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Abstract
The main goal of this study is to use an implicit function to demonstrate the existence of a common fixed point on modified

intuitionistic fuzzy metric spaces by using the concept of common limit range property with regard to two self-mappings S
and R, i.e., (CLRSR) property. Our primary result is supported by an example that validates the hypotheses of our result. Our
findings improve and generalize the findings of Tanveer et al. [M. Tanveer, M. Imdad, D. Gopal, D. K. Patel, Fixed Point Theory
Appl., 2012 (2012), 1–12], and other existing results related to this study.

Keywords: Common fixed point, modified intuitionistic fuzzy metric space (MIFM-Space), common property (E-A), common
limit in range property (CLR property), implicit function.

2020 MSC: 47H10, 54H25.

c©2022 All rights reserved.

1. Introduction

Zadeh [48] introduced the notion of a fuzzy set. Atanassov [4] introduced the concept of an intu-
itionistic fuzzy set by generalizing the idea of a fuzzy set introduced in [48]. Coker [12] developed the
notion of topology on intuitionistic fuzzy sets after that. The intuitionistic gradation of openness was
introduced by Mondal [33]. In 2004, Park [36] suggested the notion of intuitionistic fuzzy metric spaces
(IFMS), which is a generalization of George and Veeramani’s fuzzy metric space [15]. Many authors have
recently proven fixed point theorems in IFMS ([2, 3, 6, 20, 35, 38, 40, 42, 44]).

Gregory et al. [16] went on to show that ”the topology induced by fuzzy metric coincides with the
topology induced by intuitionistic fuzzy metric”. Saadati et al. [37] reframed the definition of intuitionis-
tic fuzzy metric spaces by adding the concept of continuous t-representable and proposed a new concept
known as modified IFMS. They also characterized strong (introduced by Jungck [29]) and weak (intro-
duced by Jungck and Rhodes [30]) compatibility to modified IFMS. Pant’s [34] research into common
fixed points of non-compatible maps is also natural. In the recent past, Tanveer et al. [46] and Imdad et
al. [22] proved some results in MIFM-Spaces using the notions of the property (E-A) (defined by Aamri
and El-Moutawakil [1]) and the common property (E-A) (originated by Liu et al. [32]). It is worth noting
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that both the property (E-A) and the common property (E-A) demand that the subspace be closed for
a common fixed point to existing. More recently, Gupta et al. [19], and Shatanawi et al. [41] proved
some common fixed point results on MIFM-Spaces by using integral type contraction, property (E-A),
and common property (E-A).

Sintunavarat and Kumam [43] introduced the idea of the common limit in range property, which states
that the existence of a common fixed point does not require the subspace to be closed (also see [45]). Many
authors have recently proven the superiority of common limit in range property over the property (E-A)
and common property (E-A) for maps defined on different spaces such as modified IFMS, Menger spaces,
and Metric space through common limit range property (e.g., [5, 7, 9–11, 25–28, 31, 39, 42, 47]).

In this research article, we prove some common fixed point theorems on MIFM-Space by using the
common limit range property with regard to two self maps. We use an implicit function defined in [22]
and [46] to prove our results.

2. Preliminaries

Lemma 2.1 ([13]). Let the set L∗ and 6L∗ operation defined by

L∗ =
{
(x1, x2) : (x1, x2) ∈ [0, 1]2, x1 + x2 6 1

}
,

(x1, x2) 6L∗ (y1,y2) ⇔ x1 6 y1 and x2 > y2, for every (x1, x2), (y1,y2) ∈ L∗. The lattice (L∗ 6L∗) is then
complete.

Definition 2.2 ([4]). In a universe U, there is an intuitionistic fuzzy set Aζ,η such that

Aζ,η =
{
(ζA(ν),ηA(ν) | ν ∈ U)

}
,

where ∀ ν ∈ U, ζA(ν) ∈ [0, 1], and ηA(ν) ∈ [0, 1] are the membership and the non-membership degree
of ν ∈ Aζ,η, respectively, which also satisfy ζA(ν) + ηA(ν) 6 1. For every zi = (xi,yi) ∈ L∗, if ai ∈ [0, 1]
such that Σaj = 1(1 6 j 6 n), then it is easy to see that

a1(x1,y1) + · · ·+ an(xn,yn) =
∑

aj(xj,yj) =
(∑

ajxj,
∑

ajyj

)
∈ L∗ (∀ j from j = 1 to n).

Its units are denoted by 0L∗ = (0, 1) and 1L∗ = (1, 0).
Mathematically, a triangular norm ∗ = T on [0, 1] is defined as an increasing, associative, commutative

mapping T : [0, 1]2 → [0, 1] which satisfies T(1, x) = 1 ∗ x = x, ∀ x ∈ [0, 1]. A triangular conorm S = ♦
is defined as an increasing, commutative, associative mapping S : [0, 1]2 → [0, 1] which satisfies S(0, x) =
0♦x = x, ∀ x ∈ [0, 1]. By using (L∗ 6L∗), these definitions can easily be extended.

Definition 2.3 ([14]). A triangular norm (in short t-norm) on L∗ is a mapping T : (L∗)2 → L∗ which
satisfies the following four conditions, ∀ x,y, x

′
,y
′ ∈ L∗:

(1) T(x, 1L∗) = x;
(2) T(x,y) = T(y, x);
(3) T

(
x, T(y, z)

)
= T

(
T(x,y), z

)
;

(4) x 6L∗ x
′

and y 6L∗ y
′ ⇒ T(x,y) 6L∗ T(x

′
,y
′
).

