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Abstract

This paper, we show the stability of non-monotone critical waves by a anti-weighted method for a kind of non-monotone
time-delayed reaction-diffusion equations including Nicholson’s blowflies equation which describes the population dynamics of
a single species with age structure.
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1. Introduction and preliminaries

In this paper, we study the stability of non-monotone critical traveling waves for the following nonlocal
delayed reaction-diffusion equation

ou 2u
3t =-Paa— du(t,x) + L{h(y)b(u(t—’t,x—y))dy,t >0,x € R (1.1)
with the initial data
u(s,x) =up(s,x), (s,x)e[—1,0 xR, (1.2)

where T > 0, h(x) is non-negative, unit, and symmetric kernels, b(u) is the birth rate function, which are
assumed to satisfy the following hypothesis:

(H;) b(u) is a non-negative, C?> smooth increasing function, and satisfies [b’(w)| < b’(0) for u € [0, 00);
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(Hz) Two constant equilibria of (1.1): u_ = 0 is unstable and u is stable, namely, d —b’(0) < 0 and
d—b'(uy) >0;

(H3) There exists a u, € [0,u4] such that b(-) is increasing on [0, u,] and decreasing on [u,,u;]. In
particular, b’(0) > 0 and b’(u4) <0;

(H4) his nonnegative integrable, f]R h(y)dy =1, and h(—x) = h(x), ¥x € R;

(Hs) [re MWTeTh(y)dy < co.

There are two well-known examples of the equation (1.1) satisfying (H;)-(Hs). One is the so-called nonlo-
cal dispersion Nicholson’s blowflies equation [3, 4] with

au

b(u) =pue Y, for a>0, p>0, (1.3)

whereu_ =0, u, = %ln %. When % > e, the birth rate function b(u) is a uni-modality function with the
maximum at u, = % € (0,uy), and it can be verified that |b’(u)| < b’(0) for u € [0, 00). The other is the
so-called nonlocal dispersion Mackey-Glass equation [10, 11] with

_ _ pu
b(u) = T+ aud’ for a>0, p>0, (1.4)
where u_ =0, u, = (}%)%. When & > ﬁ, the birth rate function b(u) is non-monotone with uni-

modality at w, =: [a(q — 1)]*% € (0,u, ), and it can be verified that [b’(u)] < b’(0) for u € [0, 00).
The traveling waves for (1.1) connecting two steady states u, at far fields are the special solutions to
(1.1) in the form of u(t, x) = ¢(x + ct), namely,

{ccb’(é) — D¢ (&) — dd (&) + [g hy)b(d(E —y —c1))dy, 15)

$(—00) =0, d(+00) =K.

The existence, uniqueness and asymptotic behavior of the non-monotone traveling waves of (1.1) have
been guaranteed by [18]. Our study includes the Mei’s [1] work. We briefly describe the results we need
below.

(i) Behavior of ¢ (&) for & ~ —oo. Since ¢(&) — u_ as & — —oo, we expect that ¢ (&) is close to a function
u(&) which satisfies the linearized equation of (1.5) around u_ for & ~ —oo:

cw/(£) — Du”(£) + du(£) = b'(0) LR h(y)o(E —y — ct)dy, u(—o0) = 0.

By substituting u(&) = e to the above linearized equation, we obtain the following characteristic equa-
tion for a pair of (c,A):

c?\—D?\2+db’(O)J h(y)e Myu+et gy, (1.6)
R

To investigate the admission of (c,A) to the above characteristic equation, we denote
Gc(A):=cA—DA%4+d, H.(A):=b'(0) J h(y)e M+t gy,
R

As shown in [10] that, for each T > 0, there exists a unique c. = c.(T) > 0 at which the two graphs of G,
and H. are tangent at A,. This means that (c,, A,) are uniquely determined by

Ge,(A) =Hce, (M), GE () =Hg (A).

Thus, we obtain

(1) for ¢ > c,, the characteristic equation (1.6) has two distinct solutions 0 < A1 < Ap;
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(2) for ¢ = c,, (1.6) has multiple roots A; = A, = A,;
(3) for ¢ < c4, (1.6) has no positive root.

When ¢ < c,, there will be no traveling wave for Eq. (1.5). For it would satisfy the linearized equation for
£ ~ —o0o, and would have the form e¢ for & ~ —oo, but no such can exist. When ¢ > ¢, > 0, on the other
hand, the traveling wave ¢(x + ct), if exists, should satisfy

d(&) =0(1)eMé -0 as & — —oo, for ¢ > cy,
d(&) =0(1)|¢JeME -0 as & — —oo, for ¢ =c,.

(ii) Behavior of ¢ (&) for & ~ —oco. The asymptotic behavior of the traveling wave ¢ (&) at & = oo is solely
determined by the linearized ODE around u:

c(—ur) —D(—up)” +d(d—uy) = b (uy) LRh(y)w(a—y —et)—uy)dy.

