A. A. AL-Dohiman
Mathematical Analysis and Applications, Mathematics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.

Abstract

This paper is concerned with studying a new class of multivariable operators know as joint n-normal q-tuple of operators. Some structural properties of some members of this class are given.

Keywords: n-normal, joint n-normal, tensor product.
2020 MSC: 46C05, 47A05, 47A15.
(C)2022 All rights reserved.

1. Introduction

Along this work H denotes a complex Hilbert space with inner product $\langle\mid\rangle . \mathcal{B}(\mathrm{H})$ is the algebra of all bounded linear operators on H .

Normal operators played a crucial role in the theory of operators. They were the basis of many extensions of families of operators. A bounded linear operator A on a complex Hilbert space, H is normal if $\left[A, A^{*}\right]:=A^{*} A-A A^{*}=0$. The class of normal operators was extended to a large classes of operators namely the classes of n-normal operators, (n, m)-normal operators and polynomially normal operators. An operator $A \in B[H]$ is
(i) n-normal if $A^{n} A^{*}-A^{*} A^{n}=0$ for some positive integer $n([6,17])$;
(ii) (n, m)-normal if $A^{n} A^{* m}-A^{* m} A^{n}=0$ for some positive integers n and $m([1,2])$;
(iii) polynomially normal if there exists a polynomial $P=\sum_{k=0}^{n} a_{k} z^{k} \in \mathbb{C}[z]$ such that

$$
\begin{equation*}
P(A) A^{*}-A^{*} P(A)=\sum_{k=0}^{n} a_{k}\left(A^{k} A^{*}-A^{*} A^{k}\right)=0 \tag{13}
\end{equation*}
$$

For more details on these classes of operators, we invite the reader to consult the following references [$1,2,6,9,10,13,17]$.

In recent years, the study of bounded operators in several variables is researched by several authors. The studies have included many classes of operators namely

[^0]- joint m-symmetric tuple ([7]);
- joint normal tuple ([11, 12]);
- joint hyponormal tuple ([15]);
- joint m-isometries([14]);
- joint $\left(n_{1}, \ldots, n_{d}\right)$-quasi-m-isometries ([8]);
- joint $\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{q}}\right)$-partial m-isometries ([3]);
- m-invertible q-tuple ([3]);
- (m, C)-isometric tuples ([4]).

This paper is devoted to some class of multivariable operators on the Hilbert space which is a generalization of joint normal tuple of operators. More precisely, we introduce a new class of operators which is called the class of joint n-normal q-tuple of operators.

Definition 1.1. An tuple $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ is said to be joint n-normal q-tuple for some positive integer n if the following conditions are satisfied

$$
\left\{\begin{array}{l}
A_{i} A_{j}=A_{j} A_{i} \text { for all }(i, j) \in\{1, \ldots, q\}^{2} \\
A_{i}^{n} A_{i}^{*}=A_{i}^{*} A_{i}^{n} \text { for } i=1, \ldots, q .
\end{array}\right.
$$

Remark 1.2. If we take $q=1$ in the Definition 1.1 we obtain the definition of n-normal single operator given in $[6,17]$.

It is proved in Example 2.2 that there is an operator which is joint n-normal tuple but not joint normal tuple, and thus, the proposed new class of operators contains the class of joint normal operators as a proper subset. Several properties of joint n-normal tuple are given in Section 2. In particular, we show that if $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ is an joint n-normal q-tuple and $B=\left(B_{1}, \ldots, B_{q}\right) \in \mathcal{B}[H]^{q}$ is an joint n-normal q-tuple, then $\mathbf{A B}=\left(=\left(A_{1} B_{1}, \ldots, A_{q} B_{q}\right)\right.$ is an joint n-normal q-tuple, under suitable conditions. Moreover, we prove that if $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in B[H]^{q}$ is a joint n-normal q-tuple and $B=\left(B_{1}, \ldots, B_{d}\right) \in$ $\mathcal{B}[H]^{\text {d }}$ is a joint n-normal d-tuple, then $\mathbf{A} * \mathbf{B} \in \mathcal{B}[H]^{\text {dq }}$ is an joint n-normal dq-tuple under suitable conditions. We apply these results to obtain some properties for tensor product of joint n-normal q-tuple.