Definition 2.4 ([13, 14]). A continuous t-norm T on L∗ is known as continuous t-representable if and only
if ∀ x = (x1, x2), y = (y1,y2) ∈ L∗, T(x,y) = (x1 ∗ y1, x2 ♦ y2). Now, we recursively define a sequence {Tn}

by {T 1 = T } and

Tn
(
x(1), . . . , x(n+1)) = T(T (n−1)(x(1), . . . , xn

)
, x(n+1)

)
for n > 2 and xi ∈ L∗.
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Definition 2.5 ([13, 14]). Any decreasing mapping N : L∗ → L∗ that satisfies N(0L∗) = 1L∗ and N(1L∗) =
0L∗ is a negator on L∗. When N(N(x)) = x, for all x ∈ L∗, then N is referred to as an involutive negator.
A negator on [0, 1] is a decreasing mapping N : [0, 1] → [0, 1] that satisfies N(0) = 1 and N(1) = 0. The
standard negator Ns on [0, 1] is defined as Ns(x) = 1–x ∀ x ∈ [0, 1].

Definition 2.6 ([29]). LetM,N be fuzzy sets ranging from X2× (0,∞)→ [0, 1] withM(x,y, t)+N(x,y, t) 6
1 ∀ x,y ∈ X, and t > 0. The 3-tuple (X, FM,N, T) is said to be a MIFM-Space if X is an arbitrary nonempty
set, T is a continuous t-representable, and FM,N is an intuitionistic fuzzy set from X2 × (0,∞) to L∗ that
satisfies the following conditions (for all x,y, z ∈ X and t, s > 0):

(1) FM,N(x,y, t) >L∗ 0L∗ ;
(2) FM,N(x,y, t) = 1L∗ if and only if x = y;
(3) FM,N(x,y, t) = FM,N(y, x, t);

(4) FM,N(x,y, t+ s) >L∗ T
(
FM,N(x, z, t), FM,N(z,y, s)

)
;

(5) FM,N(x,y, ·) : (0,∞)→ L∗ is continuous.

FM,N is referred to as a modified intuitionistic fuzzy metric in this case.
Noted that, here FM,N(x,y, t) =

(
M(x,y, t),N(x,y, t)

)
.

Remark 2.7 ([29]). In an IFMS (X, FM,N, T),M(x,y, ·) is non-decreasing and N(x,y, ·) is non-increasing
∀ x,y ∈ X. As, FM,N(x,y, t) =

(
M(x,y, t),N(x,y, t)

)
, hence FM,N(x,y, t) is a non-decreasing function

with respect to t, ∀ x,y ∈ X.

Example 2.8 ([37]). Let (X,d) be a metric space. Define T(u, v) =
(
u1v1, min{u2 + v2, 1}

)
for all u = (u1,u2)

and v = (v1, v2) ∈ L∗, and let M and N be fuzzy sets on X2 × (0,∞) defined as follows:

FM,N(x,y, t) =
(
M(x,y, t),N(x,y, t)

)
=

(
rtn

rtn +md(x,y)
,

sd(x,y)
rtn + sd(x,y)

)
, ∀ r, s,n, t ∈ R+.

Then (X, FM,N, T) is a MIFM-Space.

Example 2.9 ([37]). Let X = N. Define T(u, v) =
(

max{0,u1 + v1 − 1},u2 + v2–u2v2
)

for all u = (u1,u2) and
v = (v1, v2) ∈ L∗, let M and N be fuzzy sets on X2 × (0,∞). Then FM,N(x,y, t) is defined as follows:

FM,N(x,y, t) =
(
M(x,y, t),N(x,y, t)

)
, ∀ x,y ∈ X and t > 0 =


(
x
y , y−xy

)
, if x 6 y,(

y
x , x−yx

)
, if y 6 x.

Then (X, FM,N, T) is a MIFM-Space.

Definition 2.10 ([37]). Let (X, FM,N, T) be a MIFM-Space. For t > 0, consider O(x, r, t) =
{
y ∈ X :

FM,N(x,y, t) >L∗
(
Ns(r), r

)}
is an open ball with center x ∈ X and radius 0 < r < 1.

If for each x ∈ A ∃ t > 0 and 0 < r < 1 such that O(x, r, t) ⊆ A, a subset A of X is called open. The
topology induced by intuitionistic fuzzy metric FM,N is defined as the family of all open subsets of X
denoted by τFM,N .

Definition 2.11 ([37]). A Cauchy sequence {xn} in a MIFM-Space(X, FM,N, T) is one in which for each
0 < δ < 1 and t > 0 there exists n0 ∈ N such that FM,N(xn,ym, t) >L∗

(
Ns(δ), δ

)
, for each n,m > n0.

In the MIFM-Space (X, FM,N, T), the sequence {xn} is said to be convergent to x ∈ X and is usually
denoted by xn → FM,Nx if FM,N(xn, x, t)→ 1L∗ whenever n→∞ for every t > 0.

A MIFM-Space (X, FM,N, T) is said to be complete if and only if every Cauchy sequence in it is con-
vergent in it.

