
J. Math. Computer Sci., 25 (2022), 232–250

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

A simplex-based branch-and-cut method for solving integer
tri-level programming problems

Ashenafi Awrarisa, Berhanu Guta Wordofaa, Semu Mitiku Kassab,∗

aDepartment of Mathematics, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
bDepartment of Mathematics and Statistical Sciences, Botswana International University of Science & Technology (BIUST), Botswana.

Abstract

Optimization problems involving three decision makers at three hierarchical decision levels are referred to as tri-level
decision making problems. In particular in the case where all objective functions and constraints are linear, and all involved
variables are required to take integer values is known as integer tri-level programming problems (T-ILP). It has been known
that the general T-ILP is an NP-hard problem. So far there are very few attempts in the literature that finds an exact global
solution for integer programming hierarchical problems beyond two levels. This paper proposes a novel approach based on a
branch-and-cut (B&C) framework for solving T-ILP. The convergence of the algorithm is proved. Numerical examples are used
to demonstrate the performance of the proposed algorithm. Finally, the results of this study show that the proposed algorithm
is promising and more efficient to solve T-ILP. Moreover, it has been indicated in the remark that the proposed algorithm can be
modified and used to solve discrete multilevel programming problems of any number of levels.

Keywords: Tri-level programming, integer programming, branch-and-cut, valid inequalities.

2020 MSC: 90C10, 90C57, 91A65.

c©2022 All rights reserved.

1. Introduction

Many real-world decision problems involve multiple and independent decision makers (DMs), whose
interests are not necessarily aligned. Optimization problems involving multiple decision makers, whose
decisions are made in a sequential (or hierarchical) order are usually termed as hierarchical or multilevel
programming problems. In such problems, it is assumed that decisions made earlier in the sequence affect
the options available later in the sequence and the reactions from the lower levels affect the objective
values of the upper level.

Hierarchical problems can be classified based on the number of hierarchical levels in the decision
process and the type of decision variables in those levels. In particular, problems with three decision
makers at three hierarchical decision levels are referred to as tri-level decision making problems (also
known as tri-level programming problems). Decision entities at the three hierarchical levels are respectively

∗Corresponding author
Email addresses: aawraris@gmail.com (Ashenafi Awraris), berhanu.guta@aau.edu.et (Berhanu Guta Wordofa),
kassas@biust.ac.bw (Semu Mitiku Kassa)

doi: 10.22436/jmcs.025.03.03

Received: 2021-03-25 Revised: 2021-04-16 Accepted: 2021-05-20

http://dx.doi.org/10.22436/jmcs.025.03.03
http://dx.doi.org/10.22436/jmcs.025.03.03
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.025.03.03&domain=pdf


A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 233

termed as the top-level leader, the middle-level follower, and the bottom-level follower. In a tri-level
decision-making process, the decision entities make their individual decisions in sequential order from
the top level to the middle level and then to the bottom level with the aim of optimizing their respective
objectives. Tri-level programming problems can be used to model practical problems in several areas,
such as in supply chain management [22, 28], network defense [1, 30], planning [18], logistics [11], and
economics [15] to mention a few. Therefore, investigating the properties and solution approaches of
tri-level programming models has got a special attention in the last few decades.

Regarding solution approaches, many algorithms have been proposed in the open literature for solving
bi-level problems as compared to the tri-level ones and the existing majority of research on tri-level
programming has centered on the linear continuous version of the problem [16]. The discrete case, on the
other hand, has not received mach attention in the open literature with a rather very limited number of
studies. Generally, solution approaches presented in the literature for tri-level problems have addressed
a very restricted class of problems (such as twice continuously differentiable problems in [8, 13, 14], or
mainly linear continuous problems in [3, 25, 26, 31]), with only a few attempts to solve problems with
integer variables. Since the algorithms and methods proposed so far are sensitive to the behaviour of the
problem and are computationally expensive in some cases, it is more appealing to search for alternative
methods that give exact global solutions to such problems and their generalizations.

This paper focuses on solving a generic integer tri-level linear programs (T-ILP), i.e., a tri-level opti-
mization problem where all objective functions and constraints are linear, and all involved variables are
required to take integer values. In addressing such kind of optimization problems, Sakawa [21] proposed
a genetic algorithm to solve a special class of tri-level integer linear problems in 1999 and later on in 2014
Sakawa and Matsui [20] used a tabu search algorithm based on interactive fuzzy programming approaches
to propose a solution strategy for 0-1 type problems. However, these methods produce approximate and
sub-optimal solutions to the problem and finding an exact global optimal solution is essential in many
application problems. More recently, Avraamidou and Pistikopoulos [2] proposed a parametric global
solution of tri-level mixed-integer linear optimization problems containing both integer and continuous
variables at all three optimization levels. Though the multi-parametric method gives exact global optimal
solution, there are cases where the procedure becomes computationally expensive. Therefore, it is rather
evident that alternative general strategies for the exact (global) solution of pure-integer tri-level linear
problems are still lacking.

In this paper, we present a relatively simple branch-and-cut algorithm that solves general pure-integer
tri-level programming problems. The main contributions of this paper are twofold. First, it extends the
algorithm developed by DeNegre and Ralphs [7] that solves integer bi-level programming problems to
effectively solve general integer tri-level programming problems. Second, it gives a way of extending the
same method to solve any similar but higher level problems using the modified procedures.

The organization of the paper is as follows. Following the introduction, we present in Section 2 basic
definitions and some theoretical properties of tri-level integer linear programming problems (T-ILP) that
we shall investigate in the remaining sections. Based on the facts stated in Section 2, a branch-and-cut
algorithm is proposed to solve the T-ILP in Section 3. Then, in Section 4, numerical examples for integer
linear tri-level programming problems are provided. Finally, conclusive remarks are given in Section 5.

2. Basic definitions and theoretical background

In this section we introduce some definitions and explain the theoretical background for tri-level
integer linear programming problems (T-ILP).

Let x ∈ Zn1 , y ∈ Zn2 , and z ∈ Zn3 represent the variables controlled by the upper-level DM (the
leader), the middle-level DM, and the lower-level DM, respectively. A linear tri-level integer programming



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 234

problem is given by:
min
x

F1(x,y, z) = a1x+ b1y+ c1z

s.t. A1x+B1y+C1z 6 b
′
1 where [y, z] solves

min
y

F2(x,y, z) = a2x+ b2y+ c2z

s.t. A2x+B2y+C2z 6 b
′
2 where z solves

min
z

F3(x,y, z) = a3x+ b3y+ c3z

s.t. A3x+B3y+C3z 6 b
′
3

(x,y, z) ∈ Z
n1
+ ×Z

n2
+ ×Z

n3
+ ,

(2.1)

where ai ∈ Rn1 , bi ∈ Rn2 , ci ∈ Rn3 are row vectors, b ′i ∈ Rqi , Ai ∈ Rqi×n1 , Bi ∈ Rqi×n2 , Ci ∈ Rqi×n3

for i = 1, 2, 3.
Assume that n = n1 + n2 + n3. Corresponding to problem (2.1), the following basic definitions of

terms are important for the theoretical analysis of tri-level linear programming problem as in [3, 27].

Definition 2.1 (Regions).

a. The constraint region of the T-ILP is given by

ΩI := {(x,y, z) ∈ Zn+ : Aix+Biy+Ciz 6 b
′
i, for i = 1, 2, 3, }

i.e., it is the set of points that satisfy all the upper-level, the middle-level and the lower-level con-
straints.

b. For any given x ∈ Z
n1
+ the feasible region of the second level is

SI(x) :=
{
(y, z) ∈ Z

n2
+ ×Z

n3
+ : B2y+C2z 6 b

′
2 −A2x, B3y+C3z 6 b

′
3 −A3x

}
,

i.e., the second level feasible region is affected by the leader’s choice of variable x, and the second
level allowable choices must be from the elements of ΩI.

c. The feasible region of the third level: For any given (x,y) ∈ Z
n1
+ ×Z

n2
+ the feasible set of the third

level is

SI(x,y) := {z ∈ Z
n3
+ : C3z 6 b

′
3 −A3x−B3y}.

d. The rational reaction set of the third level for any given (x,y) is

MI(x,y) :=
{
z : z ∈ argmin

z

{F3(x,y, z), z ∈ SI(x,y)}
}

,

i.e., MI(x,y) is the set of third level optimal solutions for a given values of (x,y).
e. The rational reaction set of the second level for any given choice x of the leader is

MI(x) := {(y, z) : y ∈ argmin
y

{F2(x,y, z) : (y, z) ∈ SI(x), z ∈MI(x,y)}},

i.e., MI(x) is the set of second level optimal solutions corresponding to the solution x of the leader.
g. The set

IRI = {(x,y, z) : (x,y, z) ∈ ΩI, (y, z) ∈MI(x)}

is called the inducible region of problem (2.1).