Letdp—u, = e M&as & — 400, we get

—cAy —DA2 +d =b"(uy) J h(y)eM+et gy,
R
which uniquely solves for Ay = A, (c) > 0 and A% = A% (c.) > 0. Therefore, the asymptotic behavior of
the traveling wave as & — oo is

O(l)e ™& =0 as &— oo, for ¢ >cy,

s — ()] = {

O(l)e ™% -0 as &— 0o, for ¢ =c,.

(iii) Existence, uniqueness, monotone/oscillatory of the traveling waves.

(1). When d > [b/(uy )|, the traveling wave ¢ (x + ct) exists uniquely (up to a shift) for every ¢ > ¢, = c. (1),
where the time-delay 7 is allowed to be any number in [0, 00). If 0 < T < 71, then these traveling waves are
monotone; while, if T > 1, then the traveling waves are still monotone for (c,T) € [c,, c*] x [T, T9], where
Cx = C4(T) is the minimum wave speed as mentioned before, c* = c*(7) is given by the characteristic
equation for (1.5) around u., and To(> T) is the unique intersection point of two curves c,(t) and c*(7);
and the traveling waves are oscillating around u for (c, T)[cs, ¢*] X [T, Tol, namely, either ¢ > ¢* or T > T
[6].

(2). When d < [b/(u4 )|, on the other hand, the traveling wave ¢(x + ct) with ¢ > ¢, can exist only when
T < T, and no traveling wave can exist for T > 7. In the case of T < 7T, the waves are monotone for0 < T < T
and oscillating for T € (1, T) [6], where T, T are positive constants.

When the birth function f is monotone, authors in [1, 2, 6, 7, 10-12, 14] investigated the existence
of monotone traveling waves by using the monotone iteration and fixed-points theorem with help of the
upper-lower solutions. By using the Fourier transform, Green’s function and the weighted energy method,
the authors in [13, 16, 17] showed the global stability of critical traveling waves, which depends on the
monotonicity of both the equation and traveling waves. For the stability of traveling wave solutions, it is
always one of the important and difficult objects in the theory of traveling waves. In the case of monotone
systems, the squeezing technique, the weighted energy method combining comparison principle, the
convergence theory for monotone semiflows, and spectral analysis method are used usually to solve
the the stability of monotone traveling wave solutions. Very recently, for the local Nicholson’s blowflies
equation, Mei [6] succeeded in obtaining the stability of all monotone/non-monotone traveling waves
with ¢ > c,, by means of the regular [,-weighted energy method with a new development by a nonlinear
Halanay’s inequality.

However, for the non-monotone and critical case, the stability results of traveling waves are respec-
tively limited, because comparison principle does not still hold for the scalar equation or system without
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monotonicity. Inspired by the study on classical Fisher-KPP equation by Moet [15], Chern et al. [1] where
they introduced a suitable transform function (or say, an anti-weight) to switch the equation to a new
equation (we call it the anti-weighted energy method), we study the stability of the non-monotone critical
traveling waves for (1.1).

Notations: Throughout this paper, C > 0 denotes a generic constant, C; > 0(i = 1,2,...) represents a
specific constant. Let I be an interval. [?(I) is the space of the square integrable functions defined on I,

and H*(I)(k > 0) is the Sobolev space of the L2-functions f(x) defined on the interval I whose derivatives
di

(i =1,2,...,k) also belong to L2(I). 12,(I) denotes the weighted [2-space with a weight function
w(x) > 0 and its norm is defined by

Ifllz, = ( Lw(x) () dx> ’

HX (1) is the weighted Sobolev space with the norm given by

di
dxt

k
Il = (Z J wix

i=0

Let T > 0 be a number and B be a Banach space. We denote by C([0, T]; B) the space of the B-valued
continuous functions on [0, T]. L2([0, T]; B) as the space of the B-valued L2-functions on [0, T]. The corre-
sponding spaces of B-valued functions on [0, co) are defined similarly.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries and state
our stability result. In Section 3, we prove the global existence and uniqueness of the solution for the
perturbed equation, where the initial perturbation can be allowed to be arbitrarily large. In Section 4,
when the initial perturbation is suitably small, the solution of the perturbed equation can be proved to be
uniformly bounded by the anti-weighted energy method. Based on the uniform boundedness, we shall
further prove the asymptotic stability in Section 5.