Lemma 2.12 ([37]). Let FM,N be an intuitionistic fuzzy metric. Then, for any t > 0, FM,N(x,y, t) in (L∗,6L∗
), ∀ x,y ∈ X is non-decreasing with respect to t.
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Definition 2.13 ([37]). Let (X, FM,N, T) be a MIFM-Space. Then FM,N on X2 × (0,∞) is said to be contin-
uous, if limn→∞ FM,N(xn,yn, tn) = FM,N(x,y, t) whenever a sequence

{
(xn,yn, tn)

}
in X2 × (0,∞) con-

verges to a point
{
(x,y, t)

}
∈ X2 × (0,∞); that is, limn→∞ FM,N(xn, x, t) = limn→∞ FM,N(yn, x, t) = 1L∗ ,

limn→∞ FM,N(x,y, tn) = FM,N(x,y, t).

Lemma 2.14 ([37]). Let(X, FM,N, T) be a MIFM-Space. Then,FM,N on X2 × (0,∞) is a continuous function.

Definition 2.15 ([22, 37]). Let P and Q be two self maps on a MIFM-Space (X, FM,N, T). Then, the pair
(P,Q) is said to be

(1) commuting if PQx = QPx, ∀ x ∈ X;
(2) weakly commuting if FM,N(PQx,QPx, t) >L∗ FM,N(Px,Qx, t) ∀ x ∈ X and t > 0;
(3) compatible if limn→∞ FM,N(PQxn,QPxn, t) = 1L∗ for all t > 0 whenever {xn} is a sequence in X such

that limn→∞ Pxn = limn→∞Qxn = x ∈ X;
(4) non-compatible if exists at least one sequence {xn} in X such that limn→∞ Pxn = limn→∞Qxn = x ∈ X,

but limn→∞ FM,N(PQxn,QPxn, t) 6= 1L∗ or non existent for at least one t > 0.

Definition 2.16 ([23]). Two families of self-mappings {Pi}(i = 1 to m) and {Qk}(k = 1 to n) are said to be
pairwise commuting if

(1) PaPb = PbPa, ∀ a,b ∈ {1, 2, . . . ,m};
(2) QcQd = QdQc, ∀ c,d ∈ {1, 2, . . . ,n};
(3) PaPc = PcPa, ∀ a ∈ {1, 2, . . . ,m} and c ∈ {1, 2, . . . ,n}.

Definition 2.17 ([38]). On a MIFM-Space (X, FM,N, T), let P and Q be two self-maps. If a sequence {xn}

in X such that ∀ t > 0 limn→∞ FM,N(Pxn, z, t) = limn→∞ FM,N(Qxn, z, t) = 1L∗ , for some z ∈ X, then the
pair (P,Q) is said to propitiate the property (E-A).

Definition 2.18 ([46]). Two pairs (P,S) and (Q,R) of self mappings of a MIFM-Space (X, FM,N, T) are said
to propitiate the common property (E-A) if exist sequences {xn} and {yn} in X such that
limn→∞ FM,N(Pxn, z, t) = limn→∞ FM,N(Sxn, z, t) = limn→∞ FM,N(Qyn, z, t) = limn→∞ FM,N(Ryn, z, t) =
1L∗ , for some z ∈ X and t > 0.

Definition 2.19 ([42]). A pair (P,S) of self-mappings of a MIFM-Space (X, FM,N, T) is said to propitiate
the common limit in range property concerning S, denoted by (CLRs) if ∃ a sequence {xn} in X such that
∀ t > 0, limn→∞ FM,N(Pxn, z, t) = limn→∞ FM,N(Sxn, z, t) = limn→∞,where z ∈ S(X).

As a result, a pair (P,S) satisfying the property (E-A) along with the closedness of the subspace S(X)
always has the property (CLRs) with regard to the mapping S ([11, 42]).

In modified IFMS (X, FM,N, T), we now extend the common limit in range property for two pairs of
self-mappings as follows.

Definition 2.20. If there are two sequences {xn} and {yn} in X such that limn→∞ FM,N(Pxn, z, t) =
limn→∞ FM,N(Sxn, z, t) = limn→∞ FM,N(Qyn, z, t) = limn→∞ FM,N(Ryn, z, t) = 1L∗ , where z ∈ S(X) ∩
R(X) and t > 0, then pairs (P,S) and (Q,R) of self-mappings of a MIFM-Space (X, FM,N, T) are said to
propitiate the common limit in range property concerning maps S and R, denoted by (CLRSR).

Example on (CLRSR) property: For seeing an example on (CLRSR) property, one can refer to the last
part of Example 4.2. By setting P = Q and S = R in Definition 2.20 implies Definition 2.19 (due to
Sintunavarat et al. [42]), whereas Definition 2.20 implies Definition 2.18, but not in general. This fact can
be shown by the following example.

Example 2.21. Let (X, FM,N, T) be a MIFM-Space, where X = [4, 21] and FM,N(x,y, t) =

(
t

t+|x–y| ,
|x–y|
t+|x−y|

)
,

∀ x,y ∈ X and t > 0. Define four self-mappings P,Q,S, and R on X as

P(x) =


8, if x = 4,
6, if 4 < x 6 15,
x+9

6 , if x > 15,
Q(x) =


5, if x = 4,
5x+4

6 , if 4 < x 6 15,
13, if x > 14,
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S(x) =


6, if x = 4,
16, if 4 < x 6 15,
2x+6

9 , if x > 15,
R(x) =


7, if x = 4,
x+4

2 , if 4 < x 6 15,
18, if x > 15.