Using the inducible region as given in Definition 2.1, the tri-level optimization problem (2.1) can be
equivalently reformulated as

min F1(x,y, z)

s.t. (x,y, z) ∈ IRI.
(2.2)



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 235

Notation 2.2. In this paper, we use Ω, S(x), S(x,y)M(x), M(x,y), and IR to denote the regions for which
(x,y, z) ∈ R

n1
+ ×R

n2
+ ×R

n3
+ by removing the superscript I from the definition of problem (2.1).

A solution (x∗,y∗, z∗) is called tri-level feasible to the optimization problem (2.1) if (x∗,y∗, z∗) ∈ IRI or
equivalently if it satisfies the following four conditions:

(C1) (x∗,y∗, z∗) ∈ Ω;
(C2) (x∗,y∗, z∗) ∈ Z

n1
+ ×Z

n2
+ ×Z

n3
+ ;

(C3) (y∗, z∗) ∈MI(x∗);
(C4) z∗ ∈MI(x∗,y∗)).

Moreover, a point (x̄, ȳ, z̄) is said to be an optimal solution to problem (2.2) if

i. (x̄, ȳ, z̄) is tri-level feasible; and
ii. F1(x̄, ȳ, z̄) 6 F1(x,y, z), for all (x,y, z) ∈ IRI.

In this case, F1(x̄, ȳ, z̄) is called the optimal value for problem (2.2).
In the formulation of problem (2.2), there is an ambiguity when multiple middle-level and lower-level

optimal solutions exist. In the optimistic (or strong) formulation case, each of the middle-level and lower-
level decision makers are assumed to select the one leading to the best from their optimal solution set
according to the interest of the upper-level decision maker. On the contrary, in the pessimistic (or weak)
formulation case, the middle-level and lower-level decision makers are assumed to select the one leading
to the worst from among the possible optimal values of the upper level decision maker’s interest. In this
paper, we consider the optimistic formulation to avoid any such ambiguity.

In order to ensure the problem is well-posed and has a solution, our proposed approach requires the
following assumptions.

Assumption 2.3.

A1. The constraint set ΩI is bounded and nonempty.
A2. The feasible set IRI is nonempty.
A3. For decisions taken by the leader, each of the followers have some room to respond, i.e., MI(x) 6= ∅

and MI(x,y) 6= ∅.

3. Branch-and-cut method for tri-level integer linear programming problems

There are various solution approaches proposed for bilevel discrete optimization problems. Some of
the recent works can be obtained in [6, 7, 10, 19, 23, 29], where some of these methods often resulting
in approximate solutions while others give exact solutions. However, due to the introduction of the
middle-level follower in the problem, solution approaches developed for bi-level programming are not
necessarily applicable to tri-level optimization problems. In this section we present modified procedures
that will lead us to the proposed solution algorithm for tri-level integer linear programming problems.

3.1. Computational challenges in tri-level integer linear programming

A general branch-and-cut method for single level problems is a very successful algorithmic procedure
for solving a variety of integer programming problems. Such a method functions based on the key ideas
such as separation, relaxation, bounding, fathoming, and branching and using cutting planes to tighten the
linear programming relaxations.

Those commonly used algorithmic frameworks can also be applied for tri-level integer linear pro-
gramming problems followed by a process of removing its optimal solution if it is tri-level infeasible. But,
the usual bounding, fathoming, and branching procedures employed in traditional linear programming



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 236

(LP)-based branch-and-bound algorithms for solving T-ILP cannot be applied in a straightforward way.
To see this consider the following example.

min
x1

F1(x1, x2, x3) = −x1 − 4x2 − 5x3, where [x2, x3] solves

min
x2

F2(x1, x2, x3) = 2x3, where x3 solves

min
x3

F3(x1, x2, x3) = −x3

s.t. 3x1 + 6x2 + 3x3 6 24
x1 + 2x2 + 3x3 6 12
3x1 + 2x2 + x3 > 6

(x1, x2, x3) ∈ Z1
+ ×Z1

+ ×Z1
+.

(3.1)

Figure 1 shows the half-space intersection of all the constraints and the non-negativity constraints for
problem (3.1). Moreover, the values of all the vertices (corner points) of the solid and the corresponding
upper level objective function values are given in Table 1.

Figure 1: Solid obtained from the intersection of all the constraints of Eq. (3.1) as presented in [12].

Table 1: Feasible solution set and the respective objective function values.
S.No. Vertices Coordinates Objective Function

(corner points) value F1
1 V1 (2,0,0) -2
2 V2 (4,0,0) - 8
3 V3 (0,4,0) -16
4 V4 (0,3,0) -12
5 V5 (0,3,2) -22
6 V6 (0,1.5,3) -21
7 V7 (7.5,0,0.5) -10
8 V8 (6,0,2) -16

First we make a reasonable effort to solve the original problem (Problem (3.1)) by considering a relax-



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 237

ation of it as:

min F1(x,y, z)
s.t. (x,y, z) ∈ IR.

It is well known [24] that optimal solution of the linear tri-level programming problem occurs at a vertex of
the continuous induced region IR and also if (x1, x2, x3) is an extreme-point of the induced region IR, then
it is an extreme-point of the constraint region Ω. However, this may not be true for pure-integer tri-level
programming problems as the optimal solutions may occur in the interior of the tri-level feasible region.
In this example, optimizing over the continuous region IR, yields the integer solution (x1, x2, x3) = (6, 0, 2)
(note that this point is in the inducible region) at the vertex V8, with the upper level objective value −16.
But, the true solution of the problem with the extra requirements of integrality is (x∗1 , x∗2 , x∗3) = (1, 1, 3) in
the interior of Ω with the upper-level objective value F1(x

∗
1 , x∗2 , x∗3) = −20. As a consequence, we have the

following observations.

Observation 3.1.

i. A solution of the relaxed problem which is formed by removing integrality constraints does not
provide a valid bound for the solution of the tri-level integer programming problem (3.1), i.e.,
IRI * IR – in general also to problem (2.1).

ii. Solutions to the relaxed problem that are in IRI are not necessarily optimal solutions to Problem
(3.1) (and hence also to problem (2.1)).

In the next subsections, we describe the procedure that overcomes these challenges to develop a
generalized branch-and-cut algorithm for tri-level integer linear programming problems that follows the
same basic paradigm used in bi-level and single level integer linear programming problems [7, 25].

3.2. Relaxation of tri-level integer linear programming

To solve the problem given in Eq. (2.1) it usually requires the solution of one or more easier sub-
problems, where the integer restrictions and/or some of the other constraints are dropped. These easier
problems are known as relaxations. To get these relaxations, first we convert a tri-level integer linear pro-
gramming problem Eq. (2.1) as an equivalent single level problem using the optimal value reformulation
(as in Outrata [17]), to get the following problem:

min F1(x,y, z) (3.2a)
s.t. A1x+B1y+C1z 6 b

′
1 (3.2b)

A2x+B2y+C2z 6 b
′
2 (3.2c)

A3x+B3y+C3z 6 b
′
3 (3.2d)

F2(x,y, z) 6 ψ(x) (3.2e)
F3(x,y, z) 6 ϕ(x,y) (3.2f)
(x,y, z) ∈ Z

n1
+ ×Z

n2
+ ×Z

n3
+ , (3.2g)

where

ψ(x) := min{F2(x,y, z) : (y, z) ∈ SI(x), z ∈MI(x,y)},

ϕ(x,y) := min{F3(x,y, z) : z ∈ SI(x,y)}.