2. Preliminaries and main result

Let ¢(&) := P(x +c4t), & :=x+ c.t be a given critical traveling wave, and define
v(t, &) =ult,x) — (&), vols, &) =uo(s,x) — dlx+c.s).
Then, from (1.1)-(1.5), v(t, &) satisfies

vi(t, &) +cuve(t, &) —Dvee(t, &) +dv(t, &) = J}R h(y)P(v(t —T,&E—y— C*T)) dy, 2.1)

V(S/ Ev) ZVO(S/ ((.,), (S/ Ev) € [_T/O] X IR/

where
P(v) =b(d+v)—b(d),

withv =v(t—1,& —y —c,7) and ¢ = $(& —y — c,7). Furthermore, let us linearize the (2.1), we equiva-
lently obtain

vi(t, &) + cave (t, &) —Dveg(t, &) + dv(t, &) —J hYb' (b(E -y —cv(t -1, & —y —c.T)dy
R (2.2)
_ J}Rh(y)Q(v(t—T,E—y—C*T))dy,



Y.-H. Zhou, Y.-R. Yang, H.-J. Zhang, Math. Nat. Sci., 2 (2018), 8-23 12

where
Q(v) =b(¢+v) —b(¢) —b'(d)v
withv =v(t —7,& —y —c,T) and ¢ = $(& —y — c.7), and satisfies, by Taylor’s formula

QW) = O(1)vP.

Define a weight function as

w(x) = e 2ME,

note that limg ,, w(&) =0 and limg _, o, W(§) = +o0.
To deal with the delay equation, we define some spaces, for 0 < T < oo,
Cunifl—7, T] :={u(t,x) € C([—7, T] x R) such that 1_1&1 u(t,x) exists uniformly in t € [—1,T] and
X oo

lim ux(t,x) = lim uxx(t,x) =0, uniformly with respect to t € [—7,T]},
X—>+00 X—>+00

Xo[—T,0] := {vlv € C([-,0]; C(R)) N Cynif[—T,0], vwv € C([—7,0; H'(R))
and vwv € L2([—,0]; H2(R))},

with
0
M= sup (V) + I ) ) | AR 8
el-1, -
and
XIOC(O/ o0) == {vlv € Cloc([O/ o0); C(R)) N Cunif[O/ 00), \/VT’V € CIOC([O/ 00); Hl(R))
andywv € [2 ([0, 00); H3(R))},
where leoc([O, o0); H2(R)) is the space whose H2-valued functions are locally [ %-integrable in [0, 00). The

locally continuous spaces Cjoc([0,0); C(R)) and Cioc([0,00); H(IR)) are similarly defined. We further
define

X(0, 00) := {vlv € C([0, 00); C(R)) N Cynifl0, 00), vwv € C([0, 00); H'(R))
and /pwv € L*([0, 00); L*(R)), d¢ (vwv) € L*([0, 00); H'(R))},

M= sup. (WO ) + 1A (OB ) +L VW) (8)122 g ds +JO 10 (Vv (5)IBy1 g, ds.
tc 10,00

Now we state main results which are the global existence, uniqueness, uniform boundedness, and stability

for the solution to (1.1) with a general non-monotone birth rate b(u) as the following three theorems,

respectively.

Theorem 2.1 (Global existence and uniqueness). Assume that (Hy)-(Hs) hold. Let b’ (uy.) and T satisfy, either
d > b’ (uy )| with arbitrarily given T > 0, or d < |b’(uy)| with 0 < T < T. Let d(x + c.t) = &(&) be any given
critical traveling wave, and the initial perturbation vo(s, &) = uo(s,x) — ¢(&) € Xo(—7,0) be arbitrary, then the
solution v(t, &) of the perturbed equation (2.1) globally and uniquely exists in Xjoc(0, 00).

Theorem 2.2 (Uniform boundedness). Under the conditions of Theorem 2.1, if the initial perturbation vy €
Xo(—7,0) is small enough, namely, there exists a constant &y > 0 such that Mg < o, then the solution v(t, &) of
the perturbed equation (2.2) satisfies v € X(0,00), and v(t, &) is uniformly bounded in X(0, co):

M2, < CM3. (2.3)
Theorem 2.3 (Stability). Under the conditions in Theorem 2.2, then it holds that
lim sup |v(t, &) =0.

t—o0 ISR
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3. Proof of global existence and uniqueness

When t € [0, 7], (2.1) is linear, because t — T € [—7, 0] such that P(v(t —1,& —y —c.T)) = P(wo(t— 7T, & —
y — ¢«T)). Thus, the solution of (2.1) can be explicitly and uniquely solved by, for t € [0, 7]

t
v(t,a)—e—dtj G(n,t)vo(o,a—n)dn+J e—d“—”j G(n,t—s)
0 R

R (3.1)

J h(y)P(vo(s —T,& =1 —y —c,7))dydnds,
R

1 (n+cxt)?

where G(n,t) = v
When vy € Xo(—T1,0), we are going to prove v € Xj,.(0,T). Multiplying (2.1) by w(&)v(t, &), and using
Cauchy-Schwarz inequality

D
IDw'vve| < Dwva +— 1 (Vv\; 2wv?,
we obtain
c.w' D w
{= sz}t +{ wv? —Dwvgle +{——— — — (—)? + dwv?
2 w 4w