If we take two sequences as {xn} =
{

15 + 1
n

}
n ∈ N and {yn} =

{
4 + 1

n

}
n ∈ N, then the pairs (P,S) and

(Q,R) satisfy the common property (E-A) ∀ t > 0:

lim
n→∞ FM,N(Pxn, 4, t) = lim

n→∞ FM,N(Sxn, 4, t) = lim
n→∞ FM,N(Qyn, 4, t) = lim

n→∞ FM,N(Ryn, 4, t) = 1L∗ ,

where 4 ∈ X. Here, it is noticed that 4 /∈ S(X) ∩ R(X). Therefore, the pairs (P,S) and (Q,R) do not
propitiate the common limit in range property with regard to the mappings S and R.

Based on the result of Example 2.21, a proposition is given as follows.

Proposition 2.22. If the pairs (P,S) and (Q,R) have the common property (E-A) and S(X) and R(X), are closed
subsets of X, then these pairs satisfy the (CLRSR) property as well.

3. Implicit relations

Motivated by Imdad et al. [22], we adopt a new collection of implicit functions as follows.
Let Ψ be the collection of all upper continuous functions F(τ1, τ2, τ3, τ4, τ5, τ6) : L

∗6 → L∗, that satisfy
the following conditions

(
∀ ν, 0, 1 ∈ L∗, where v = (v1, v2), 0 = 0L∗ = (0, 1), and 1 = 1L∗ = (1, 0)

)
:

(F1) F(υ, 1,υ, 1, 1,υ) <L∗ 0, ∀ υ >L∗ 0;
(F1) F(υ, 1, 1,υ,υ, 1) <L∗ 0 ∀ υ >L∗ 0;
(F1) F(υ,υ, 1, 1,υ,υ) <L∗ 0 ∀ υ >L∗ 0.

The following examples satisfy (F1), (F2), and (F3).

Example 3.1. Define F(τ1, τ2, τ3, τ4, τ5, τ6) : L
∗6 → L∗ as

F(τ1, τ2, τ3, τ4, τ5, τ6) = τ1–βmin
{
τ2, τ3, τ4, τ5, τ6

}
, where β > 1.

Example 3.2. Define F(τ1, τ2, τ3, τ4, τ5, τ6) : L
∗6 → L∗, as

F(τ1, τ2, τ3, τ4, τ5, τ6) = τ
2
1–β1 min

{
τ2

2, τ2
3, τ2

4
}

–β2 min
{
τ3τ6, τ4τ5

}
,

where β1,β2 > 0, β1 +β2 > 1, and β1 > 1.

Example 3.3. Define F(τ1, τ2, τ3, τ4, τ5, τ6) : L
∗6 → L∗ as

F(τ1, τ2, τ3, τ4, τ5, τ6) = τ1–β1τ2–β2τ3 −β3τ4–β4τ5–β5τ6,

where β1,β2,β3,β4,β5 > 0, β2 +β5 > 1, β3 +β4 > 1, and β1 +β4 +β5 > 1.

Motivated by Tanveer et al. [46], let X be the collection of all continuous functions χ(τ1, τ2, τ3, τ4, τ5, τ6) :

L∗
6 → L∗, satisfying

(
∀ u, v, 1 ∈ L∗, where a = (a1,a2),b = (b1,b2), and 1 = 1L∗ = (1, 0)

)
:

(χ1) for all a,b >L∗ 0, χ(a,b,a,b,b,a) >L∗ 0 or χ(a,b,b,a,a,b) >L∗ 0 implies that a >L∗ b;
(χ1) χ(a,a, 1, 1,b,b) >L∗ 0 implies that b >L∗ 1.

Example 3.4. Define χ(τ1, τ2, τ3, τ4, τ5, τ6) = 18τ1 − 16τ2 + 8τ3 − 10τ4 + τ5–τ6. Then χ ∈ X.

Example 3.5. Define χ(τ1, τ2, τ3, τ4, τ5, τ6) = τ1–
(

1
2

)
τ2 −

(
5
6

)
τ3 +

(
1
3

)
τ4 + τ5–τ6. Then χ ∈ X.
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It should be noted that the above classes of functions Ψ and X are completely independent of one
another as the implicit function F(τ1, τ2, τ3, τ4, τ5, τ6) = τ1 − βmin

{
τ2, τ3, τ4, τ5, τ6

}
(where β > 1 and

F ∈ Ψ) does not belong to X as F(υ,υ, 1, 1,υ,υ) <L∗ 0, for all υ >L∗ 0, while the implicit function
χ(τ1, τ2, τ3, τ4, τ5, τ6) = 15τ1 −13τ2 +5τ3 −7τ4 +τ5–τ6 (where χ ∈ X) does not belong to Ψ as χ(a,b,a,b,b,a)
= 0 implies a = b instead of a >L∗ b. For the major collection of implicit relations in different settings,
one can refer to ([8, 17, 18, 21, 24]).

Lemma 3.6. Let P,Q,S, and R be self-mappings of a MIFM-Space (X, FM,N, T). Suppose that

(1) the pair (P,S) or (Q,R) shares the property (E-A);
(2) P(X) ⊂ R(X) (or Q(X) ⊂ S(X));
(3) {Qyn} converges for every sequence {yn} in X whenever {Ryn} converges (or {Pxn} converges for every sequence

{xn} in X whenever {Sxn} converges);
(4) for all x,y ∈ X and F ∈ Ψ

F

(
FM,N(Px,Qy, t), FM,N(Sx,Ry, t), FM,N(Px,Sx, t), FM,N(Qy,Ry, t), FM,N(Sx,Qy, t), FM,N(Px,Ry, t)

)
>L∗ 0.