Proposition 3.2. If (x∗,y∗, z∗) is an optimal solution of problem (3.2), then it is also an optimal solution of problem
(2.1) and conversely. That is, the two problems (3.2) and (2.1) are equivalent.



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 238

Proof. We first consider a feasible solution (x∗,y∗, z∗) to problem (3.2), and show that (x∗,y∗, z∗) is also
feasible to problem (2.1). Constraints (3.2b)-(3.2d) and (3.2g) ensure that (x∗,y∗, z∗) ∈ ΩI. Note that
constraints (3.2e) and (3.2f) enforce that (y∗, z∗) ∈ MI(x) and z∗ ∈ MI(x,y). Hence tri-level feasibility
condition is established. Thus (x∗,y∗, z∗) is feasible to the T-ILP (2.1). Because the objective function
for both problems are the same, any feasible solution of (3.2) corresponds to that of (2.1). The converse
statement is also not difficult to verify and hence is omitted here for brevity.

An optimization problem obtained by dropping the optimality requirements (3.2e) and (3.2f) for the
middle and follower variables of problem (3.2) is called the high point relaxation (HPR) [10], which is
stated as

min F1(x,y, z)
s.t. A1x+B1y+C1z 6 b

′
1

A2x+B2y+C2z 6 b
′
2

A3x+B3y+C3z 6 b
′
3

(x,y, z) ∈ Z
n1
+ ×Z

n2
+ ×Z

n3
+

(HPR)

OR
min F1(x,y, z)

s.t. (x,y, z) ∈ ΩI.
(HPR)

Clearly the inducible region IRI is a subset of the feasible domain of the high point relaxation problem
(HPR), i.e., IRI ⊆ ΩI.

The LP-relaxation of problem (HPR) which is obtained by dropping the integrality requirement on all
or part of the variables is denoted by HPR and has the following form:

min F1(x,y, z)
s.t. (x,y, z) ∈ Ω.

(HPR)

This problem has the following properties.

i. Since Ω is less constrained than ΩI, the feasible domain of problem (HPR) is a subset of that of
problem (HPR), i.e., ΩI ⊆ Ω.

ii. IRI ⊆ ΩI ⊆ Ω.

Proposition 3.3. If a point (x,y, z) is infeasible for the LP-relaxed problem (HPR), then it is also infeasible for the
original T-ILP problem.

Proof. The proof obviously follows from the condition that IRI ⊆ ΩI ⊆ Ω.

3.3. Branching
Branching is a strategy for which unexplored nodes in the tree generate children by partitioning the

solution space into smaller regions that can be solved recursively. An important question is how to branch,
or how to split a subproblem into smaller subproblems. In this paper, we use the most common method
called single variable branching. That is, at node t, pick an integer variable, say xt, whose fractional part
is the closest to 0.5 as the branching variable with the relaxed optimal solution component x̄t, and create
branches by adding simple linear constraints x̄t 6 bx̄tc and x̄t > dx̄te.

And also, choosing a good branching variable is another crucial component of branch-and-bound
algorithm. We denote by Ic ∈ I the set of all candidate branching variables at a particular node in the
branch-and-bound tree. A simple branching rule is to select the variable with the largest integer violation
for branching, in other words, choose

argmax
i∈Ic

{min(x̄ti − bx̄tic, dx̄tie− x̄ti)},

which is known as maximum fractional branching.



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 239

3.4. Bounding
The next fundamental process of the algorithm is formulation of the lower and upper bound of the

problem at each given iteration. Bounding is determining a lower bound and upper bound to the optimal
value of the given problem. Theses values are used to prune off regions of the search space that are
suboptimal. Typically, lower bounds are obtained by solving LP-relaxation of the high point relaxation
problem. Upper bounds are obtained by producing a tri-level feasible point (a point in the inducible region
of the problem). An integer solution of HPR produces only a lower bound (but tighter than that of its
relaxation) for the original problem. We denote the lower and upper bounds associated with node t by
LBt and UBt, respectively. Whenever we cannot obtain a feasible solution to a given subproblem t, we
set UBt =∞. Similarly, if the relaxation at node t is infeasible, we set LUt = −∞ and the node is pruned.

3.5. Pruning rules of tri-level integer linear programming
The pruning rules for T-ILP branch-and-cut are based on optimality and tri-level feasibility of sub-

problems. We let UBt be an upper bound on the subproblem at node t (initialized as UB0 =∞).

1. Infeasible nodes. If the relaxation of the HPR for the subproblem at a node is infeasible, then any
problem in the subtree rooted at this node is also infeasible. Thus, we can prune infeasible nodes.

2. Integer feasible nodes. If the solution, (xt,yt, zt) of (HPR) satisfies Conditions (C1) to (C4) of
the tri-level feasibility conditions (given on page 235), then we obtain a new incumbent solution if
F1(x

t,yt, zt) < UBt, and we set (x∗,y∗, z∗) = (xt,yt, zt) and UBt = Ft(x
t,yt, zt). Otherwise, we

prune the node because its solution is dominated by the upper bound.
3. Upper bounds on T-ILP nodes. If the optimal value of T-ILP F1(x

t,yt, zt) (or in fact a lower bound
on the optimal value) is dominated by the upper bound (that is, if F1(x

t,yt, zt) > UBt), then we can
prune this node because there cannot be any better integer solution in the subtree rooted at each
level of the LP-relaxation problem.

3.6. Cutting procedure for tri-level integer linear programming
If a solution for (HPR) containing any fractional element, we apply the branching rules to remove such

fractional infeasibility. However, if at node t a solution (xt,yt, zt) of HPRt satisfies integrality condition
but not tri-level feasibility, we aim at deriving a cutting plane that will cut off the point (xt,yt, zt) from
the search region while not affecting all the points in IRI. To this end we introduce a valid inequality
constraint into the problem HPRt and re-solve it.

A valid inequality for an integer program (IP) is any constraint that does not eliminate any feasible
integer solutions [5]. But, for a tri-level integer program, this is not the only case. A valid inequality for
a tri-level integer program is any constraint that does eliminate a point which is integer feasible but not
tri-level feasible. It is also called a cutting plane, or simply an intersection cut [10].

In tri-level integer linear programming, we are interested in finding such valid inequalities for IRI. One
reason for this interest is derived from the relationship IRI ⊆ ΩI and it allows us to separate fractional
solutions to the LP resulting from the removal of the lower-level optimality and integrality restrictions. A
second motivation is that we can separate points that are integer but not tri-level feasible, that is, we want
intersection cuts that eliminate some members of ΩI but leave all others that are in IRI.

Because the first two conditions (C1) and (C2) of the feasibility conditions (given on page 235) are
enforced through the constraints of HPRt and branching, the requirement for membership of the solution
(xt,yt, zt) in ΩI is clear. Therefore, we must derive valid inequalities from the other two Conditions (C3)
and (C4). But the process of defining such valid inequality depends on the type of the problem to be
solved.

1. Valid inequality: For tri-level programming problems, in which all the problem data are integer
(with possible exception of the objective function), the valid inequality as defined in [7] can be
used to separate an integer solution (xt,yt, zt) of the relaxed problem HPRt from the set conv(IRI).
This cut can be derived by combining all inequalities that are binding at (xt,yt, zt) as described in
Proposition 3.4 below.



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 240

2. Intersection cuts: If the class of problem is not under the above category, one may consider using the
idea of intersection cuts as described in [9]. This cut procedure is valid for problems that satisfy the
conditions that Ajx+ Bjy+Cjz− b ′j are integer for j = 2, 3 at all solutions (x,y, z) of (HPR). The
intersection cuts can be employed for removing the infeasible integer solution (xt,yt, zt) from the
feasible region, but it is not guaranteed when the lower level constraints are not integer at those
points.

3. Hypercube intersection cuts: If the constraints of the lower level problems Ajx+Bjy+Cjz−b ′j, j = 2, 3
are not integer at the solution points, one may use the hypercube intersection cut as defined in Theorem
6 of [10]. The additional conditions in this cut are of the form xti − 1 6 xt 6 xti + 1 if Condition (C3)
is violated, and additional constraints of the form yti − 1 6 yt 6 yti + 1 will be used if Condition
(C4) is violated.