2. Main results

This section is devoted to the study of some properties of the new class of multivariable operators.
Example 2.1. Let $S \in \mathcal{B}(H)$ be an n-normal q-tuple of operators and let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in \mathbb{C}^{q}$. Then the tuple $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right)$ with $A_{j}=\lambda_{j} S$ for $j=1, \ldots, q$ is a joint n-normal q-tuple of operators. In fact, it is obvious that $\left[A_{i}, A_{j}\right]=0$ for all $i, j \in\{1, \ldots, q\}$. Further, for all $k \in\{1, \ldots, q\}$ we have

$$
A_{\mathrm{k}}^{n} A_{\mathrm{k}}^{*}=\left(\lambda_{\mathrm{k}} S\right)^{n}\left(\lambda_{\mathrm{k}} S\right)^{*}=\lambda_{\mathrm{k}}^{n} S^{n} \bar{\lambda}_{\mathrm{k}} S^{*}=\lambda_{\mathrm{k}}^{n} \overline{\lambda_{\mathrm{q}}} S^{*} S^{n}(\text { since } S \text { is } n \text {-normal })=\left(\lambda_{\mathrm{k}} S\right)^{*}\left(\lambda_{\mathrm{k}} S\right)^{n}=A_{\mathrm{k}}^{*} A_{\mathrm{k}}^{n}
$$

So that A_{k} is n-normal for all $k=1, \ldots, q$.
Remark 2.1. Every joint normal tuple is joint n-normal tuple for all positive integers n. However, the converse is not true as shown in the following example.

Example 2.2. Let $A=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right) \in B\left[C^{2}\right]$ and define $A=(A, \ldots, A) \in B\left[\mathbb{C}^{2}\right]$. Then a direct calculation shows that \mathbf{A} is joint 2-normal q-tuple but it is not joint normal q-tuple.

Definition 2.2 ([16]). Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{L}(H)$, we will call \mathbf{A} entry-wise invertible if the bounded inverse of each operator exists and in which the inverse of a tuple $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right)$ is given by the tuple $\mathbf{A}^{-1}:=\left(A_{1}^{-1}, \ldots, A_{q}^{-1}\right)$.

Theorem 2.3. Let $\mathbf{A}=\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{q}}\right) \in \mathcal{B}[\mathrm{H}]^{\mathrm{q}}$ be joint n -normal q -tuple, then the following statement are true.
(1) \mathbf{A}^{*} is a joint n -normal tuple.
(2) If U is an unitary operator, then $\mathrm{U}^{*} \mathrm{AU}:=\left(\mathrm{U}^{*} \mathrm{~A}_{1} \mathrm{U}, \mathrm{U}^{*} \mathrm{~A}_{2} \mathrm{U}, \ldots, \mathrm{U}^{*} \mathrm{~A}_{\mathrm{q}} \mathrm{U}\right)$ is joint n-normal tuple.
(3) If \mathbf{A} entry-wise invertible, then \mathbf{A}^{-1} is joint n-normal.
(4) $\mathbf{A}^{m}:=\left(A_{1}^{m_{1}}, \ldots, A_{q}^{m_{q}}\right)$ is a joint n-normal q-tuple for all $m=\left(m_{1}, \ldots, m_{q}\right) \in \mathbb{N}^{q}$.

Proof.
(1) We have $\mathbf{A}^{*}:=\left(A_{1}^{*}, \ldots, A_{q}^{*}\right)$. Under the assumption that \mathbf{A} is joint n-normal tuple we get that $A_{i} A_{j}=$ $A_{j} A_{i}$ of all $(i, j) \in\{1, \ldots, q\}^{2}$ and $A_{i}^{n} A_{i}^{*}=A_{i}^{*} A_{i}^{n}$ for $i=1, \ldots, q$. From which it follows that

$$
\left\{\begin{array}{l}
A_{i}^{*} A_{j}^{*}=A_{j}^{*} A_{i}^{*} \text { for all }(i, j) \in\{1, \ldots, q\}^{2} \\
A_{i}^{* n} A_{i}=A_{i} A_{i}^{* n} \text { for } i=1, \ldots, q
\end{array}\right.
$$