< J h(y)P(vo(t — T, & —y — cT))Wvdy.
R

Integrating the above inequality with respect to & and t over R x [0, t], we then get

t

t
IVwWVliF, +my L J wv?déds < 2J
R

j J h(y)P(vo(s — T, £ —y — cor)Jwvdydids + [Vamvo ()P, (3:2)
0JRJR

where my = c,A, —DA2 +d =1b’(0) [ h(y)e AU+ > 0.
We now turn to estimate the flrst and second terms of right-hand-side of (3.2),

JtJ J h(y)P(vo(s — T, & —y — c.T))wvdydéds
0 JRJIR

t
<CJ J J h(ylivo(s — T, & —y — e T)wivldydéds
0 JRJR

rt C t
<e ||\/WV||2L2 ds+ — J J h(y)wlvo(s — T, & —y — c,7)*dydéds (3.3)
Jo 4e Jo JrR JR
ot C rt—1
=e| IVwlds+ — J J h(y)wlvg (s, &)Pdyd&ds
Jo 4e ] - JrRIJR
rt C r0
Sel II\/WVIIZdeerZ II\/ (s)I[72ds.

Substituting (3.3) into (3.2), taking m; > €, we get

t 0
V(O + [ IVi(s)saeds < CIVmO)R: +C [ Ivimals)liads <oo, forte 0t (34

On the other hand, we multiply (2.1) by w(&)v(t, &), and integrate it with respect to £ and t over R x [0, t],
but using Cauchy-Schwarz inequality in a different form

D
IDw'we| < ZW"E"'
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we have

|wv(t)||%z+DJ IVwve ()22 ds
0 (3.5)

t

t
< 2sz ||\/Ww(s)|i2ds+zj
0

OJRJRh(y)P(vo(s—T,a—y—c* O)wvdydéds + [[Vivo(0)]2,

where my = [2DA2 — ¢, A, + dl. According to (3.4), we can get the estimate for fs II\/VT)VEII%Z ds:

(e llmJ IWavve (s)]22ds < Cllvmvol 2+cj IvAwvo(s)lads < oo, forte 0,7,  (3.6)

Similarly, differentiating (2.1) with respect to & and multiplying it by w(&)ve(t, &), and integrating the
resultant equation over [0,t] x R for t € [0, T], we can prove

t 0
IVawve (bR + | Ve (s)ifds < v O +C | IVamo(s)Byuds < oo, for te (0,1, (37)
0

From (3.1), we have

t
Iv(t)llc < e vo(0)llc +C  sup Ivo(s —T)Ich e dlt=slgs
s—te[—T,0] 0

<e W(0)llc+C  sup  [volt—T)llc (38)
t—te[—1,0]

< oo fortel0, .

On the other hand, since vo € Cunitf(—T,0), namely, limz ,oovo(t, &) = voeo(t) € Cl—7,0] and
limg_, o0 a‘gvo(t, &) = 0 all exist uniformly in t for k = 1,2, we can prove v € Cyn;[0, T]. In fact,

t
Iim v(t, &) = e_dtJ G(n,t) lim vo(O,é—n)dn+J e_d(t_s)J G(n,t—s)J h(y)
R R R

&—o0 0

- lim P(VO(S—T & —n—y—c.T))dydnds

o0 . (3.9)

= e Ity (0) —i—J e )Py o (s — 1)) ds
0

:=¢g1(t), uniformly with respect to t € [0, T].

Similarly, noting the facts
G(ﬂ, t)|n::|:oo =0 and (anG(nr t))|n::|:oo = 0/

we can prove that, for k =1,2,

t

lim algv(t, &)= edtJ 0kG(n,t) lim vo(O,E—n)dn—i-J ed(ts)J kG, t—s)
&—00 R n £ 500 0 R n
J h(y) lim P(vo(s — T, & —n—y —c,T))dydnds

R E— o0

t
— e U0 (0) | 3G an+ | e U Plvgufs ) (3.10)
R 0

| akemt—s)| noyayanas
R R

=0, uniformly with respect to t € [0, T].
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Thus, (3.4)-(3.10) imply v € Xjoc(0,T), and
IMCOIR + [lvavv(t J Iv(s)Pads
0
C(Ivo(0)I12 + v/mwvol H1+J Ivwvo(s)Peds), te [0,

for some C > 1.

When t € [t,271], (2.1) with the initial data v(s, &) for s € [0, 7] is still linear because the source term
Pi(v(t — T, & —y —c4T)) is known since t — T € [0,7] and v(t — T, & —y — c,T) is solved in (3.1). So the
solution v(t, &) for t € [1,21] is uniquely and explicitly given by,

t
v(t,a)zedtj G(n,tJV(T,E—n)dn+J ed“s)j Glnt—s)
R R

T

- LR h(y)P((s — T, & — 1 —y — cu7))dydnds.