Proposition 3.4 (Generating Valid Inequalities). Let (x̄, ȳ, z̄) ∈ ΩI be a basic feasible solution to (HPR), where
all the problem data in (HPR) are integer. Let J be the set of indices of constraints that are binding at (x̄, ȳ, z̄), then

π1x+ π2y+ π3z 6 π0 − 1,

is valid for IRI, where (π1,π2,π3) =
∑
i∈J(ai,bi, ci) and π0 =

∑
i∈J b

′
i.

Proof. The proof follows the same arguments as in [7].
The fact that (x̄, ȳ, z̄) is a basic feasible point implies that there exist n = n1 +n2 +n3 linearly indepen-

dent constraints in the description ofΩ that are binding at (x̄, ȳ, z̄). Thus, the system aTi x+b
T
i y+c

T
i z = b

′
i,

i ∈ J has a unique solution, namely (x̄, ȳ, z̄). This, in turn, implies that (x̄, ȳ, z̄) is the unique point of in-
tersection between the hyperplane defined by the equation π1x+ π2y+ π3z = π0 and the set ΩI where
(π1,π2,π3) =

∑
i∈J(ai,bi, ci) and π0 =

∑
i∈J b

′
i. It follows that the inequality π1x+π2y+π3z 6 π0 is valid

for Ω. Because the face of Ω induced by this inequality does not contain any other members of ΩI and
there does not exist (x,y, z) ∈ Z

n1
+ ×Z

n2
+ ×Z

n3
+ such that π1x+ π2y+ π3z ∈ (π0 − 1,π0), this implies that

the inequality π1x+ π2y+ π3z > π0 is valid for ΩI \ (x̄, ȳ, z̄). Then applying property (ii) of Observation
3.1 yields the required result.

3.7. Description of the proposed method
Given a tri-level integer optimization problem (2.1), the goal of a branch-and-cut procedure is to

iteratively build a search tree T of subproblems, or subsets of the search space to find an optimal solution

(x∗,y∗, z∗) ∈ argmin
(x,y,z)∈IRI

F1(x,y, z).

As a first step in this procedure, one needs to solve the LP-relaxation of the high point problem:

min F1(x,y, z)
s.t. (x,y, z) ∈ Ω

(HPR)

using any linear programming solver to get a solution (x̄1, ȳ1, z̄1).
If the solution to (HPR) is infeasible (i.e., if condition (C1) is violated), then the T-ILP (2.1) is also

infeasible and hence the process will be terminated according to the assertion in Proposition 3.3. Other-
wise, if it is feasible but (x̄1, ȳ1, z̄1) /∈ Zn+ (i.e., tri-level feasibility condition (C2) is violated), then apply
ILP-Branch as indicated in Subsection 3.3 and solve the branched (HPR) problems again in each branch.
On the other hand, if the solution satisfies integer feasibility conditions (C1) & (C2), then we set the lower
bound to be LBt = F1(x̄1, ȳ1, z̄1) and check whether it satisfies tri-level feasibility conditions (C3) and (C4).

To check tri-level feasibility condition (C3), fix x := x̄1 and solve the middle level problem

min
(y,z)∈Ω∩{x:x=x̄}

F2(x,y, z), (LLP)



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 241

using any linear programming solver to get a solution (ȳ2, z̄2).
Let the solution to this (LLP) be (ȳ2, z̄2). Similarly, if this solution to (LLP) is infeasible, additional

investigation is needed and the current process will be terminated. Otherwise, if it is feasible but (ȳ2, z̄2) /∈
Z
n2
+ ×Z

n3
+ , then apply ILP-Branch to separate at (x̄1, ȳ2, z̄2) and solve (LLP) again in each corresponding

branch. On the other hand, if the solution satisfies integer feasibility, then we must check whether it
satisfies tri-level feasibility conditions.

If the point (x̄1, ȳ2, z̄2) is feasible but F2(x̄1, ȳ1, z̄1) 6= F2(x̄1, ȳ2, z̄2), then we generate a valid inequality
(as outlined in Subsection 3.6) and incorporate it to (HPR). With this modification, the problem is re-
optimized to improve the bound for (HPR). On the other hand, if F2(x̄1, ȳ1, z̄1) = F2(x̄1, ȳ2, z̄2), then
(ȳ2, z̄2) is optimal for (LLP) and we conclude that (x̄1, ȳ2, z̄2) is feasible for the second level problem and
satisfies condition (C3).

If (x̄1, ȳ2, z̄2) satisfies conditions (C1), (C2), and (C3), then we must check whether it also satisfies
condition (C4). This is done by fixing (x,y) := (x̄1, ȳ2) and solving the third level problem:

min
z∈Ω∩{x:(x,y)=(x̄1,ȳ2)}

F3(x,y, z). (LLLP)

Assume that the solution to this (LLLP) be z̄3. Similar to the middle follower step, if the solution to
(LLLP) is infeasible, the node will be pruned. In addition, if z̄3 is not an integer, one needs to apply the
branching rule until we obtain integer z̄3. If F3(x̄1, ȳ2, z̄2) = F3(x̄1, ȳ2, z̄3), then z̄3 is optimal for (LLLP) and
we can conclude that (x̄1, ȳ2, z̄3) is tri-level feasible, and the optimal solution is obtained for the current
node, and the node is pruned. Otherwise, we must again generate a valid inequality (or a cutting plane)
separating (x̄1, ȳ2, z̄3) from convIRI. Now suppose F3(x̄1, ȳ2, z̄2) 6= F3(x̄1, ȳ2, z̄3). In this case, (x̄1, ȳ2, z̄3)
does not satisfy condition (C4) and is therefore not feasible for the third level. We may still use (x̄1, ȳ2, z̄3)
to update the upper bound of the original problem, but we would like to add an inequality to (LLLP)
that is valid for ΩI and is violated by (x̄1, ȳ2, z̄3) using the procedure in Subsection 3.6 and the problem
is re-optimized to improve the bound for (HPR). This process repeats until a final optimal solution is
obtained.

The above procedure that solves integer tri-level programming problems is summarized in Algorithm
1.

Proposition 3.5. The procedures described in Algorithm 1 terminate at a global optimal solution of problem (2.1)
in a finite number of steps.

Proof. First observe that every discrete collection of non-empty bounded sets of ΩIt is finite because ΩI is
countably compact. Then, as mentioned in (HPR), each of the problems (LPt), and (LLPt) has an optimal
solution at an extreme point of LP-relaxation of (Ωit)

I ⊆ ΩI for i = 0, 1, 2 or has no solution. Then all
the integer constrained variable vectors x,y and z have finite lower and upper bounds in (HPR), (LPt),
and (LLPt). Branching and generating valid inequality steps 2.2, 3.3, 3.3.1, 4,2 and 4.3.1 of Algorithm 1
on the tightness of the follower’s constraints imply an implicit enumeration of all bases of (Ωit)

I, which
occur finite number of times. Moreover, the steps do not cycle as they are done in a sequence unless
simplification or branching takes place, which can happens again only a finite number of times.

In addition, the while loop that begins at Step 2 of Algorithm 1, completes after at most
∣∣ΩI∣∣ + 1

iterations. Then, by the finiteness of ΩI, there must be two iterations i and k, 1 6 i < k 6
∣∣ΩI∣∣+ 1, such

that UBi = F1(x
∗,y∗, z∗) = LBk. Therefore, Algorithm 1 reaches at the condition UBk = LBk in iteration

k, and terminates with solution (x∗k,y∗k, z∗k) after iteration k. Because the algorithm terminates in no more
than

∣∣ΩI∣∣+ 1 iterations with a tri-level feasible solution whose objective value equals an upper bound on
F1(x

∗,y∗, z∗), Algorithm 1 terminates finitely with a global optimal solution.

Remark 3.6. Even if the scope of this paper is to solve tri-level integer programming problems, the same
algorithm can be easily extended to solve higher level (multilevel) programming problems with the same
formulations and that satisfy the necessary assumptions in the article. This can be achieved by applying
repeatedly and recursively Steps 3 & 4 of Algorithm 1 for any lower level problems, if there are some
beyond the third level.