Therefore \mathbf{A}^{*} is joint n-normal tuple.
(2) Clearly,

$$
\left(\mathrm{U}^{*} A_{i} \mathrm{U}\right)\left(\mathrm{U}^{*} A_{j} \mathrm{U}\right)=\mathrm{U}^{*} A_{i} A_{j} \mathrm{U}==\mathrm{U}^{*} A_{j} A_{j} \mathrm{U}=\left(\mathrm{U}^{*} A_{j} \mathrm{U}\right)\left(\mathrm{U}^{*} A_{i} \mathrm{U}\right) .
$$

However

$$
\left(\mathrm{u}^{*} A_{i} \mathrm{u}\right)^{n}\left(\mathrm{u}^{*} A_{i} \mathrm{u}\right)^{*}=\mathrm{u}^{*} A_{i}^{n} A_{i}^{*} \mathrm{U}=\mathrm{u}^{*} A_{i}^{*} A_{i}^{n} \mathrm{U}=\left(\mathrm{u}^{*} A_{i}^{*} \mathrm{u}\right)\left(\mathrm{u}^{*} A_{i}^{n} \mathrm{u}\right)=\left(\mathrm{u}^{*} A_{i} \mathrm{u}\right)^{*}\left(\mathrm{u}^{*} A_{i} \mathrm{u}\right)^{n}
$$

(3) We have the following implications

$$
\left\{\begin{array}{l}
A_{i} A_{j}=A_{j} A_{i} \Longrightarrow A_{j}^{-1} A_{i}^{-1}=A_{i}^{-1} A_{j}^{-1}, \forall(i, j) \in\{1, \ldots, q\}^{2} \\
A_{k}^{n} A_{k}^{*}=A_{k}^{*} A_{k}^{n} \Longrightarrow\left(A_{k}^{-1}\right)^{*}\left(A_{k}^{-1}\right)^{n}=\left(A_{k}^{-1}\right)^{n}\left(A_{k}^{-1}\right)^{*}, \forall k \in\{1, \ldots, q\} .
\end{array}\right.
$$

Therefore \mathbf{A}^{-1} is joint n-normal q-tuple.
(4) If $m_{k}=1$ for all $k \in\{1, \ldots, q\}$, then $\left[A_{i}^{m_{i}}, A_{j}^{m_{j}}\right]=0$. If $m_{k}>1$ for all $k \in\{1, \ldots, q\}$, by taking into account [15, lemma 2.1] it follows that

$$
\left[A_{i}^{m_{i}}, A_{j}^{m_{j}}\right]=\sum_{\substack{\alpha+\alpha^{\prime}=\mathfrak{m}_{i}-1 \\ \beta+\beta^{\prime}=\mathfrak{m}_{\mathfrak{j}}-1}} A_{i}^{\alpha} A_{j}^{\beta}\left[A_{i}, A_{j}\right] A_{j}^{\alpha^{\prime}} A_{i}^{\beta^{\prime}}
$$

So, since \mathbf{A} is a joint n-normal q-tuple, we get

$$
\left[A_{\mathfrak{i}}^{m_{i}}, A_{\mathfrak{j}}^{\mathfrak{m}_{\mathfrak{j}}}\right]=\sum_{\alpha+\alpha^{\prime}=\mathfrak{m}_{\mathfrak{i}}-1 \beta+\beta^{\prime}=\mathfrak{m}_{\mathfrak{j}}-1} A_{\mathfrak{i}}^{\alpha} A_{\mathfrak{j}}^{\beta}\left[A_{i}, A_{\mathfrak{j}}\right] A_{\mathfrak{j}}^{\alpha^{\prime}} A_{q}^{\beta^{\prime}}=0, \forall(\mathfrak{i}, \mathfrak{j}) \in\{1, \ldots, \mathrm{q}\}^{2}
$$

Moreover, since each A_{k} is n-normal, then by referring to [17, Corollary 2.6], we obtain that $A_{k}^{m_{k}}$ is n-normal for all $k \in\{1, \ldots, q\}$. Therefore $\left(A_{1}^{m_{1}}, \ldots, A_{q}^{m_{q}}\right)$ is joint n-normal q-tuple.

Theorem 2.4. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]$, then $\mathbf{A}-\lambda:=\left(A_{1}-\lambda_{1}, \ldots, A_{q}-\lambda_{q}\right)$ is joint n-normal q-tuple for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\mathrm{q}}\right) \in \mathbb{C}^{\mathrm{q}}$ if and only if \mathbf{A} is joint normal \mathbf{q}-tuple.

