in this work. To further model some complex physical
problems that cannot be modeled with existing derivatives with fractional order, we propose, a new derivative based on the
more generalized Mittag-Leffler function known as Prabhakar function. Some new results are presented together with some
applications. c©2017 All rights reserved.
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1. Introduction

The concept of fractional calculus has been attracting attention of many mathematicians around the
world [5, 7–9, 12, 13]. Many PhD, Master thesis have been written. Many conferences and symposiums
have been organized around this topic. Many research papers have been published. However, it is
important to note that, the commonly used fractional derivatives namely the Riemann-Liouville and
Caputo derivatives have been mis-used [10, 14]. When looking at the literature, nowadays there exist a lot
of papers in which these derivatives were used to model real world problems with no clear explanation. It
also appears that, many people believe the Caputo derivative can be used to solve all the problems in real
world. The concept of power law that is used to justify the use of fractional derivative in solving real world
problem cannot always be observed in nature. In nature sometime the exponential decay law is observed
meaning the power law cannot be adapted in this case. In addition to this, one can mostly observed the
generalized exponential decay law. To describe these last two cases, the Caputo-Fabrizio derivative was
introduced with exponential kernel, but was immediately criticized, due to the fact that the used kernel
was not non-linear and the anti-derivative associate was only the average of the function and it integral
[1, 6]. To solve this problem and maintain the concept of exponential law, Atangana-Baleanu derivatives
were introduced [2–4]. In this paper we aim to introduce further definitions based on the Weyl approach
and also the more generalized Mittag-Leffler function.
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2. Atangana-Baleanu derivative in Caputo sense with improper integral

In this section, we present the definitions of the new fractional derivative with improper integral.

Definition 2.1. Let f ∈ H1(a,∞), and 0 < α 6 1, then the improper fractional derivative based upon
Atangana-Baleanu derivative in Caputo and Riemann-Liouville sense are given as:

ABC
0 Dαt (f (t)) =

B(α)

1 −α

∞∫
t

df(τ)

dτ
Eα

[
−α

1 −α
(t− τ)α

]
dτ,

where f is differentiable on (a,∞).

ABR
0 Dαt (f (t)) =

B(α)

1 −α

d

dt

∞∫
t

f(τ)Eα

[
−α

1 −α
(t− τ)α

]
dτ,

here f is not necessarily differentiable.

Definition 2.2. Let f ∈ H1(−∞,b) and α ∈ [0, 1] then the improper fractional derivative of f based on
Atangana-Baleanu derivative in Caputo and Riemann-Liouville sense are given as:

ABC
0 Dαt (f (t)) =

B(α)

1 −α

t∫
−∞

df(τ)

dτ
Eα

[
−α

1 −α
(t− τ)α

]
dτ,

where t 6 b and f is differentiable.

ABR
0 Dαt (f (t)) =

B(α)

1 −α

d

dt

t∫
−∞

f(τ)Eα

[
−α

1 −α
(t− τ)α

]
dτ,

here f is not necessarily differentiable.

Definition 2.3. Let f ∈ H1(a,b), and 0 < α 6 1, then the AK derivative with fractional order in Caputo
sense is given as:

AKC
0 Dαt (f (t)) =

1
g(α)

t∫
0

df(τ)

dτ
Eαα,α [−g(α) (t− τ)α]dτ,

where the function is well-defined such that

lim
α→0

1
g(α)

t∫
0

df(τ)

dτ
Eαα,α [−g(α) (t− τ)α]dτ =

t∫
0

df(τ)

dτ
dτ = f(t) − f(0).

In Riemann-Liouville sense we have

AKR
0 Dαt (f (t)) =

1
g(α)

d

dt

t∫
0

f(τ)Eαα,α [−g(α) (t− τ)α]dτ.