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 242

Algorithm 1: Pseudo code for the Branch-and-cut algorithm.

1. (Initialization) Initialize UB = UB0 =∞, LB0 = −∞, and set counter t = 1

2. while UB > LBt Do :
Solve the top level (HPRt) to get a solution (x̄t1, ȳt1, z̄t1)

min F1(x,y, z)

s.t. (x,y, z) ∈ Ωt (HPRt)

2.1 If (HPRt) is infeasible or F1(x̄
t
1, ȳt1, z̄t1) > UB, then prune it due to infeasibility;

2.2 else if (x̄t1, ȳt1, z̄t1) /∈ Zn+, then apply (ILP) cutting plane techniques or Branch to separate (x̄t1, ȳt1, z̄t1)
from ΩIt and re-solve (HPRt) with the new branches.

2.3 else if conditions (C1) and (C2) are satisfied, set LBt = F1(x̄
t
1, ȳt1, z̄t1) and go to Step 3.

3. Fix x̄t1 ←− x, set Ω2
t = Ωt ∩ {x : x = x̄t1} and solve the relaxed problem of (LPt):

min
(y,z)∈(Ω2

t)
I
F2(x,y, z) (LPt)

to get (x̄t1, ȳt2, z̄t2).

3.1 If the relaxation of problem (LPt) is infeasible, prune.

3.2 else if (x̄t1, ȳt2, z̄t2) /∈ Zn+, then apply (ILP) cutting plane technique or Branching to separate (x̄t1, ȳt2, z̄t2)
from (Ω2

t)
I and re-solve the relaxation of problem (LPt) in each of the two branches.

3.3 else (x̄t1, ȳt2, z̄t2) ∈ Zn+ and:

3.3.1 If F2(x̄
t
1, ȳt2, z̄t2) = F2(x̄

t
1, ȳt1, z̄t1) and condition (C3) are all satisfied, then go to Step 4.

3.3.2 Otherwise, update UBt = F1(x̄
t
1, ȳt2, z̄t2) and construct a cutting plane (valid inequality) using the

technique in Subsection 3.6 and go to Step 2.

4. Fix (x̄t1, ȳt1)←− (x,y), set Ω3
t = Ω

2
t ∩ {(x,y) : (x,y) = (x̄t1, ȳt1)} and solve the relaxation of

min
z∈(Ω3

t)
I
F3(x,y, z) (LLPt)

to get (x̄t1, ȳt2, z̄t3).

4.1 If the relaxation of problem (LLPt) is infeasible, prune.

4.2 else if (x̄t1, ȳt2, z̄t3) /∈ Zn+, then apply (ILP) cutting plane techniques or Branch to separate (x̄t1, ȳt2, z̄t3)
from (Ω3

t)
I and solve (LLPt) again.

4.3 else (x̄t1, ȳt2, z̄t3) ∈ Zn+ and:

4.3.1 If F3(x̄
t
1, ȳt2, z̄t3) = F3(x̄

t
1, ȳt1, z̄t1) and condition (C3) is satisfied, update UBt = F1(x̄

t
1, ȳt2, z̄t3) and set

the incumbent solution to be (x̄t1, ȳt2, z̄t3)←− (x̄t1, ȳt2, z̄t2), update UB = min{UB,UBt}, and prune by
optimality.

4.3.2 Otherwise, update UBt = F1(x̄
t
1, ȳt2, z̄t3) and construct a polyhedron (valid inequality) using the

technique in Subsection 3.6 and go to Step 2.

5. t=t+1;

6. end while

7. Return (x̄t, ȳt, z̄t).



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 243

4. Numerical examples

To demonstrate the performance of the proposed branch-and-cut algorithm, the following 3 examples
are formulated and solved using the procedures outlined in the previous section.

Example 4.1. Consider the following discrete tri-level programming problem:

min
x1,x2,x3

F1 = −7x1 + y1 − 2x2

s.t. min
y1,y2

F2 = −x1 − 3y1 − x2 − 3y2 + x3 + 5z1 + 2z2

s.t. min
z1,z2

F3 = 2x1 + x2 + 2x3 + y1 − 4x2 + 2z1 + 10z2,

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5,
− 8x1 − 4.9x2 − 3.2x3 6 5,
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1,
y1 + y2 + z1 + z2 > 1,
− 10 6 x1, x2 6 10,

x1, x2, x3 ∈ Z3,y1,y2, z1, z2 ∈ {0, 1}4.

(4.1)

This problem also appears in [2] but in mixed integer tri-level programming form. We solve here
below the discrete version of this problem applying the procedures in Algorithm 1.
Iteration 1: Initialization: UB0 =∞, LB0 = −∞, and set counter t = 1.
Step 1: (Relaxed solution) Solve the top level high point problem

min F1 = −7x1 + y1 − 2x2

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5
− 8x1 − 4.9x2 − 3.2x3 6 5
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1
y1 + y2 + z1 + z2 > 1

− 10 6 x1, x2 6 10

x1, x2, x3 ∈ R3, 0 6 y1,y2, z1, z2 6 1

(4.2)

using any linear programming solver to get the solution

(x̄1
1, x̄1

2, x̄1
3, ȳ1

1, ȳ1
2, z̄1

1, z̄1
2) = (10,−8.2371,−13.9494, 0, 1, 0, 0),

and with the corresponding objective value F1 = −53.5258.
Now, since x̄2 must take an integer value in (4.2), the optimal solution has to satisfy either the condition

x2 6 −9 or x2 > −8. It follows that the optimal solution of (4.2) will be the best among the optimal
solutions of the subproblems (LR1) and (LR2) which are defined as follows:

min F1 = −7x1 + y1 − 2x2

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5
− 8x1 − 4.9x2 − 3.2x3 6 5
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1
y1 + y2 + z1 + z2 > 1
x2 6 −9
− 10 6 x1, x2 6 10

x1, x2, x3 ∈ R3, 0 6 y1,y2, z1, z2 6 1,

(4.3)



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 244

min F1 = −7x1 + y1 − 2x2

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5
− 8x1 − 4.9x2 − 3.2x3 6 5
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1
y1 + y2 + z1 + z2 > 1
x2 > −8
− 10 6 x1, x2 6 10

x1, x2, x3 ∈ R3, 0 6 y1,y2, z1, z2 6 1.

(4.4)

The above procedure is a branching operation on variable x̄2.
By solving sub-problem (LR1), we determine that there is no feasible solution and hence (4.3) contains

no integer solution. Therefore, the branch is pruned by infeasibility. But, solving the sub-problem (4.4), we
obtain the optimal solution of the sub-problem to be (x̄1

1, x̄1
2, x̄1

3, ȳ1
1, ȳ1

2, z̄1
1, z̄1

2) = (10,−8,−14.3125, 0, 1, 0, 0)
with objective value F1 = −54.0000. Since this solution is also not an integer, we branch on x̄3 to obtain
the subproblems (LR3) and (LR4) shown below:

min F1 = −7x1 + y1 − 2x2

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5
− 8x1 − 4.9x2 − 3.2x3 6 5
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1
y1 + y2 + z1 + z2 > 1
x2 > −8, x3 6 −15
− 10 6 x1, x2 6 10

x1, x2, x3 ∈ R3, 0 6 y1,y2, z1, z2 6 1,

(4.5)

min F1 = −7x1 + y1 − 2x2

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5
− 8x1 − 4.9x2 − 3.2x3 6 5
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1
y1 + y2 + z1 + z2 > 1
x2 > −8, x3 > −14
− 10 6 x1, x2 6 10

x1, x2, x3 ∈ R3, 0 6 y1,y2, z1, z2 6 1.

(4.6)

Here, after solving the sub-problem (4.5), we determine that it has no feasible solution. That means,
(4.5) contains no integer solution and then the subproblem is pruned by infeasibility. But, solving the
sub-problem (4.6), we obtain the optimal solution : (x̄1

1, x̄1
2, x̄1

3, ȳ1
1, ȳ1

2, z̄1
1, z̄1

2) = (10,−8,−14, 0, 1, 0, 0) with
the corresponding objective value of F1 = −54.0000. Since this is an integer solution, we consider it as
possible solution for this branch.