Proof. Assume that $\mathbf{A}-\lambda$ is joint n-normal tuple for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in \mathbb{C}^{q}$. Then we have

$$
\left(A_{i}-\lambda_{i}\right)\left(A_{j}-\lambda_{j}\right)=\left(A_{j}-\lambda_{j}\right)\left(A_{i}-\lambda_{i}\right) \Longrightarrow A_{i} A_{j}=A_{j} A_{i}, ; \forall(i, j) \in\{1, \ldots, q\}^{2}
$$

However,

$$
\begin{aligned}
0= & \left(A_{j}-\lambda_{j}\right)^{n}\left(A_{j}-\lambda_{j}\right)^{*}-\left(A_{j}-\lambda_{j}\right)^{*}\left(A_{j}-\lambda_{j}\right)^{n} \\
= & \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} A_{j}^{n-k} \lambda_{j}^{k}\left(A_{j}^{*}-\overline{\lambda_{j}}\right)-\left(A_{j}^{*}-\overline{\lambda_{j}}\right) \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} A_{j}^{n-k} \lambda_{j}^{k} \\
= & \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} A_{j}^{n-k} A_{j}^{*} \lambda_{j}^{k}-\left(\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} A_{j}^{n-k} \lambda_{j}^{k}\right) \overline{\lambda_{j}} \\
& -\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} A_{j}^{*} A_{j}^{n-k} \lambda_{j}^{k}+\left(\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} A_{j}^{n-k} \lambda_{j}^{k}\right) \overline{\lambda_{j}} \\
= & \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \lambda_{j}^{k}\left(A_{j}^{n-k} A_{j}^{*}-A_{j}^{*} A_{j}^{n-k}\right) \\
= & \left(A_{j}^{n} A_{j}^{*}-A_{j}^{*} A_{j}^{n}\right)+(-1)^{n-1} n \lambda_{j}^{n-1}\left(A_{j} A_{j}^{*}-A_{j}^{*} A_{j}\right)+\sum_{k=1}^{n-2}(-1)^{k}\binom{n}{k}\left(A_{j}^{n-k} A_{j}^{*}-A_{j}^{*} A_{j}^{n-k}\right) \\
= & (-1)^{n-1} \lambda_{j}^{n-1} n\left(A_{j} A_{j}^{*}-A_{j}^{*} A_{j}\right)+\sum_{k=1}^{n-2}(-1)^{k}\binom{n}{k} \lambda_{j}^{k}\left(A_{j}^{n-k} A_{j}^{*}-A_{j}^{*} A_{j}^{n-k}\right) .
\end{aligned}
$$

By setting $\lambda_{j}=r_{j} e^{i \phi_{j}}$ where $r_{j}>0$ and $0 \leqslant \phi_{j} \leqslant 2 \pi$, it follows that

$$
\left(A_{j}^{*} A_{j}-A_{j} A_{j}^{*}\right)=\frac{(-1)^{n}}{n\left(r_{j} e^{i \phi_{j}}\right)^{n-1}} \sum_{k=1}^{n-2}(-1)^{k}\left(\binom{n}{k}\left(r_{j} e^{i \phi_{j}}\right)^{k}\left(A_{j}^{n-k} A_{j}^{*}-A_{j}^{*} A_{j}^{n-k}\right)\right.
$$

and so

$$
\left\|A_{j}^{*} A_{j}-A_{j} A_{j}^{*}\right\| \leqslant \frac{1}{r_{j}^{n-1}} \sum_{k=1}^{n-2}\binom{n}{k} r_{j}^{k}\left\|A_{j}^{n-k} A_{j}^{*}-A_{j}^{*} A_{j}^{n-k}\right\|
$$

Letting $r_{j} \longrightarrow \infty$, we get $A_{j}^{*} A_{j}-A_{j} A_{j}^{*}=0$ for $j=1, \ldots, q$. Therefore, \mathbf{A} is joint normal tuple.
Conversely, assume that \mathbf{A} is joint normal tuple. Then we have

$$
\left\{\begin{array}{l}
A_{i} A_{j}=A_{j} A_{i} \text { for all }(i, j) \in\{1, \ldots, q\}^{2} \\
A_{i}^{n} A_{i}^{*}=A_{i}^{*} A_{i}^{n} \text { for } i=1, \ldots, q .
\end{array}\right.
$$