By taking the same estimates as in (3.4)-(3.10), we can prove v € Xjoc(T,27), that is,

M) + [vwv(s JH\F $)IP,ads
CAMDIE + vz JII\F 2,.ds)

0
< C(Ivo(O)I: + [Iv/wvol H1+J Iwvo(s)Pads), t € [t,24.

As similarly shown in (3.9) and (3.10) that

t
lim v(t,£) =¢ 4| 6(n,0) lim vix & —mdn+ | e | Gmt-s) | hoy)
&—o00 R &—00 R R

T

lim P(v(s—1,&—n—y—c.1))dydnds

&—+o00
t

- e—‘“gl(mj e~ (t=51p( gy (s — 1)) ds

T

:=gz(t), uniformly with respect tot € [0,1],

and

t

lim 9¥v(t, &) :e_dtJ OXG(n, t) lim v(T,E,—n)dT]—l—J
&—o0

&— o0 R T

e d(t=s) J al‘lG(n,t —s)
R

&—00

J h(y) lim P(v(s—1, & —y —c.T))dydnds
R

t

—ue?" | 2k tydn -+ |

T

e 3IP(gi(s—1)) | kG, t—s)-| h(y)dydnds
R R
=0, uniformly with respect to t € [t,21].

Repeating the above steps, we can prove that v € Xjo.((n — 1)1, 1), uniquely exists, and satisfies

t

IMOIE + [lvavv(t H1+J IWwv(s) 2 ds

(n—1)t

0
< ™ (Ivo(O)I% + [Iv/wvo (0 +J wvo(s)Pads), t € [(n— 1)t nl.
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And finally we prove that v is unique, and v € X, (0, co) with, for any T > 0, that

t
IVIE + IVwv(©)F + JO IVwv(s)l}.ds

0
< Cr(Ivo(O)IIE + [WWwvo (0I5 +J IVwvo(s)l[F2ds), t € [0, T].

4. Proof of uniform boundedness

To our knowledge, the weighted-energy method in [6, 10] can not estimate the boundedness of
o llvV/wvgl?,, since we can not use the Cauchy-Schwarz inequality to control the vvg by vza. Thus, we
must find a different method to handle it. Here we adopt the so-called anti-weighted method [5, 8, 15],

namely, let v(t, &) = ﬁwt, £), e, V(t,&) = VW(EV(t, &) = e ME(t, &)

We obtain the following equations for the new known v(t, &) satisfies

Vet &) + kaVe (t, &) — DVee(t, &) + koV(t, &) — J]R h(y)b’(d(& —y — c.t))e M yteT)
N (4.1)

Vt—T,&—y—cyT)dy = J}Rh(y)Q(V(t—T,E—y —c.71))dy,

V(s, &) = vw(&)v(s, &) =v(s,8), (s,&) e€l—1,0 xR,

where
k1 = Cy —2DA,, Kk = CyAs _Dy\i +d
satisfying
ko = CyAs — D}\i +d= b/(O) J h(y)e_}\*(U-FC*T)dy
R
and
QE) =e M5Qv)

satisfying

~ c

QW) < Ce MEW?E = ——RPP,

w(E)

where v =v(t —T,& —y —c.T).
Now we establish the uniform boundedness of the solution v € X(0, co) by several lemmas.

Lemma 4.1. It holds that

t

t
()2, +J0 jRA(a)ms, £)dEds + 2D jo e (s) 2 ds
t

< ||vo(0)||%z+cj

L s VR E oy )2
OLRLRh(y) W(E)IV(s,E)HV(s T, &~y —c.1)|"dydéds (4.2)

0

+b’(0)J

—T

J J e M Wre TR (s, £)PdydEds,
R JR
where

A(E) = LR h(y)e MVFETRb(0) — [0/ ($(E)) — b (b (& —y — c.1)dy.
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Proof. Multiplying (4.1) by v and integrating it with respect to & and t over R x [0, t], we have
t t
R0 + 2k | | F(s,£)Pdeds +2D | [Fe(s)fads
0 JR 0

t
—ZJ J J h(y)b’ (& —y — cut))e VTN (s — 1, & —y — ¢, 1) dydEds
0 JRJR
I

=2J J J hy)Q((t -1, & —y — c,7))vdydeds + [Fo(0)[Ps
0JRJR

Using the Cauchy-Schwarz inequality and the change of variables, we can estimate
t
‘ZJ J J h(y)b’(p(& —y —cy1))e M UHeTF(s — 1, & —y — co1)dydéds
RJR

0
t
<J J J h(y)[b(b(E —y — cut))le MV FTR(s, £)PdydEds|

0JRJR

t
+J j j R (G(E —y — cx))le €T (s — 1, & —y — 1) Pdydéds
0JRJR

:HRJRh(be’wa—y—c*rme

0

t—T
+J j j hiy)b ($(E))le ™ U eT (s, £)Rdydeds
RJR

—T

Ayt T(s, ) Pdydéds (4.3)

t
J J J ) [b/ (& —y — cor))| + [’ (G(E))le A e (s, £)2dydéds
0JRJR

+b’(0)