The Branch-and-Bound tree, does not have any active node and therefore the incumbent solution is
the best integer solution of the problem, which is (x̄1

1, x̄1
2, x̄1

3, ȳ1
1, ȳ1

2, z̄1
1, z̄1

2) = (10,−8,−14, 0, 1, 0, 0) with
objective value F1 = −54, that is obtained at (4.6) branch. Observe that this solution satisfies conditions
(C1) and (C2) and so we update LB1 = F1 = −54 and the procedure goes to Step 2.
Step 2: Check whether the last solution satisfies condition (C3). To do this:



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 245

• Fixing (x1, x2, x3)←− (10,−8,−14) in the middle level problem we solve

min F2 = −x1 − 3y1 − x2 − 3y2 + x3 + 5z1 + 2z2

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5
− 8x1 − 4.9x2 − 3.2x3 6 5
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1
y1 + y2 + z1 + z2 > 1
x2 > −8, x3 > −14
x1 = 10, x2 = −8, x3 = −14
− 10 6 x1, x2 6 10

x1, x2, x3 ∈ R3, 0 6 y1,y2, z1, z2 6 1,

(4.7)

using any linear programming solver to get (ȳ2
1, ȳ2

2, z̄2
1, z̄2

2) = (0, 1, 0, 0). Since, F2(x̄
1
1, x̄1

2, x̄1
3, ȳ2

1, ȳ2
2, z̄2

1, z̄2
2)

= −19 = F2(x̄
1
1, x̄1

2, x̄1
3, ȳ1

1, ȳ1
2, z̄1

1, z̄1
2), then (x1, x2, x3) = (10,−8,−14) and (y1,y2, z1, z2) = (0, 1, 0, 0) is

also optimal for (4.7) and we can conclude that it is also feasible for the second level and satisfies
condition (C3) and so update UB1 = F1 = −54 and go to the next step, Step 3.

Step 3: Check whether it satisfies condition (C4). To this end we have:

• Fix (x1, x2, x3,y1,y2) ←− (10,−8,−14, 0, 1) in the lower level problem and get the modified lower
level problem:

min F3 = 2x1 + x2 + 2x3 + y1 − 4x2 + 2z1 + 10z2

s.t. 6.4x1 + 7.2x2 + 2.5x3 6 11.5
− 8x1 − 4.9x2 − 3.2x3 6 5
3.3x1 + 4.1x2 + 0.002x3 + 0.2y1 + 0.8y2 + 4z1 + 4.5z2 6 1
y1 + y2 + z1 + z2 > 1
x2 <= −8, x3 >= −14
x1 = 10, x2 = −8, x3 = −14
y1 = 0,y2 = 1
− 10 6 x1, x2 6 10

x1, x2, x3 ∈ R3, 0 6 y1,y2, z1, z2 6 1.

(4.8)

After solving the problem (4.8) using any linear programming solver we get the solution (z̄3
1, z̄3

2) =
(0, 0). Since, F3(x̄

2
2, x̄2

2, x̄3
3, ȳ2

2, z̄3
1, z̄3

2) = 61 = F3(x̄
2
2, x̄2

2, x̄2
3, ȳ2

2, z̄2
1, z̄2

2), the point (10,−8,−14, 0, 1, 0, 0)
satisfies condition (C4) and so we update UB1 = F1 = −54.

Since UB1 = LB1, the Algorithm terminates and the point

(x̄1, x̄2, x̄3, ȳ1, ȳ2, z̄1, z̄2) = (10,−8,−14, 0, 1, 0, 0)

is the global optimal solution of the problem presented in Eq. (4.1).
As we can see from the solution procedures, the problem in Eq. (4.1) does not require the use of valid

inequalities (or intersection cuts) to arrive at the global optimal solution. In the next example we will
demonstrate the introduction and use of such cutting hyperplanes.



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 246

Example 4.2. Consider the following integer tri-level programming problem:

min
x

F1(x,y, z) = −x− 4y− 5z, where [y, z] solves

min
y

F2(x,y, z) = −2y, where z solves

min
z

F3(x,y, z) = z

s.t. 3x+ 6y+ 3z 6 24
x+ 2y+ 3z 6 12
3x+ 2y+ z > 6

(x,y, z) ∈ Z1
+ ×Z1

+ ×Z1
+.

(4.9)

The procedures of the solution are presented in the following detailed steps.

Iteration 1: Initialization: set UB0 =∞, LB0 = −∞, and put the counter t = 1.

Step 1: Relaxed HPR: Solve the relaxed high point problem

min F1(x,y, z) = −x− 4y− 5z
s.t. 3x+ 6y+ 3z 6 24

x+ 2y+ 3z 6 12
3x+ 2y+ z > 6

(x,y, z) ∈ R1
+ ×R1

+ ×R1
+

(4.10)

using any linear programming solver (e.g., the simplex method) to get the solution (x̄1, ȳ1, z̄1) = (0, 3, 2),
with the corresponding objective value F1 = −22. Since this solution satisfies conditions (C1) and (C2),
we update LB1 = F1 = −22 and go to the next step.

Step 2: Fix x←− 0 in the middle level problem and solve

min F2(x,y, z) = −2y
s.t. 3x+ 6y+ 3z 6 24

x+ 2y+ 3z 6 12
3x+ 2y+ z > 6
x = 0

(x,y, z) ∈ R3
+

using any linear programming solver, to get the solution (x̄1, ȳ2, z̄2) = (0, 4, 0) with the correspond-
ing objective value of F2(x̄1, ȳ2, z̄2) = −8. Since F2(x̄1, ȳ2, z̄2) = −8 < −6 = F2(x̄1, ȳ1, z̄1), which means
F2(x̄1, ȳ2, z̄2) 6= F2(x̄1, ȳ1, z̄1), the current solution is not optimal or does not satisfy condition (C3). So, we
update UBt = F1(x̄

t
1, ȳt2, z̄t2) = −16 and generate an inequality which is violated by (0, 3, 2) and valid for

the other feasible points of problem (4.10).
As all the data in problem (4.9) are integer, we can apply the valid inequality technique as described

in Subsection 3.6. Therefore, since 3x+ 6y+ 3z 6 24 and x+ 2y+ 3z 6 12 are the inequalities which are
binding at (0, 3, 2), we define a valid inequality by adding the corresponding values in the two inequalities
and subtracting 1 from the right-hand-side to get 4x+ 8y+ 6z 6 35. Then append this inequality to the
(4.10) and go to Step 1 of the second iteration to improve the bound.

Iteration 2: UB1 = −16, LB1 = −22, and set the counter to t = 2.
Step 1: Re-optimize (4.10) again by appending the valid inequality 4x+ 8y+ 6z 6 35, i.e., solve the problem:



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 247

min F1(x,y, z) = −xy− 4y− 5y
s.t. 3x+ 6y+ 3z 6 24

x+ 2y+ 3z 6 12
3x+ 2y+ z > 6
4x+ 8y+ 6z 6 35

(x,y, z) ∈ R1
+ ×R1

+ ×R1
+,

(4.11)

using any linear programming solver to get an optimal solution (x̄2, ȳ2, z̄2) = (1, 1, 3) with the corre-
sponding objective value of F1 = −20. Note that this solution satisfies conditions (C1) and (C2), hence we
update LB2 = F1 = −20 and go to the next step (Step 2).

The branching steps can be represented graphically in the enumeration tree shown in Figure 2.

(4.11)
x = 0 y = 2.25 z = 1.67
F1 = −18

x = 0, y = 2, z = 2.67
F1 = −21.33

x = 1.5
y = 2
z = 2
F1 = −19.5

x = 1,
y = 2
z = 2
F1 = −19
Prune by
integrality

x = 2
y = 1.7
z = 2
F1 = −19
Prune by
bound

x = 0
y = 1.5
z = 3
F1 = −21

x = 0.25
y = 1
z = 3.25
F1 = −20.5

@
Prune by
infeasibility

x = 1,y = 1,z = 3
F1 = −20
Prune by
integrality

@
Prune by
infeasibility

x = 0, y = 2, z = 2.66
F1 = −20.3

x = 0,
y = 3.5,
z = 1
F1 = −19
Prune by
bound

@
Prune by
infeasibility

y 6 2

z 6 2

x 6 1 x > 2

z > 3

y 6 1

x 6 0 x > 1

y > 2

y > 3

z 6 2 z > 3

Figure 2: Branching steps in the enumeration tree of Example 4.2.