This means that

$$
\left\{\begin{array}{l}
\left(A_{i}-\lambda_{i}\right)\left(A_{j}-\lambda_{j}\right)=\left(A_{j}-\lambda_{j}\right)\left(A_{i}-\lambda_{i}\right) \text { for all }(i, j) \in\{1, \ldots, q\}^{2} \\
\left(A_{i}-\lambda_{i}\right)^{n}\left(A_{i}-\lambda_{i}\right)^{*}=\left(A_{i}-\lambda_{i}\right)^{*}\left(A_{i}-\lambda_{i}\right)^{n} \text { for } i=1, \ldots, q
\end{array}\right.
$$

Therefore, $\mathbf{A}-\lambda=\left(A_{1}-\lambda_{1}, \ldots, A_{q}-\lambda_{q}\right)$ is joint n-normal tuple.
Proposition 2.5. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]$ quch is joint n-normal tuple and joint $(n+1)$-normal q-tuple. Then \mathbf{A} is joint $(\mathrm{n}+2)$-normal tuple.

Proof. Under the assumptions that joint n-normal tuple and joint $(n+1)$-normal tuple, it follows that $A_{i} A_{j}=A_{j} A_{i}$ for all i, j and $A_{j}^{n}\left(A_{j} A_{j}^{*}-A_{j}^{*} A_{j}\right)=0$. Therefore

$$
A_{j}^{n+2} A_{j}^{*}-A_{j}^{*} A_{j}^{n+2}=0, j=1, \ldots, q
$$

Remark 2.6. As a immediate consequence of Proposition 2.5, if \mathbf{A} is both joint n-normal q-tuple and joint $(n+1)$-normal q-tuple, then it is joint k-normal for all $k \geqslant n$. In particular if A is both joint 2-normal q-tuple and joint 3-normal q-tuple, then it is joint k-normal q-tuple for all $k \geqslant 2$.

Proposition 2.7. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ such is joint n-normal tuple. If each A_{j} is a partial isometry for $j=1, \ldots, q$, then \mathbf{A} is joint $(n+1)$-normal q-tuple.

Proof. Since for each $k=1, \ldots, q, A_{k}$ is n-normal and partial isometry, if follows by applying [5, Theorem 2.4] that A_{k} is $(n+1)$-normal. The desired result follows immediately.

Theorem 2.8. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ be joint n-normal q-tuple. Then $\mathbf{A}^{m n}:=\left(A_{1}^{m n}, \ldots, A_{q}^{m n}\right)$ is joint normal q-tuple for all positive integer.

Proof. From the assumption that \mathbf{A} is a joint n-normal q-tuple, it follows that

$$
\left\{\begin{array}{c}
A_{i}^{m n} A_{j}^{m n}=A_{j}^{m n} A_{i}^{m n} \quad \text { for all }(i, j) \in\{1, \ldots, q\}^{2}, \\
A_{i}^{m n} A_{i}^{*}=\left(A_{i}^{n}\right)^{m} A_{i}^{*}=A_{i}^{*} A_{i}^{m n}, \forall i=1, \ldots, q .
\end{array}\right.
$$

Therefore \mathbf{A}^{nm} is joint normal q-tuple.
Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{q}\right) \in \mathcal{B}[H]$. Denote by $\mathbf{A B}=\left(A_{1} B_{1}, \ldots, A_{q} B_{q}\right)$ and $\mathbf{A}+\mathbf{B}=\left(A_{1}+B_{1}, \ldots, A_{q}+B_{q}\right)$.
Remark 2.9. It was observed by the author Kaplansky in [18] that if A and B are normal operators it may be possible that $A B$ is normal while $B A$ is not. However, he showed that if A and $A B$ are normal, then $B A$ is normal if and only if B commutes with $A A^{*}$.

Proposition 2.10. Let $\mathbf{A}=\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{q}}\right) \in \mathcal{B}[\mathrm{H}]^{\mathrm{q}}$ and $\mathbf{B}=\left(\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{q}}\right) \in \mathcal{B}[\mathrm{H}]^{q}$ be two joint n -normal q -tuples of operators. The following statements are true.
(1) If $\left[A_{i}, B_{j}\right]=0, \forall i, j \in\{1, \ldots, q\}$ and $\left[A_{k}, B_{k}^{*}\right]=0$ for all $k \in\{1, \ldots, q\}$, then $\mathbf{A B}$ and $\mathbf{B A}$ are joint n-normal q-tuple.
(2) If $\left[A_{i}, B_{j}\right]=0, \forall i, j \in\{1, \ldots, q\}$ and $A_{k} B_{k}=A_{k} B_{k}^{*}=0$ for all $k \in\{1, \ldots, q\}$, then $\mathbf{A}+\mathbf{B}$ is joint n-normal q-tuple.