Also g(α) is chosen such that

lim
α→0

1
g(α)

d

dt

t∫
0

f(τ)Eαα,α [−g(α) (t− τ)α]dτ =
d

dt

t∫
0

f(τ)
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and

lim
α→1

1
g(α)

d

dt

t∫
0

f(τ)Eαα,α [−g(α) (t− τ)α]dτ =
d

dt
f(t).

Based upon the Weyl approach of derivative, we present the following definitions.

Definition 2.4. Let f ∈ H1(a,∞), 0 < α 6 1, then the AK fractional derivative in Weyl sense is given as if
the function f is differentiable

AKW
0 Dαt (f (t)) =

1
g(α)

∞∫
t

df(τ)

dτ
Eαα,α [−g(α) (t− τ)α]dτ.

If f is not differentiable,

AKW
0 Dαt (f (t)) =

1
g(α)

d

dt

∞∫
t

f(τ)Eαα,α [−g(α) (t− τ)α]dτ.

The function g(α) is chosen to satisfy the criteria of a fractional derivative.

Definition 2.5. Let f ∈ H1(−∞,b), 0 < α < 1, then for the differentiable function f the AK fractional
derivative in Weyl sense is given as

AKW
0 Dαt (f (t)) =

1
g(α)

t∫
−∞

df(τ)

dτ
Eαα,α [−g(α) (t− τ)α]dτ.

If f is not differentiable, then the AK derivative in Weyl sense is given as

AKW
0 Dαt (f (t)) =

1
g(α)

d

dt

t∫
−∞

f(τ)Eαα,α [−g(α) (t− τ)α]dτ.

Remark 2.6. In this paper and in all definitions above Eαα,α is generalized Mittag-Leffler function. Let us
give the generalized Mittag-Leffler function definition below with Eγα,β(z) form [11, 15]:

E
γ
α,β(z) =

∞∑
n=0

(γ)nz
n

Γ(αn+β)n!
, (α, β, γ ∈ C, Re(α) > 0, Re(β) > 0, Re(γ) > 0),

where (γ)n is the Pochhammer symbol

(γ)n =
Γ(γ+n)

Γ(γ)
, (γ)0 = 1, (γ)n = γ(γ+ 1)(γ+ 1) · · · Γ(γ+n− 1), n > 1.

The AK derivative has the following properties.

AKC
0 Dαt (f (t)) =

1
g(α)

t∫
0

df(τ)

dτ
E
q
α,β [−g(α) (t− τ)α]dτ

=
1
g(α)

t∫
0

df(τ)

dτ

1
Γ(q)

Ψ

[
(q, 1)
(β,α)

∣∣∣∣− g(α)τα]dτ,

where Ψ is the Wright function define as

pΨq(z) =

∞∑
k=0

Π
p
i=1Γ(ai +Aik)

Π
q
j=1Γ(bj +Bjk)

zk

k!

with of course ai, bj ∈ C, Ai, Bj ∈ R.
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We now present some relationships with some integral transform. The Laplace transform of AKC
derivative is given as

L(AKC0 Dαt f (t)) =
1
g(α)

L

(
df(t)

dt

)
L
(
E
q
α,β(−g(α)t

α)
)
=

1
g(α)

{pF(p) − f(0)}L
(
E
q
α,β(−g(α)t

α)
)

.

Nevertheless we have the following relation if β > 0, Re(p) > 0, λ ∈ C, and
∣∣∣ λpα ∣∣∣ < 1, then

L
(
tβ−1E

q
α,β(λt

α)
)
(p)

=
pαq−β

(pα − λ)q
.

Therefore when β = 1 we have

L
(
E
q
α,1(λt

α)
)
(p)

=
p−nα−1

(1 − g(α))q
.

Thus if β = 1 the Laplace transform of AKC is given as

L(AKC0 Dαt f (t))(p) =
1
g(α)

(pF(p) − f(0))
p−nα−1

(1 − g(α))q
=

1
g(α)

p−nαF(p)

(1 − g(α))q
−
f(0)
g(α)

p−nα−1

(1 − g(α))q
.