Then the pairs (P,S) and (Q,R) share the common property (E-A).
By using Lemma 3.6, Tanveer et al. [46] proved the following Theorem-A for the common fixed point under the

common property (E-A):

Theorem 3.7. Let P,Q,S, and R be self-mappings of a MIFM-Space (X, FM,N, T) satisfying condition 4 of Lemma
3.6. Assume that

(1) the pairs (P,S) and (Q,R) propitiate the common property (E-A);
(2) R(X) and S(X) are closed subset of X.

The pairs (P,S) and (Q,R), then have a point of coincidence.Furthermore, if pairs (P,S) and (Q,R) are weakly
compatible, then P,Q,S, and R have a unique common fixed point.

The following lemma 3.8, which is a generalization of Lemma 3.6, is required to prove our main result.

Lemma 3.8. Let P,Q,R, and S be self-mappings of a MIFM-Space (X, FM,N, T). Assume that

(1) the pair (P,S) shares the (CLRS) property (or (Q,R) shares the (CLRR) property);
(2) P(X) ⊂ R(X) (or Q(X) ⊂ S(X));
(3) R(X) (or S(X)) is a closed subset of X;
(4) {Qyn} converges for every sequence {yn} in X whenever {Ryn} converges to R(X) (or {Pxn} converges for every

sequence {xn} in X whenever {Sxn} converges to S(X);
(5) for all x,y ∈ X and F ∈ Ψ

F

(
FM,N(Px,Qy, t), FM,N(Sx,Ry, t), FM,N(Px,Sx, t), FM,N(Qy,Ry, t), FM,N(Sx,Qy, t), FM,N(Px,Ry, t)

)
>L∗ 0.

Then the pairs (P,S) and (Q,R) share the (CLRSR property.

4. Main results

Results in Theorem 3.7 are being proved by taking common property (E-A) along with closedness
of subspaces of R(X) and S(X), while here in Theorem 4.1 we prove the same results by taking only the
(CLRSR) property. In this Theorem 4.1, we consider a different type of implicit function which is defined
in Example 3.3.

We improve and generalize Theorem 3.7 as follows.
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Theorem 4.1. Let P,Q,S, and R be four self-mappings of a MIFM-Space (X, FM,N, T) satisfying the following
conditions:

FM,N(Px,Qy, t) >L∗ β1FM,N(Sx,Ry, t) +β2FM,N(Px,Sx, t) +β3FM,N(Qy,Ry, t)
+β4FM,N(Sx,Qy, t) +β5FM,N(Px,Ry, t),

(4.1)

where β1,β2,β3,β4,β5 > 0, β2 +β5 > 1, β3 +β4 > 1, and β1 +β4 +β5 > 1.
Assume that the pairs (P,S), and (Q,R) satisfy the (CLRSR) property, then the pairs (P,S) and (Q,R) have a

coincidence point. Furthermore, if pairs (P,S) and (Q,R) are weakly compatible, then P,Q,S, and R have unique
common fixed points.

Proof. Since the pairs (P,S), and (Q,R) satisfy the (CLRSR) property, there exist sequences {xn} and {yn}

in X such that

lim
n→∞ FM,N(Pxn, z, t) = lim

n→∞ FM,N(Sxn, z, t) = lim
n→∞ FM,N(Qyn, z, t) = lim

n→∞ FM,N(Ryn, z, t) = 1L∗ ,

where z ∈ S(X)∩ R(X). Since z ∈ S(X), there exists a point w ∈ X such that Sw = z.
We show that Pw = Sw. If not, then by (4.1) at x = w, and y = yn, we get

FM,N(Px,Qyn, t) >L∗ β1FM,N(Sw,Ryn, t) +β2FM,N(Pw,Sw, t) +β3FM,N(Qy,Ryn, t)
+β4FM,N(Sw,Qyn, t) +β5FM,N(Pw,Ryn, t).

(4.2)

On taking n→∞, (4.2) reduces to

FM,N(Pw, z, t) >L∗ β1FM,N(z, z, t) +β2FM,N(Pw, z, t) +β3FM,N(z, z, t) +β4FM,N(z, z, t) +β5FM,N(Pw, z, t).

So that

FM,N(Pw, z, t) >L∗ β11 +β2FM,N(Pw, z, t) +β31 +β41 +β5FM,N(Pw, z, t).

This is a contradiction to (F1). Hence FM,N(Pw, z, t) = 1; that is; Pw = Sw = z. Therefore w is a
coincidence point of (P,S). Also z ∈ R(X); there exists a point v ∈ X such that Rv = z. We assert that
Qv = Rv. If not, then by using (4.1) with x = w, and y = v, we get

FM,N(Pw,Qv, t) >L∗ β1FM,N(Sw,Rv, t) +β2FM,N(Pw,Sw, t) +β3FM,N(Qv,Rv, t)
+β4FM,N(Sw,Qv, t) +β5FM,N(Pw,Rv, t).

So that

FM,N(z,Qv, t) >L∗ β1FM,N(z,Qv, t) +β2FM,N(z, z, t) +β3FM,N(Qv, z, t)
+β4FM,N(z,Qv, t) +β5FM,N(z, z, t).

or

FM,N(z,Qv, t) >L∗ β1FM,N(z,Qv, t) +β21 +β3FM,N(Qv, z, t) +β4FM,N(z,Qv, t) +β51.