Proof.
(1) We have for all $i, j \in\{1, \ldots, q\}$,

$$
\begin{aligned}
{\left[A_{i} B_{i}, A_{j} B_{j}\right]=A_{i} B_{i} A_{j} B_{j}-A_{j} B_{j} A_{i} B_{i} } & =A_{i} A_{j} B_{i} B_{j}-A_{j} A_{i} B_{j} B_{i} \\
& =A_{i} A_{j} B_{i} B_{j}-A_{i} A_{j} B_{j} B_{i}=A_{i} A_{j}\left(B_{i} B_{j}-B_{j} B_{i}\right)=A_{i} A_{j}\left[B_{i}, B_{j}\right]=0
\end{aligned}
$$

Furthermore, let $k \in\{1, \ldots, q\}$, we have

$$
\left(A_{k} B_{k}\right)^{*}\left(A_{k} B_{k}\right)^{n}=B_{k}^{*} A_{k}^{*} A_{k}^{n} B_{k}^{n}=B_{k}^{*} A_{k}^{n} A_{k}^{*} B_{k}^{n}=B_{k}^{*} A_{k}^{n} B_{k}^{n} A_{k}^{*}=A_{k}^{n} B_{k}^{n} B_{k}^{*} A_{k}^{*}=\left(A_{k} B_{k}\right)^{n}\left(A_{k} B_{k}\right)^{*}
$$

Therefore, $\mathbf{A B}$ is a joint n-normal q-tuple. Similarly, we show that $\mathbf{B A}$ is a joint n-normal q-tuple.
(2) For all $(i, j) \in\{1, \ldots, q\}^{2}$, one can see that

$$
\left[A_{i}+B_{i}, A_{j}+B_{j}\right]=\left[A_{i}, A_{j}\right]+\left[B_{i}, B_{j}\right]+\left[A_{i}, B_{j}\right]+\left[B_{i}, A_{j}\right]=0
$$

Besides, for $k \in\{1,2, \ldots, q\}$, we get

$$
\begin{aligned}
\left(A_{k}+B_{k}\right)^{*}\left(A_{k}+B_{k}\right)^{n} & =\left(A_{k}^{*}+B_{k}^{*}\right)\left(\sum_{j=0}^{n}\binom{n}{j} A_{k}^{j} B_{k}^{n-j}\right) \\
& =\left(A_{k}^{*}+B_{k}^{*}\right)\left(A_{k}^{n}+B_{k}^{n}\right) \\
& =\left(A_{k}^{*} A_{k}^{n}+A_{k}^{*} B_{k}^{n}+B_{k}^{*} A_{k}^{n}+B_{k}^{*} B_{k}^{n}\right. \\
& =A_{k}^{n} A_{k}^{*}+B_{k}^{n} B_{k}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(A_{k}^{n}+B_{k}^{n}\right)\left(A_{k}+B_{k}\right)^{*} \\
& =\left(\sum_{j=0}^{n}\binom{n}{j} A_{k}^{j} B_{k}^{n-j}\right)\left(A_{k}+B_{k}\right)^{*} \\
& =\left(A_{k}+B_{k}\right)^{n}\left(A_{k}+B_{k}\right)^{*} .
\end{aligned}
$$

Therefore, $\mathbf{A}+\mathbf{B}$ is joint n-normal q-tuple.
Corollary 2.11. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{m}\right) \in \mathcal{B}[H]^{m}$ be two joint n-normal q-tuples of operators such that $\left[A_{i}, B_{j}\right]=\left[A_{i}, B_{j}^{*}\right]=0, \forall(i, j) \in\{1,2 \ldots, d\} \times\{1, \ldots, m\}$. Then

$$
\mathbf{A} * \mathbf{B}:=\left(A_{1} B_{1}, \ldots, A_{1} B_{m}, A_{2} B_{1}, \ldots, A_{2} B_{m}, \ldots, A_{q} B_{1}, \ldots, A_{q} B_{m}\right)
$$