Then AKR is given as

L(AKR0 Dαt f (t))(p) =
1
g(α)

p−nαF(p)

(1 − g(α))q
.

Theorem 2.7. If β = 1 then the following ordinary differential equation with AKR fractional derivative has a
unique solution

AKR
0 Dαt f (t) = u(t).

Proof. To solve this equation, we apply on both sides the Laplace transform to have

1
g(α)

pαqF(p)

(pα + g(α))q
= U(p)F(p) = g(α)

(
pα + g(α)

pα

)q
U(p)f(t) = g(α)

t∫
0

β(t− τ)u(τ)dτ,

with

β(t) = L−1
((

pα + g(α)

pα

)q)
= L−1

((
1 +

g(α)

pα

)q)
.

Theorem 2.8. Let f ∈ H1(a,b), and 0 < α 6 1, then the Sumudu transform of AK derivative with fractional order
in Caputo sense is given as:

ST
(
AKC
0 Dαt f (t)

)
(u)

=
F(u)

g(α) (1 − g(α))q
−

f(0)
g(α) (1 − g(α))q

.

Proof. When β = 1, the Sumudu transform of AK derivative with fractional order in Caputo sense is given
as

ST
(
AKC
0 Dαt f (t)

)
(u)

=ST

 1
g(α)

t∫
0

df(τ)

dτ
E
q
α,1 [λ (t− τ)

α]dτ

 ,

where −g(α) = λ.
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Using the convolution properties of Sumudu transform we have the following

ST
(
AKC
0 Dαt f (t)

)
(u)

=
1
g(α)

(F(u) − f(0))ST
(
E
q
α,1 [λt

α]
)

=
1
g(α)

(F(u) − f(0)) (1 − g(α)−q)

=
F(u)

g(α) (1 − g(α))q
−

f(0)
g(α) (1 − g(α))q

.

Then the Sumudu transform of AK derivative with fractional order in Riemann-Liouville sense is
given with Theorem 2.9.

Theorem 2.9. Let f ∈ H1(a,b), and 0 < α 6 1, then the Sumudu transform of AK derivative with fractional order
in Riemann-Liouville sense is given as:

ST
(
AKR
0 Dαt f (t)

)
(u)

=
1
g(α)

F(u)

(1 − g(α))q
.

Proof. Using the same rules from Theorem 2.8, the requested result is obtained.

Theorem 2.10. Let f ∈ H1(a,b), and 0 < α 6 1, then the Mellin transform of AK derivative with fractional order
in Caputo sense is given as:

M
(
AKC
0 Dαt f (t)

)
(s)

=
1
g(α)

(1 − s)F(s− 1)(s+nα)−1

(1 − g(α))q Γ(nα+ 1)
.

Proof. The Mellin transform of AK derivative with fractional order in Caputo sense is given as

M
(
AKC
0 Dαt f (t)

)
(s)

=M

 1
g(α)

t∫
0

df(τ)

dτ
E
q
α,1 [λ (t− τ)

α]dτ

 .

Using the convolution properties of Mellin transform we have equality below:

M
(
AKC
0 Dαt f (t)

)
(s)

=
1
g(α)

M

(
df(t)

dt

)
M(Eqα,1 [λt

α]).

So we have

M
(
AKC
0 Dαt f (t)

)
(s)

=
1
g(α)

(1 − s)F(s− 1)(s+nα)−1

(1 − g(α))q Γ(nα+ 1)
.

Theorem 2.11. Let f ∈ H1(a,b), and 0 < α 6 1, then the Mellin transform of AK derivative with fractional order
in Riemann-Liouville sense is given as:

M
(
AKR
0 Dαt f (t)

)
(s)

=
1
g(α)

F(s)(s+nα)−1

(1 − g(α))q Γ(nα+ 1)
.

Proof. Using the same rules from Theorem 2.10, the requested result is obtained.