Step 2: Fix x ←− 1 and add the branching constraints y 6 2, z > 3,y 6 1, x > 1 (as shown in Figure 2) in
the middle level of the updated problem and solve the relaxed problem

min F2(x,y, z) = −2z
s.t. 3x+ 6y+ 3z 6 24

x+ 2y+ 3z 6 12
3x+ 2y+ z > 6
4x+ 8y+ 6z 6 35
y 6 2, z > 3,y 6 1, x > 1, x = 1

(x,y, z) ∈ R1
+ ×R1

+ ×R1
+

(4.12)



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 248

using any linear programming solver and get an integer solution (ȳ4, z̄4) = (0, 3). Since

F2(x̄
3, ȳ3, z̄3) = −6 = F2(x̄

3, ȳ4, z̄4),

the solution (x̄3, ȳ3, z̄3) is also optimal for (4.12) and hence we conclude that (x̄3, ȳ3, z̄3) = (1, 1, 3) is feasible
for the second level problem. That means, it satisfies condition (C3). So, we update UB1 = F1 = −20 and
go to the next step.
Step 3: Fixing (x,y)←− (1, 1) in the lower level problem we obtain the following problem.

min
x1

F3(x,y, z) = z

s.t. 3x+ 6y+ 3z 6 24
x+ 2y+ 3z 6 12
3x+ 2y+ z > 6
4x+ 8y+ 6z 6 35
y 6 2, z > 3,y 6 1, x > 1
x = 1,y = 1

(x,y, z) ∈ R1
+ ×R1

+ ×R1
+.

Solving this problem using any linear programming solver we get z̄5 = 3. Then, (x̄5, ȳ5, z̄5) = (1, 1, 3)
satisfies condition (C4). Therefore, we set UB1 = −20 = LB1, and hence the algorithm terminates. That
means, the point (x∗,y∗, z∗) = (1, 1, 3) is the optimal solution of the problem presented in Eq. (4.9).

The following third example has the same structure as in Example 4.2, but contains more number of
variables at each decision level.

Example 4.3. Consider the following tri-level integer linear programming problem:

min
x1,x2

F1 = 9x1 + 6x2 + 6x3 + 2x4 + x5 − 4x6

s.t. min
x3,x4

F2 = x1 + 2x3 − x6

s.t. min
x5,x6

F3 = x4 + x5 − x6

s.t. 3x1 − 3x2 − 8x3 + 10x4 + 8x5 + 5x6 6 8
6x1 + 4x2 + 3x3 + 10x4 + 8x5 − 7x6 6 9
x1 + x2 + x3 + x4 + x5 − x6 6 10
− x1 − x2 − x3 + x4 − x5 + x6 6 4
x1 + x2 + x3 6 10
x3 + x5 + x6 6 8

x1, x2, x3, x4, x5, x6 ∈ Z6
+.

Applying the same procedures as in Example 4.2 above we can get the optimal solution of the problem
to be (x∗1 , x∗2 , x∗3 , x∗4 , x∗5 , x∗6) = (0, 0, 3, 0, 0, 6) with the corresponding objective values: F1 = F2 = F3 = −6.

5. Conclusion and further study

In this study, tri-level linear programming problems are considered, where all the involved variables
are assumed to be discrete or integers. The paper introduces a simple and novel branch-and-cut algorithm
for the global solution of such problems. The algorithm assumes that the relaxed constraint region is
bounded and the reaction sets for each of the followers is nonempty corresponding to a given choice of



A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 249

leaders decision variable. The algorithm utilizes a modified branch-and-bound procedures together with
the introduction of valid inequalities (or intersection cuts) to separate an infeasible point from the rest
of the constraint region. Selected numerical examples are presented to demonstrate the performance of
the algorithm. The results of the numerical examples show that the algorithm can solve various types of
problems and it is very much promising.

One of the advantages of the proposed algorithm is that it employs any existing linear programming
solver at each iteration. In addition, it can be easily extendable to solve multi-level discrete linear pro-
gramming problems by recursively applying the same given procedures. However, the possibility of
extending the same algorithm to solve mixed-integer linear multi-level programming problems can be
explored in future works. In addition, the definition and characterization of valid inequalities or inter-
section cuts plays a crucial role in the performance of the Branch-and-cut algorithm for multilevel integer
linear programming problems. Therefore, interested researchers can consider derivation of strong valid
inequalities (or intersection cuts), especially for problems with more than two levels as possible future
direction of research.

Acknowledgment

The research of the first author was supported by the International Science Program (ISP) of Sweden,
through a research project at the Department of Mathematics, Addis Ababa University.

References

[1] N. Alguacil, A. Delgadillo, J. M. Arroyo, A tri-level programming approach for electric grid defense planning, Comput.
Oper. Res., 41 (2014), 282–290. 1

[2] S. Avraamidou, E. N. Pistikopoulos, Multi-parametric global optimization approach for tri-level mixed-integer linear
optimization problems, J. Global Optim., 74 (2019), 443–465. 1, 4

[3] J. F. Bard, An investigation of the linear three level programming problem, IEEE Trans. Systems Man Cybernet., 14
(1984), 711–717. 1, 2

[4] J. F. Bard, Optimality conditions for the bi-level programming problem, Naval Res. Log. Quar., 31 (1984), 13–26.
[5] G. Cornuéjols, Valid inequalities for mixed integer linear programs, Math. Program., 112 (2008), 3–44. 3.6
[6] S. Dempe, F. M. Kue, Solving discrete linear bilevel optimization problems using the optimal value reformulation, J. Glob.

Optim., 68 (2017), 255–277. 3
[7] S. T. DeNegre, T. K. Ralphs, A Branch-and-cut Algorithm for Integer Bilevel Linear Programs, In: Operations Research

and Cyber-Infrastructure. Operations Research/Computer Science Interfaces (Springer, Boston), 47 (2009), 65–78.
1, 3, 3.1, 3.6, 3.6

[8] N. P. Faı́sca, M. P. Saraiva, B. Rustem, N. E. Pistikopoulos, A multiparametric programming approach for multilevel
hierarchical and decentralized optimization problems, Comput. Manag. Sci., 6 (2009), 377–397. 1

[9] M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, Intersection Cuts for Bilevel Optimization, In: Integer programming and
combinatorial optimization (Springer, Switzerland), 2016 (2016), 77–88. 3.6

[10] M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Pro-
grams, Oper. Res., 65 (2017), 1615–1637. 3, 3.2, 3.6

[11] C. Florensa, P. Garcia-Herreros, P. Misra, E. Arslan, S. Mehta, I. E. Grossmann, Capacity planning with competitive
decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches, European J. Oper. Res., 262 (2017),
449–463. 1

[12] T. R. Kannan, G. Dinakaran, N. J. Lavanya, A Graphical Approach for Solving Three Variable Linear Programming
Problems, Recent Developments in Materials Processing (RDMP–04), Bharathiyar College of Engineering and
Technology, Karaikal, India, (2004). 1

[13] A. M. Kassa, S. M. Kassa, A multi-parametric programming algorithm for special classes of non-convex multilevel opti-
mization problems, Int. J. Optim. Control. Theor. Appl. IJOCTA, 3 (2013), 133–144. 1

[14] A. M. Kassa, S. M. Kassa, A branch-and-bound multi-parametric programming approach for non-convex multilevel opti-
mization with polyhedral constraints, J. Glob. Optim., 64 (2016), 745–764. 1

[15] G. Y. Ke, J. H. Bookbinder, Coordinating the discount policies for retailer, wholesaler, and less-than-truckload carrier under
price-sensitive demand: A tri-level optimization approach, Int. J. Pro. Econ., 196 (2018), 82–100. 1