is joint n -normal (qm)-tuple of operators.
Proof. By noting $\widetilde{\sim} \widetilde{\mathbf{A}}=\left(A_{1}, \ldots, A_{1}, A_{2}, \ldots, A_{2}, \ldots, A_{q}, \ldots, A_{q}\right)$ and $\widetilde{\mathbf{B}}=\left(B_{1}, \ldots, B_{m}, B_{1}, \ldots, B_{m}, B_{1}, \ldots, B_{m}\right)$, we get $\mathbf{A} * \mathbf{B}=\widetilde{\mathbf{A}} \widetilde{\mathbf{B}}$ and so the proof follows by applying Proposition 2.10.

Proposition 2.12. Let $\left.\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[\mathcal{H}]\right]^{q}$ be commuting tuple of operators. For $\mathfrak{n} \in \mathbb{N}$, set $X=$ $\left(A_{1}^{n}+A_{1}^{*}, \ldots, A_{q}^{n}+A_{q}^{*}\right)$ and $Y=\left(A_{1}^{n}-A_{1}^{*}, \ldots, A_{q}^{n}-A_{q}^{*}\right)$. Then \mathbf{A} is joint n-normal q-tuple if and only if $[X, Y]=0$.
Proof. Obviously, $A_{i} A_{j}=A_{j} A_{i} \quad \forall(i, j) \in\{1, \ldots, q\}^{2}$. On the other hand

$$
\begin{aligned}
{[X, Y]=0 } & \Longleftrightarrow X Y-Y X=0 \\
& \Longleftrightarrow\left(A_{k}^{n}+A_{k}^{*}\right)\left(A_{k}^{n}-A_{\mathrm{k}}^{*}\right)-\left(A_{k}^{n}-A_{\mathrm{k}}^{*}\right)\left(A_{\mathrm{k}}^{n}+A_{\mathrm{k}}^{*}\right)=0 \\
& \Longleftrightarrow A_{k}^{2 n}-A_{\mathrm{k}}^{n} A_{\mathrm{k}}^{*}+A_{\mathrm{k}}^{*} A_{\mathrm{k}}^{n}-A_{\mathrm{k}}^{* 2}-\left(A_{\mathrm{k}}^{2 n}+A_{\mathrm{k}}^{n} A_{\mathrm{k}}^{*}-A_{\mathrm{k}}^{*} A_{\mathrm{k}}^{n}-A_{\mathrm{k}}^{* 2}\right) \\
& \Longleftrightarrow A_{\mathrm{k}}^{n} A_{\mathrm{k}}^{*}-A_{\mathrm{k}}^{*} A_{\mathrm{k}}^{n}=0, \forall \mathrm{k} \in\{1, \ldots, \mathrm{q}\} .
\end{aligned}
$$

Hence, the result is proved.
The following proposition shows that the class of joint n-normal q-tuple is closed in $\mathcal{B}[H]^{q}$.
Proposition 2.13. The class of joint \mathbf{n}-normal \mathbf{q}-tuple is a closed subset of $\mathcal{B}[\mathrm{H}]{ }^{\mathrm{q}}$.
Proof.
Step 1. consider $\left(A_{k}\right)_{k} \subset \mathcal{B}[H]$ be a sequence of n-normal single operators such that $\left\|A_{k}-A\right\| \rightarrow 0$, as $k \rightarrow+\infty$ for $A \in \mathcal{B}[H]$. Then we have

$$
\left\{\begin{array}{l}
\left\|A_{k}^{*}-A^{*}\right\|=\left\|A_{k}-A\right\| \rightarrow 0, \text { as } k \rightarrow+\infty \\
\left\|A_{k}^{n}-A^{n}\right\| \rightarrow 0, \text { as } k \rightarrow+\infty
\end{array}\right.
$$