Theorem 2.12. Let f ∈ H1(a,b), and 0 < α 6 1, then the Fourier transform of AK derivative with fractional order
in Caputo sense is given as:

F
(
AKC
0 Dαt f (t)

)
(w)

=
1
g(α)

(jw)F(w)
1√
2π

(1 − λ)−q(sgn(w) − 1). exp(
1
2
iπ(nα)) sin(π(nα)) |w|−(nα−1)

for (λ = 1 or Re(q) < 0) and |λ| < 1.
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Proof. From the definition of Fourier transform, we get equalities below:

F
(
AKC
0 Dαt f (t)

)
(w)

=M

 1
g(α)

t∫
0

df(τ)

dτ
E
q
α,1 [λ (t− τ)

α]dτ


=

1
g(α)

F

(
df(t)

dt

)
F(Eqα,1 [λt

α])

=
1
g(α)

(jw)F(w)F(Eqα,1 [λt
α])

=
1
g(α)

(jw)F(w)
1√
2π

(1 − λ)−q(sgn(w) − 1). exp(
1
2
iπ(nα)) sin(π(nα)) |w|−(nα−1)

for (λ = 1 or Re(q) < 0) and |λ| < 1.

Theorem 2.13. Let f ∈ H1(a,b), and 0 < α 6 1, then the Fourier transform of AK derivative with fractional order
in Riemann-Liouville sense is given as:

F
(
AKR
0 Dαt f (t)

)
(w)

=
1
g(α)

F(w)
1√
2π

(1 − λ)−q(sgn(w) − 1). exp(
1
2
iπ(nα)) sin(π(nα)) |w|−(nα−1)

for λ = 1 v Re(q) < 0 and |λ| < 1.

Proof. Using the same rules from Theorem 2.12, the requested result is obtained.

3. Partial derivative

Since many physical problems are sometimes required the time and space component, that is to say
the physical problem has to be evaluated in time and space. It is therefore important to extend the new
definitions to the concept of partial derivative. In this section, we present some definitions of partial
derivatives associated to the new derivative.

Definition 3.1. Let f be a function of two variable x, y such that f ∈ H1(a1,∞)×H1(a2,∞), let in addition
α ∈ (0, 1], then the partial derivative of Atangana-Baleanu with fractional order α is given as if f is
differentiable in x-direction

ABC
l Dαx f(x,y) =

1
g(α)

x∫
l

∂f(τ,y)
∂τ

Eα(−g(α)(x− τ)
α)dτ.

If the ∂f(τ,y)
∂τ is differentiable in y-direction then we have below:

ABC
l Dαx,yf(x,y) =

1
(g(α))2

x∫
l

y∫
l

∂2f(τ, λ)
∂τ∂λ

.Eγ,q
α,β(−g(α)(x− τ)

α)Eγ,q
α,β(−g(α)(y− λ)

α)dτdλ.

Theorem 3.2. Let f(x,y) ∈ H1(a1,b1)×H1(a2,b2) be a function such that ∂
2f(τ,λ)
∂τ∂λ and ∂2f(τ,λ)

∂λ∂τ exist and both
are continuous in (a1,b1)× (a2,b2) then the following relationship is obtained

ABC
l Dαx,yf(x,y) = ABC

l Dαy,xf(x,y).

Proof. By definition we have

ABC
l Dαx,yf(x,y) =

1
(g(α))2

x∫
l

y∫
l

∂2f(τ, λ)
∂τ∂λ

.Eα(−g(α)(x− τ)α)Eα(−g(α)(y− τ)α)dτdλ.
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Since ∂
2f(τ,λ)
∂τ∂λ and ∂2f(τ,λ)

∂λ∂τ are continuous on (a1,b1)× (a2,b2) then using the Clairaut theorem we obtain
∂2f(τ,λ)
∂τ∂λ and ∂2f(τ,λ)

∂λ∂τ thus

ABC
l Dαx,yf(x,y) =

1
(g(α))2

x∫
l

y∫
l

∂2f(τ, λ)
∂τ∂λ

.Eα(−g(α)(x− τ)α)Eα(−g(α)(y− τ)α)dτdλ

=
1

(g(α))2

y∫
l

x∫
l

∂2f(τ, λ)
∂λ∂τ

.Eα(−g(α)(y− τ)α)Eα(−g(α)(x− τ)α)dλdτ

=ABCl Dαy,xf(x,y).