<

r0
j j hiy)e M U+ (s, £)2dydéds.
RJR

On the other hand, we have
t [ ~

” J hy)Q(t—T &~y —c*r))vdgdads)

B (4.4)

0
t 1 i
<cC OLRLRh(y) L

—1,&E—y— C*T)Izdydé,ds.

t
J £ (s, £) IszdS+ZDJ e (s)]22ds

Iv(t 2+
L 0

1 . _
F(s, &)IV(s — T, & —y — cu1)[Pdydéds

< [Ro(0)I2, + CJO LR LR h(y)\/ﬁv

0
+b'(0)j J J e M UHe TG (o ) 2dydéds,
R JR

—T

where
—As (y+C*T)] dy

AE) = 2kz—jR hy) b ($ (& —y — cot))| + b/ (B(E)le

= 2le.h =D+ d = | (I (B(E —y — cr)l-+ b [aE) Je e T ay

= LR h(y)e MW Rb/(0) — b/ (&) — b/ (b (& —y — cu1))1dy.

Lemma 4.2. It holds that
A(E) = Cad(E) >0

for some positive constant Cs.
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Proof. The proof is similar to [1], so we omit it. O

Lemma 4.3. There exists 1 > 0, when My, < 81, then

t t
(Ol +J0 qu>(a)w(a)|v(s, a)Fdéde e (s)I22ds

0
< C3(IFo (01, + j IFo(s)I2>ds) < CsM3, t € [0,00),

—T
where Cz is a positive constant.

Proof. Since V(t, &) = /w(&)v(t, &), by lemma 4.2, then the second term of the left-hand-side of (4.2) can
be written as

t t
J J A(E)(s, £)PdEds > C, JO LR(P(E)W(&)V(S, £)RdEds. (4.5)

0 JR

This can be used to control the nonlinear term in (4.2).
Now we are going to estimate the nonlinear term in (4.2). It can be reformed as

H J Rly)— (s, £)|F(s — 1, & —y — c.) PdydEds
0 JRJR Y w(E) ’ Yo Y

t
:J J J h(y)w(g’_y_C*T”\)(S/E)HV(S_T/E—U—C*T)|2dyd5,ds (4.6)
0 JRJR
:JtJ J h(y)q)(a_y_C*T)W(E'_y_C*T)M‘V(S_T/E—y—C*T)|2dyd£ds,
0 JRJR G(E—y—cu)
So we need further to estimate %

Notice that the critical wave ¢(x + c.t) is positive and bounded, and lim; o $(&) =uy and $(&) =
O(1)&|leME — 0 as & — —oo, so, there exists a number &; near —oo, i.e., & < 0 and |&;| > 1, such that
(&) = O(1)[E]eME — 0 for & € (—o0,&1), and $(&) = O(1) for & € [£1, o0). Thus, by the definition of w(§),
we can verify that

d(E—y—c.1)  |C, t € [£1,00)

for some positive constant C. This with the definition of solution space X(—t,00) and the definition of
M as well as Sobolev inequality guarantees

1 < {c\/w(a), t € (o0, &), a7

_ AL < sup  Cywph(t)|+ sup Clv(t)|
eeR PE—Y—CT) e ooey) E€[£1,00) (4.8)
< Csup vwlv(t)|+ Csup v(t)] < Cllvwv(t)[[i + Cliv(t)llc < CM.
£€R £€R

Thus, applying the above estimates (4.8), from (4.7) we can estimate the nonlinear term in (4.2) as follows

M(s, £)IF(s — 1, & —y — c.1)Pdydéds

Ll

-[ S 1
_JOJIRJIRh(y)d)(E y-ewlE—y—em) o — s — i —y —eridydids

ot
< Moo J J h(Y)b(E—y —cxtIW(E —y —cut)v(s — T, & —y — ct)PdydEds

e (4.9)
— oM [ || hetenies, £)Paydzas

rt 0
<M J ¢(a)w(a)|v(s,a)|2dads+CMOOJ
R

JRMa)w(aJ\vO(s, £)Rdeds

rt

0
< CMa, 0LR¢(a)w(a>|v(s,a>|2dads+c j Rols, £)]2,ds.
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Combining (4.2), (4.6), and (4.9), we get
t t
B(LIs +[C2 — CaMad] L LR O(E)W(E)Iv(s, E)PdEds + L e (s)P2ds
0
<c5(||vo(0)||%z+J Fo(s)|22ds)

for some positive constants C4 and Cs, which immediately implies (4.5) by taking M, to be small, for
example, let

G
0< Mg €81:1= —,
1= 2¢,
then the corresponding constant C3 in (4.5) is
C
C3 — 75(:
min{1, =2}
The proof is complete. O

Similarly, the estimate for v; can be established as follows.