This is a contradiction to (F2). Hence FM,N(z,Qv, t) = 1, and so Qv = Rv = z, this shows that v is a
coincidence point of (Q,R).

Since the pair (P,S) is weakly compatible and Pw = Sw, hence Pz = PSw = SPw = Sz. Now we show
that z is a common fixed point of (P,S). Suppose that Az 6= z; by using (4.1) with x = z, and y = v, we
have

FM,N(Pz,Qv, t) >L∗ β1FM,N(Sz,Rv, t) +β2FM,N(Pz,Sz, t) +β3FM,N(Qv,Rv, t)
+β4FM,N(Sz,Qv, t) +β5FM,N(Pz,Rv, t).

(4.3)
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So that

FM,N(Pz, z, t) >L∗ β1FM,N(z, z, t) +β2FM,N(Pz, z, t) +β3FM,N(z, z, t) +β4FM,N(z, z, t) +β5FM,N(Pz, z, t).

Or

FM,N(Pz, z, t) >L∗ β11 +β2FM,N(Pz, z, t) +β31 +β41 +β5FM,N(Pz, z, t).

This is a contradiction to (F3). Therefore, Pz = z = Sz, shows that z is the common fixed point of (P,S).
Also, the pair (Q,R) is weakly compatible, and Qv = Rv, therefore, Qz = QRv = RQv = Rz. Suppose that
Qz 6= z; then using (4.1) with x = w, and y = z we have

FM,N(Pw,Qz, t) >L∗ β1FM,N(Sw,Rz, t) +β2FM,N(Pw,Sw, t) +β3FM,N(Qz,Rz, t)
+β4FM,N(Sw,Qz, t) +β5FM,N(Pw,Rz, t).

So that

FM,N(z,Qz, t) >L∗ β1FM,N(z, z, t) +β2FM,N(z, z, t) +β3FM,N(Qz, z, t) +β4FM,N(z,Qz, t) +β5FM,N(z, z, t).

or

FM,N(z,Qz, t) >L∗ β11 +β21 +β3FM,N(Qz, z, t) +β4FM,N(z,Qz, t) +β51,

which is a contradiction to (F3). Therefore, Qz = z = Rz, which shows that z is the common fixed point
of (Q,R). Hence, z is a common fixed point of (P,S) and (Q,R).

The uniqueness of a common fixed point can be shown easily by inequality (4.1) and condition (F3).
Hence, the theorem is proved.

Next, we give an example (Ex. 4.2) in support of Theorem 4.1, which validates the hypotheses and
extent of the generality of our result

Example 4.2. Let (X, FM,N, T) be a MIFM-Space, where X = [4, 20), T(a,b) =
(
a1b1, min(a2 + b2, 1)

)
,

∀ a = (a1,a2) and b = (b1,b2) ∈ L∗ with FM,N(x,y, t) =

(
t

t+|x–y| ,
|x–y|
t+|x−y|

)
, ∀ x,y ∈ X and t > 0. Define

four self-mappings P,Q,S, and R by

P(x) =

{
4, if x ∈ {4}∪ (8, 20),
19, if x ∈ (4, 8], Q(x) =

{
4, if x ∈ {4}∪ (8, 20),
12, if x ∈ (4, 8],

and

S(x) =


4, if x = 4,
9, if x ∈ (4, 8],
x
2 , if x ∈ (8, 20),

R(x) =


4, if x = 4,
17, if x ∈ (4, 8],
x− 4, if x ∈ (8, 20).

Define an implicit function F(τ1, τ2, τ3, τ4, τ5, τ6) : L
∗6 → L∗ as

F(τ1, τ2, τ3, τ4, τ5, τ6) = τ1–β1τ2–β2τ3 −β3τ4–β4τ5–β5τ6, (4.4)

where β1,β2,β3,β4,β5 > 0, β2 +β5 > 1, β3 +β4 > 1, and β1 +β4 +β5 > 1. Hence (4.4) implies

FM,N(Px,Qy, t) >L∗ β1FM,N(Sx,Ry, t) +β2FM,N(Px,Sx, t) +β3FM,N(Qy,Ry, t)
+β4FM,N(Sx,Qy, t) +β5FM,N(Px,Ry, t),

(4.5)

where β1,β2,β3,β4,β5 > 0, β2 +β5 > 1, β3 +β4 > 1, and β1 +β4 +β5 > 1.
With two sequences {xn} =

{
8 + 1

n

}
n ∈ N and {yn} = {4} (or {xn} = {4}, {yn} =

{
8 + 1

n

}
n ∈ N, the

pairs (P,S) and (Q,R) satisfy the (CLRSR) property:
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lim
n→∞ FM,N(Pxn, 4, t) = lim

n→∞ FM,N(Sxn, 4, t) = lim
n→∞ FM,N(Qyn, 4, t) = lim

n→∞ FM,N(Ryn, 4, t) = 1L∗ ,

where 4 ∈ S(X)∩ R(X). Also, P(X) = {4, 19} * [4, 16)∪ {17} = R(X) and Q(X) = {4, 12} * [4, 10) = S(X). By
usual enumeration, the inequality (4.5) can be verified easily, ∀ x,y ∈ X.

As a result, all of Theorem 4.1’s conditions have been met, and it has been demonstrated that the pairs
(P,S) and (Q,R) have a common fixed point 4, which is also a coincidence point.