This completes the proof.

Definition 3.3. Let f be a function that is not necessarily differentiable in (a,∞) then for α ∈ (0, 1] the
partial derivative associated to Atangana-Baleanu in Riemann-Liouville sense is given as

ABR
0 Dαx f(x,y) =

B(α)

1 −α

∞∫
x

f(τ,y)Eα(−
α

1 −α
(x− τ)α)dτ.

For second order we have

ABR
0 Dαx,yf(x,y) =

∂2

∂x∂y

B(α)

(1 −α)2

∞∫
x

∞∫
y

f(τ, λ).Eα(−
α

1 −α
(x− τ)α)Eα(−

α

1 −α
(λ− y)α)dτdλ.

Definition 3.4. Let f be a function defined in H1(a1,b1)×H1(a2,b2) but not necessarily differentiable. Let
in addition α ∈ (0, 1) then, the partial fractional derivative in Atangana-Baleanu type of f in x-direction is
given as

ABR
0 Dαx f(x,y) =

B(α)

1 −α

d

dx

x∫
l

f(τ,y)Eα(−
α

1 −α
(x− τ)α)dτ.

Then the partial derivative in x, y-direction is given as

ABR
0 Dαx,yf(x,y) =

B(α)

(1 −α)2
∂2

∂x∂y

x∫
l

y∫
l

f(τ, λ).Eα(−
α

1 −α
(x− τ)α)Eα(−

α

1 −α
(λ− y)α)dτdλ.

Definition 3.5. Let f be a function defined in H1(a1,b1)×H1(a2,b2) but not necessarily differentiable. Let
α, β, γ ∈ (0, 1) then the AK fractional partial derivative in Caputo sense is given as

AKC
0 Dαx f(x,y) =

1
g(α)

x∫
0

∂

∂τ
f(τ,y)Eγ,q

α,β(−g(α)(x− τ)
α)dτ.

If ∂
∂xf(x,y) is differentiable in y-direction then we have

AKC
0 Dαy,xf(x,y) =

1
(g(α))2

y∫
0

x∫
0

∂2f(τ, λ)
∂λ∂τ

.Eγ,q
α,β(−g(α)(x− τ)

α)Eγ,q
α,β(−g(α)(y− λ)

α)dτdλ.

Definition 3.6. Let f ∈ H1(a1,b1)×H1(a2,b2) be a function not necessarily differentiable in x- and y-
directions. Let α, β, γ ∈ (0, 1) then the AK fractional partial derivative in Riemann-Liouville sense is
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given as

AKR
0 Dαx f(x,y) =

1
g(α)

∂

∂x

x∫
0

f(τ,y)Eγ,q
α,β(−g(α)(x− τ)

α)dτ.

Then

AKR
0 Dαx,yf(x,y) =

1
(g(α))2

∂2

∂x∂y

x∫
0

y∫
0

f(τ, λ)Eγ,q
α,β(−g(α)(x− τ)

α)Eγ,q
α,β(−g(α)(y− λ)

α)dτdλ.

4. Conclusion

The main aim of the paper was to promote the idea of fractional derivative with generalized expo-
nential decay law that is mostly observed in nature in our daily live. We introduced as modified version
of Atangana-Baleanu derivatives the Weyl approach of derivative. Some useful properties are presented
and some theorems are given. Another concepts of derivative called AKC and AKR are introduced based
upon the Prabhakar Mittag-Leffler function are introduced.
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