Lemma 4.4. When My, < 81, then

t
e (01 +L Fee(s)P2ds < Co(Moo + 1)M3, t € [0, 00) (4.10)

and

ds < C7(Mo +1)M3, t e [0,00), (4.11)

d -
allva(S)llsz

L

where Cg and Cy are some positive constants.

Proof. Differentiating (4.1) with respect to & and multiplying the resultant equation by v; and integrating
it with respect to & over IR, we obtain

d 9 |~ o~
TeVe 0l + 2kalVe (012 + 2D Ve (1)1
=2J J ()b’ (& —y — cxr))e M ITeDT, T, (t— 1, & —y — cy1)dydE,
RJR
+2J J hy)b” (d(&—y —cu1))d(§ —y —cyr)e MuteT)
R JR

Vev(t—1, & —y —c.1)dydé + ZLR LR h(y)(ég(V(t — 1, & —y—c,T))VedydE
=I(t) + Ix(t) + I3(t).

Integrating it with respect to t over [0, t], we get

t t

t
Ve (DI +2sz Ve (s)lIf2ds = Vo, (0)I1> + L [1(s) + I2(s) + I3(s)lds.  (4.12)

||va(s)||%zds+znj
0

0
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By using the estimate (4.5), Cauchy-Schwarz inequality, the change of variables, and the facts that [¢/(&)| <
Ch(&), and v(t, &)| < CMq for (t, &) € R4 X IR, we can similarly estimate the nonlinear terms as

t rt

th(s)lds<C J J hiy)e MO D [ 2 4 g (s — 1, £ —y — cut)Pldydéds
0 JO JRJR

t—7T

rt
=C IVallideCJ J J h(y)e MWHeTR, (s, £)Pdydéds
JO R JR

ht o (4.13)
<c| ||va||%2ds+cj F,e (s)Pds
J —T
o~ O o~
< CFo(0)IP +J o (s)|P2ds) < CMG,
—T
t rt
J IIb(s)lds < C J J h(g)e_}‘*(9+C*T)[|§g|2+Id)'(E,—y—c*T)IZW(s—T,E,—y—C*T)Iz]dydE,ds
0 0JRJR
rt rt ~
—c| welpaas + C J hiy)e 0+eD|p! (£ —y — c,1)f
JO JO JRJR
P(s — T, & —y —c,1)Pdydéds
t rt
<C| IRelPads+C j h(y)e ™ et g(g —y — c.1)
JO JO JRJR
. A o T 2
w(tci y C*T)Iv(s“t_;t,i Yy —c.7)[“dydé&ds (4.14)
_c| metaas+ ¢ J J h(y)e M +eD g (8 w(E)Iv(s, &) PdydEds
JO J—71 RJR
ot 0
<c| IFelads+ j J h(y)e M et gy (s, £)2dydeds
JO J—1JR JR
t
-+<:j J J'}uy)eA*9+°“ﬂ¢(ah~(anaﬂs,anzdydads
0JRJR
0
<qwmw@+Jn%mﬁma<CM%
—T
¢ t hy) -
J II3(s)lds < CJ J J Velve(s — T, & —y —cat)[V(s — T, & —y — c.T)|dydE&ds
0 0 JRJR v/W(E)
rt
< CMo J J h(y)velve(s — T, & —y —c.T)|dydéds
JO JRJR
ot
< CMy J J hY) Vel + Ve (s — 1, & —y — c.1)Fldydéds
JO JRJR
[t~ e T ~ 2 (4.15)
— M., |Wﬂgds+cmwj .[J1uwwa&a|qman
JO —T RJR
rt 0
< CM., ||vz,||%zds+Cij Fo.e (s)Pds
JO —T

0
oo(|vo(0)|iz+J_ o, (s)]22ds)

<CM
< CM MG,

provided My, < 9.
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Therefore, substituting (4.13)-(4.15) to (4.12), we get

t 0
e (012 +JO Fee (s)IPads < Co(Mao + 1) (F0(0)I2 +J o(s)IPads) < Co(Moo + M2

—T

for some constant Cg > 0, provided My, < 81. This proves (4.10).
From (4.11), we have

d, - ~ ~
all\)a(t)l\%z| < 2DIge (1172 + 2kalVe (1)1 + L ()] + (T2 ()] + T3 (t)].

Integrating it with respect to t over [0, t], we get

[ & mecsiifas

for some constant C; > 0, provided My, < 8. This proves (4.11). O

0
< C7(Moo + 1)(IMo(0)]13,1 +J Vo (s)I[f1ds) < C7(Moo +1)MG
—T

We now prove the boundedness for [[v(t)|lc = IIW*%V(t)IIC uniformly in t € [0, 00). Since v € X(0, c0),
s0 v € Cynif(0,00), namely, limg_, ;o v(t,&) = v(t,00) = z(t) exists uniformly for t € [—T,00), and
limg 4 ove(t, &) =limg 4o vee(t, &) =0 are uniformly for t € [—T,00). Let us take the limits to (2.2) as
& — 400, then

(4.16)

z'(t) + dz(t) = b’ (uy)z(t —1) = Q(z(t — 1)),
z(s) = zo(s), s € [—7,0l.