The concluding remark on the above proved main result: It should be noted that even at point 4, all
the involved mappings are discontinuous. The subspace S(X) and R(X) are not closed subspaces of X, it
is also pointed out.

Now we prove the following result (application of Theorem 4.1) which involves four finite families of
self-mappings.

Theorem 4.3. Let {Pi} (for i = 1 to m), {Qj} (for j = 1 to n), {Sk} (for k = 1 to p), and {Rl} (for l = 1 to q)
be finite families of self-mappings of a MIFM-Space (X, F(M,N), T) with P = P1P2 · · ·Pm, Q = Q1,Q2 · · ·Qn,
S = S1S2 · · ·Sp, and R = R1R2 · · ·Rq satisfying the condition (4.1). Assume that the pairs (P,S) and (Q,R) enjoy
the (CLRSR) property; then (P,S) and (Q,R) have a point of coincidence. Furthermore, {Pi} (for i = 1 to m), {Qj}
(for j = 1 to n), {Sk} (for k = 1 to p), and {Rl} (for l = 1 to q) have a unique common fixed point if the families(
{Pi}, {Sk}

)
and ({Qj}, {Rl}

)
commute pairwise, wherein i ∈ {1, 2, . . . ,m},k ∈ {1, 2, . . . ,p}, j ∈ {1, 2, . . . ,n}, and

l ∈ {1, 2, . . . ,q}.

Proof. This theorem’s proof is like the one presented by Imdad et al. [23]. As a result, the proof of this
theorem has been omitted.

Remark 4.4. Similarly, Theorems 4.1 and 4.3 can be asserted and proved for another group of implicit
functions χ ∈ X used by Tanveer et al. [46].
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[18] S. Gülyaz, E. Karapınar, İ S. Yüce, A coupled coincidence point theorem in partially ordered metric spaces with an implicit
relation, Fixed Point Theory Appl., 2013 (2013), 11 pages. 3

[19] V. Gupta, R. K. Saini, A. Kanwar, Some coupled fixed point results on modified intuitionistic fuzzy metric spaces and
application to integral type contraction, Iran. J. Fuzzy Syst., 14 (2017), 123–137. 1

[20] X. Huang, C. Zhu, X. Wen, Common fixed point theorems for families of compatible mappings in intuitionistic fuzzy metric
spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 305–326. 1

[21] N. M. Hung, E. Karapınar, N. V. Luong, Coupled coincidence point theorem in partially ordered metric spaces via implicit
relation, Abstr. Appl. Anal., 2012 (2012), 14 pages. 3

[22] M. Imdad, J. Ali, M. Hasan, Common fixed point theorems in modified intuitionistic fuzzy metric spaces, Iran. J. Fuzzy
Syst., 9 (2012), 77–92. 1, 2.15, 3

[23] M. Imdad, J. Ali, M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM
spaces, Chaos Solitons Fractals, 42 (2009), 3121–3129. 2.16, 4

[24] M. Imdad, S. Chauhan, Employing common limit range property to prove unified metrical common fixed point theorems,
Int. J. Anal., 2013 (2013), 10 pages. 3

[25] M. Imdad, B. D. Pant, S. Chauhan, Fixed point theorems in Menger spaces using the (CLRST ) property and applications,
J. Nonlinear Anal. Optim., 3 (2012), 225–237. 1

[26] S. Jain, S. Jain, L. Bahadur Jain, Compatibility of type (P) in modified intuitionistic fuzzy metric space, J. Nonlinear Sci.
Appl., 3 (2010), 96–109.

[27] M. Jain, S. Kumar, A common fixed point theorem in fuzzy metric space using the property (CLRg), Thai J. Math., 14
(2016), 627–636.

[28] M. Jain, K. Tas, S. Kumar, N. Gupta, Coupled fixed point theorems for a pair of weakly compatible maps along with CLRg
property in fuzzy metric spaces, J. Appl. Math., 2012 (2012), 13 pages. 1

[29] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771–779. 1, 2.6, 2.7
[30] G. Jungck, B. E. Rhoades, Fixed points for set-valued functions without continuity, Indian J. Pure Appl. Math., 29

(1998), 227–238. 1
[31] M. Kumar, P. Kumar, S. Kumar, Some common fixed point theorems using (CLRg) property in cone metric spaces, Adv.

Fixed Point Theory, 2 (2012), 340–356. 1
[32] Y. Liu, J. Wu, Z. Li, Common fixed points of single-valued and multivalued maps, Int. J. Math. Math. Sci., 19 (2005),

3045–3055. 1
[33] T. K. Mondal, S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002), 323–336. 1
[34] R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl., 226 (1998), 251–258. 1
[35] B. D. Pant, S. Kumar, S. Chauhan, Common fixed point of weakly compatible maps on intuitionistic fuzzy metric spaces,

J. Adv. Stud. Topol., 1 (2010), 41–49. 1
[36] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039–1046. 1
[37] R. Saadati, S. Sedghi, N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos Solitons

Fractals, 38 (2008), 36–47. 1, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15
[38] S. Sedghi, N. Shobe, A. Aliouche, Common fixed point theorems in intuitionistic fuzzy metric spaces through conditions

of integral type, Appl. Math. Inf. Sci., 2 (2008), 61–82. 1, 2.17
[39] P. K. Sharma, Some common fixed point theorems for a sequence of self mappings in fuzzy metric space with property