[16] K. Lachhwani, A. Dwivedi, Bi-level and Multi-Level Programming Problems: Taxonomy of Literature Review and Re-
search Issues, Arch. Comput. Methods Eng., 25 (2018), 847–877. 1

[17] J. V. Outrata, On the numerical solution of a class of Stackelberg problems, Z. Oper. Res., 34 (1990), 255–277. 3.2

https://www.sciencedirect.com/science/article/pii/S0305054813001664
https://www.sciencedirect.com/science/article/pii/S0305054813001664
https://link.springer.com/article/10.1007/s10898-018-0668-4
https://link.springer.com/article/10.1007/s10898-018-0668-4
https://ieeexplore.ieee.org/abstract/document/6313291/
https://ieeexplore.ieee.org/abstract/document/6313291/
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800310104
https://link.springer.com/article/10.1007/s10107-006-0086-0
https://link.springer.com/content/pdf/10.1007/s10898-016-0478-5.pdf
https://link.springer.com/content/pdf/10.1007/s10898-016-0478-5.pdf
https://link.springer.com/chapter/10.1007/978-0-387-88843-9_4
https://link.springer.com/chapter/10.1007/978-0-387-88843-9_4
https://link.springer.com/content/pdf/10.1007/s10287-007-0062-z.pdf
https://link.springer.com/content/pdf/10.1007/s10287-007-0062-z.pdf
https://link.springer.com/chapter/10.1007/978-3-319-33461-5_7
https://link.springer.com/chapter/10.1007/978-3-319-33461-5_7
https://pubsonline.informs.org/doi/abs/10.1287/opre.2017.1650
https://pubsonline.informs.org/doi/abs/10.1287/opre.2017.1650
https://www.sciencedirect.com/science/article/pii/S0377221717303466
https://www.sciencedirect.com/science/article/pii/S0377221717303466
https://www.sciencedirect.com/science/article/pii/S0377221717303466
http://www.alarvy.com/downloads/A%20GRAPHICAL%20APPROACH%20FOR%20SOLVING%20THREE-VARIABLE%20LINEAR%20PROGRAMMING%20PROBLEMS.pdf
http://www.alarvy.com/downloads/A%20GRAPHICAL%20APPROACH%20FOR%20SOLVING%20THREE-VARIABLE%20LINEAR%20PROGRAMMING%20PROBLEMS.pdf
http://www.alarvy.com/downloads/A%20GRAPHICAL%20APPROACH%20FOR%20SOLVING%20THREE-VARIABLE%20LINEAR%20PROGRAMMING%20PROBLEMS.pdf
http://www.ijocta.org/index.php/files/article/view/156
http://www.ijocta.org/index.php/files/article/view/156
https://link.springer.com/content/pdf/10.1007/s10898-015-0341-0.pdf
https://link.springer.com/content/pdf/10.1007/s10898-015-0341-0.pdf
https://www.sciencedirect.com/science/article/pii/S0925527317303419
https://www.sciencedirect.com/science/article/pii/S0925527317303419
https://link.springer.com/article/10.1007/s11831-017-9216-5
https://link.springer.com/article/10.1007/s11831-017-9216-5
https://link.springer.com/content/pdf/10.1007/BF01416737.pdf


A. Awraris, B. G. Wordofa, S. M. Kassa, J. Math. Computer Sci., 25 (2022), 232–250 250

[18] A. S. Safaei, S. Farsad, M. M. Paydar, Robust bi-level optimization of relief logistics operations, Appl. Math. Model., 56
(2018), 359–380. 1

[19] G. K. Saharidis, M. G. Ierapetritou, Resolution method for mixed integer bi-level linear problems based on decomposition
technique, J. Global Optim., 44 (2009), 29–51. 3

[20] M. Sakawa, T. Matsui, Interactive fuzzy stochastic multi-level 0–1 programming using tabu search and probability maxi-
mization, Expert Syst. Appl., 41 (2014), 2957–2963. 1

[21] M. Sakawa, I. Nishizaki, M. Hitaka, Interactive fuzzy programming for multi-level 0–1 programming problems through
genetic algorithms, Eur. J. Oper. Res., 114 (1999), 580–588. 1

[22] S. S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain, Decis. Support Syst.,
50 (2011), 539–547. 1

[23] S. Tahernejad, T. K. Ralphs, S. T. DeNegre, A branch-and-cut algorithm for mixed integer bilevel linear optimization
problems and its implementation, Math. Program. Comput., 12 (2020), 529–568. 3

[24] U.-P. Wen, Mathematical methods for multilevel linear programming, Ph.D. Dissertation, Dept. Industrial Engineering,
State University of New York, Buffalo (1981). 3.1

[25] U.-P. Wen, W. F. Bialas, The hybrid algorithm for solving the three-level linear programming problem, Comput. Oper.
Res., 13 (1986), 367–377. 1, 3.1

[26] D. J. White, Penalty function approach to linear trilevel programming, J. Optim. Theory Appl., 93 (1997), 183–197. 1
[27] A. T. Woldemariam, S. M. Kassa, Systematic evolutionary algorithm for general multilevel Stackelberg problems with

bounded decision variables (SEAMSP), Ann. Oper. Res., 229 (2015), 771–790. 2
[28] X. Xu, Z. Meng, R. Shen, A tri-level programming model based on conditional value-at-risk for three-stage supply chain

management, Comput. Ind. Eng., 66 (2013), 470–475. 1
[29] P. Xu, L. Wang, An exact algorithm for the bi-level mixed integer linear programming problem under three simplifying

assumptions, Comput. Oper. Res., 41 (2014), 309–318. 3
[30] Y. Yao, T. Edmunds, D. Papageorgiou, R. Alvarez, Tri-level optimization in power network defense, IEEE Trans. Syst.

Man Cybern., 37 (2007), 712–718. 1
[31] G. Zhang, J. Lu, J. Montero, Y. Zeng, Model, solution concept, and Kth-best algorithm for linear trilevel programming,

Inf. Sci., 180 (2010), 481–492. 1

https://doi.org/10.1016/j.apm.2017.12.003
https://doi.org/10.1016/j.apm.2017.12.003
https://link.springer.com/content/pdf/10.1007/s10898-008-9291-0.pdf
https://link.springer.com/content/pdf/10.1007/s10898-008-9291-0.pdf
https://www.sciencedirect.com/science/article/pii/S0957417413008440
https://www.sciencedirect.com/science/article/pii/S0957417413008440
https://www.sciencedirect.com/science/article/pii/S0377221798000198
https://www.sciencedirect.com/science/article/pii/S0377221798000198
https://doi.org/10.1016/j.dss.2010.11.012
https://doi.org/10.1016/j.dss.2010.11.012
https://link.springer.com/article/10.1007/s12532-020-00183-6
https://link.springer.com/article/10.1007/s12532-020-00183-6
https://elibrary.ru/item.asp?id=7344184
https://elibrary.ru/item.asp?id=7344184
https://www.sciencedirect.com/science/article/pii/0305054886900237
https://www.sciencedirect.com/science/article/pii/0305054886900237
https://link.springer.com/article/10.1023/A:1022610103712
https://link.springer.com/content/pdf/10.1007/s10479-015-1842-4.pdf
https://link.springer.com/content/pdf/10.1007/s10479-015-1842-4.pdf
https://www.sciencedirect.com/science/article/pii/S0360835213002271
https://www.sciencedirect.com/science/article/pii/S0360835213002271
https://www.sciencedirect.com/science/article/pii/S0305054813001950
https://www.sciencedirect.com/science/article/pii/S0305054813001950
https://ieeexplore.ieee.org/abstract/document/4252262/
https://ieeexplore.ieee.org/abstract/document/4252262/
https://www.sciencedirect.com/science/article/pii/S0020025509004496
https://www.sciencedirect.com/science/article/pii/S0020025509004496

	Introduction
	Basic definitions and theoretical background
	Branch-and-cut method for tri-level integer linear programming problems
	Computational challenges in tri-level integer linear programming
	Relaxation of tri-level integer linear programming
	Branching
	Bounding
	Pruning rules of tri-level integer linear programming
	Cutting procedure for tri-level integer linear programming
	Description of the proposed method

	Numerical examples
	Conclusion and further study