Similarly to [1] and [6], we have the following results.

Lemma 4.5. When d > b’(uy.), with any time-delay T > 0, or d < b’ (u..) but with a small time-delay 0 < T < T,
where T is a constant, then,

hu(t, 00) = Iz(t)] < CMgoe *t, t>0
for some 0 < p=pu(p,d, t,b'(uy)) < d, provided with |zp| < 1.

Lemma 4.6. It holds that

lu(t)llc < Csv/ Moo+ 1My, t € [0,00)
provided My, < 01.

Combining Lemma 4.3, Lemma 4.4, and Lemma 4.6, we can immediately prove Theorem 2.2.

5. Proof of asymptotic stability

From (2.3) and (4.11) , when My < 89, we get

d
EH(\/WV)&(S)H%Z}dS

ME)lle + (Vv (¢ )|Hl+j ||(\/¢wv)(s)||%2ds+JO ||w7w)a(s)||ﬁ1ds+jo
< C(Moo +1)M3, t e [0,0).

(5.1)

Set f(t) := ||§g||%2 = II(\/vav)g(s)llsz. From (5.1), we get that

(e¢] o0

f(t)dt < CM3, J If/(t)|dt < CM3.

0 < f(t) < CM3, J
0

0
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This implies

. . . o~ 2
lim f(t) =0, ie., th_)rrolo vellf. = 0. (5.2)

t—o0

By using Sobolev inequality H!(R) < C(RR)
F(lle < V2R@IIFE D2,

and the boundedness of |[v(t)]| = [|(v/wv)(t)]| < CMy and the convergence of (5.2), we then prove

lim sup [vVw(&)V(t, &)l = hm [v(t)llc = 0. (5.3)
t—o0 feR
Now, we are going to prove the convergence of lim{_,c sup;  [v(t,&)| = 0. To prove such a stability

relation, let us start from the far field & > 1. By the same fashion as shown in lemma (4.6), the solution
z(t) =v(t, 00) to the delayed ODE (4.16) decays exponentially

v(t, 00)| = |z(t)] < CMge *t, t € [0, 0). (5.4)

When d > b’(uy) with arbitrary time-delay T > 0, or d < b’(u;) but with a small time-delay 0 <
T < T. According to (2.1), we can write the solution in the integral form represented by the heat kernel
G (t —S, E - n)

Wt &) = e—dtj G, t)v(0, & —)dn +JO e d(t-s) JR Gl t—s)- LR hiy)

R (5.5)
-P(v(s—1,&—n—y—c.T1))dydnds.
Multiplying (5.5) by e** and noting [P(v)| < Clv|,i = 1,2, then we have
t
eyt )] < e (4 G (0, £ —midn+ et | e U | G ts)
R 0 R
J h(y)[P(v(s — T, & —n—y —c.7))|dydnds
K (5.6)

t
ge_(d_mtj G(ﬂ,t)|vo(0,5,—n)|dn+Ce”tj e_d(t_sJJ G(n,t—s)
R 0 R
J h(y)v(s —T,&—n—y —c.7)|dydnds.
R

Since v € X(0,c0) is the global solution of (2.2), namely v € Ci¢(0,00), then v(t, &) — v(t,00) = z(t) as
& — oo uniformly in t € [0,00). By applying the property of the heat kernel and the exponential decay
(5.4), then from (5.6) we get

t
Gl ) Jim fuo(0, & —m)ldn + Ce”tJ e—d(t—s)
—00

lim le"tu(t, £)] < e~ (4wt J
&—o00 0

R

.Lc(n,t—s)LR h(y) Jim s —7, &~ —y —c.Tldydnds

—00
t

< I\)O,QO(O)Ie_(d_”)t + Cett J |z(s —T)|ds
0

t
< V00 (0)] e (471t 4 Cemt J e d(t=s)e—nls—T)4q
0

CeMT? C(d—
= [V0,00(0) e~ (471" taale (dmwt)

< C, uniformly in all t > 0.
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This quickly implies that, there exists a number x; > 1 (independent of t), such that when & > x4, then

sup [v(t, &) < Ce ™, t>0. (5.7)
&€[xq,00) ’

Note that, /W(E) = e & > e=MX for & € (—o0,%1], then (5.3) implies

w(&)

lim sup [(t, &)< lim sup |[Ys2v(t, &) < et tlim sup [vw(&)v(t, &) = 0.

t—o00 el

e*)\*)q

X1,00) t=oo &€[xq,00) TP geR

This with (5.7) together proves

lim sup |v(t, &) = 0.
t—o0 EGFI){

The proof is complete.
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