(CLRg), J. Math. Comput. Sci., 10 (2020), 1499–1509. 1
[40] S. Sharma, B. Deshpande, Common fixed point theorems for a finite number of mappings without continuity and compat-

ibility on intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 40 (2009), 2242–2256. 1
[41] W. Shatanawi, V. Gupta, A. Kanwar, New results on modified intuitionistic generalized fuzzy metric spaces by employing

E.A property and common E.A property for coupled maps, Journal of Intelligent and Fuzzy Systems, 38 (2020), 3003–
3010. 1

[42] W. Sintunavarat, S. Chauhan, P. Kumam, Some fixed point results in modified intuitionistic fuzzy metric spaces, Afr.
Mat., 25 (2014), 461–473. 1, 2.19, 2.20

[43] W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric
spaces, J. Appl. Math., 2011 (2011), 14 pages. 1

[44] W. Sintunavarat, P. Kumam, Fixed point theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy
metric spaces, Thai J. Math., 10 (2012), 123–135. 1

[45] W. Sintunavarat, P. Kumam, Common fixed points for R-weakly commuting in fuzzy metric spaces, Ann. Univ. Ferrara
Sez. VII Sci. Mat., 58 (2012), 389–406. 1

[46] M. Tanveer, M. Imdad, D. Gopal, D. K. Patel, Common fixed point theorems in modified intuitionistic fuzzy metric spaces
with common property (E.A.), Fixed Point Theory Appl., 2012 (2012), 1–12. 1, 2.18, 3, 3.6, 4.4

[47] R. K. Verma, H. K. Pathak, Common fixed point theorems using property (E.A) in complex-valued metric spaces, Thai J.
Math., 11 (2013), 347–355. 1

[48] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. 1

https://doi.org/10.1186/1029-242X-2012-217
https://doi.org/10.1186/1029-242X-2012-217
https://doi.org/10.1186/1687-1812-2013-38
https://doi.org/10.1186/1687-1812-2013-38
https://dx.doi.org/10.22111/ijfs.2017.3436
https://dx.doi.org/10.22111/ijfs.2017.3436
https://doi.org/10.1007/s11565-010-0105-1
https://doi.org/10.1007/s11565-010-0105-1
https://doi.org/10.1155/2012/796964
https://doi.org/10.1155/2012/796964
https://www.sid.ir/en/journal/ViewPaper.aspx?id=287135
https://www.sid.ir/en/journal/ViewPaper.aspx?id=287135
https://doi.org/10.1016/j.chaos.2009.04.017
https://doi.org/10.1016/j.chaos.2009.04.017
https://doi.org/10.1155/2013/763261
https://doi.org/10.1155/2013/763261
http://www.math.sci.nu.ac.th/ojs302/index.php/jnao/article/view/82
http://www.math.sci.nu.ac.th/ojs302/index.php/jnao/article/view/82
https://doi.org/10.22436/jnsa.003.02.03
https://doi.org/10.22436/jnsa.003.02.03
http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/427/441
http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/427/441
https://doi.org/10.1155/2012/961210
https://doi.org/10.1155/2012/961210
https://doi.org/10.1155/S0161171286000935
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fixed+points+for+set-valued+functions+without+continuity&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fixed+points+for+set-valued+functions+without+continuity&btnG=
http://www.scik.org/index.php/afpt/article/download/335/163
http://www.scik.org/index.php/afpt/article/download/335/163
https://doi.org/10.1155/IJMMS.2005.3045
https://doi.org/10.1155/IJMMS.2005.3045
https://doi.org/10.1016/S0165-0114(01)00235-4
https://doi.org/10.1006/jmaa.1998.6029
https://doi.org/10.20454/jast.2010.204
https://doi.org/10.20454/jast.2010.204
https://doi.org/10.1016/j.chaos.2004.02.051
https://doi.org/10.1016/j.chaos.2006.11.008
https://doi.org/10.1016/j.chaos.2006.11.008
https://scholar.google.com/scholar?q=Common+fixed+point+theorems+in+intuitionistic+fuzzy+metric+spaces+through+conditions+of+integral+type&hl=en&as_sdt=0%2C5&as_ylo=&as_yhi=2008
https://scholar.google.com/scholar?q=Common+fixed+point+theorems+in+intuitionistic+fuzzy+metric+spaces+through+conditions+of+integral+type&hl=en&as_sdt=0%2C5&as_ylo=&as_yhi=2008
http://scik.org/index.php/jmcs/article/download/4650/2276
http://scik.org/index.php/jmcs/article/download/4650/2276
https://doi.org/10.1016/j.chaos.2007.10.011
https://doi.org/10.1016/j.chaos.2007.10.011
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs190541
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs190541
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs190541
https://doi.org/10.1007/s13370-012-0128-0
https://doi.org/10.1007/s13370-012-0128-0
https://doi.org/10.1155/2011/637958
https://doi.org/10.1155/2011/637958
http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/262/255
http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/262/255
https://doi.org/10.1007/s11565-012-0150-z
https://doi.org/10.1007/s11565-012-0150-z
ttps://doi.org/10.1186/1687-1812-2012-36
ttps://doi.org/10.1186/1687-1812-2012-36
https://doi.org/10.1007/s10509-012-1348-3
https://doi.org/10.1007/s10509-012-1348-3
https://doi.org/10.1016/S0019-9958(65)90241-X

	Introduction
	Preliminaries
	Implicit relations
	Main results