However, we have

$$
\begin{align*}
\left\|A_{k}^{n} A_{k}^{*}-A^{n} A^{*}\right\| & =\left\|A_{k}^{n} A_{k}^{*}-A_{k}^{n} A^{*}+A_{k}^{n} A^{*}-A^{n} A^{*}\right\| \\
& \leqslant\left\|A_{k}^{n} A_{k}^{*}-A_{k}^{n} A^{*}\right\|+\left\|A_{k}^{n} A^{*}-A^{n} A^{*}\right\| \\
& \leqslant\left\|A_{k}^{n}\left(A_{k}^{*}-A^{*}\right)\right\|+\left\|\left(A_{k}^{n}-A^{n}\right) A^{*}\right\| \tag{2.1}\\
& \leqslant\left\|A_{k}^{n}\right\|\left\|A_{k}-A\right\|+\left\|A^{*}\right\|\left\|A_{k}^{n}-A^{n}\right\| \\
& \leqslant\left\|A_{k}^{n}-A^{n}\right\|\left(\left\|A_{k}-A\right\|+\|A\|\right)+\left\|A^{n}\right\|\left(\left\|A_{k}-A\right\|\right)
\end{align*}
$$

Hence the limiting case of (2.1) shows that,

$$
A^{n} A^{*}=\lim _{k \rightarrow+\infty} A_{k}^{n} A_{k}^{*}
$$

Similarly we can also obtain $A^{*} A^{n}=\lim _{k \rightarrow+\infty} A_{k}^{*} A_{k}^{n}$. Since A_{k} is n-normal, it follows that $A^{n} A^{*}=A^{*} A^{n}$. Therefore, A is n-normal.

Step 2. Let $\left(\mathbf{A}_{\mathbf{k}}\right)_{k}=\left(A_{1}(k), \ldots, A_{q}(k)\right)_{k}$ be a sequence of joint n-normal q-tuple of operators in $\mathcal{B}[H]^{q}$ such that

$$
\left\|\mathbf{A}_{k}-\mathbf{A}\right\|=\left(\sum_{j=1}^{q}\left\|A_{j}(k)-A_{j}\right\|^{2}\right)^{1 / 2} \longrightarrow 0, \text { as } k \longrightarrow \infty
$$

where $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$.
It is obvious that for each $j \in\{1, \ldots, q\}$ we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|A_{j}(k)-A_{j}\right\|=0 \tag{2.2}
\end{equation*}
$$

Since $A_{j}(k)^{n} A_{j}(k)^{*}=A_{j}(k)^{*} A_{j}(k)^{n}$ for each $j=1, \ldots, q$, it follows by taking into account Step $\mathbf{1}$, that

$$
A_{j}^{n} A_{j}^{*}=A_{j}^{*} A_{j}^{n}, \forall j \in\{1, \ldots, q\}
$$

Moreover, for all $i, j \in\{1, \ldots, q\}$ and $k \in \mathbb{N}$, we see that

$$
\begin{aligned}
\left\|A_{i}(k) A_{j}(k)-A_{i} A_{j}\right\| & =\left\|A_{i}(k)\left(A_{j}(k)-A_{j}\right)+\left(A_{i}(k)-A_{i}\right) A_{j}\right\| \\
& \leqslant\left\|A_{i}(k)\right\|\left\|A_{j}(k)-A_{\mathfrak{j}}\right\|+\left\|A_{i}(k)-A_{i}\right\|\left\|A_{j}\right\| \\
& \leqslant\left(\left\|A_{i}(k)-A_{i}\right\|+\left\|A_{i}\right\|\right)\left\|A_{\mathfrak{j}}(k)-A_{j}\right\|+\left\|A_{i}(k)-A_{i}\right\|\left\|A_{j}\right\|
\end{aligned}
$$

Hence, in view of (2.2), we obtain

$$
\left\|A_{i}(k) A_{j}(k)-A_{i} A_{j}\right\| \longrightarrow 0, \text { as } n \rightarrow+\infty, \forall(i, j) \in\{1, \ldots, q\}^{2}
$$

On the other hand, since $\left\{\mathbf{A}_{k}\right\}_{k}=\left\{\left(\boldsymbol{A}_{1}(k), \ldots, \boldsymbol{A}_{q}(k)\right)\right\}_{k}$ is a sequence of joint n-normal q-tuple, then

$$
\left[A_{i}(k), A_{\mathfrak{j}}(k)\right]=0, \quad \forall(i, j) \in\{1, \ldots, q\}^{2} \text { and } k \in \mathbb{N}
$$

So, we immediately get

$$
\left[A_{i}, A_{j}\right]=0, \quad \forall(i, j) \in\{1,2, \ldots, q\}^{2}
$$

Therefore, \mathbf{A} is joint n-normal q-tuple.
Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{q}\right) \in \mathcal{B}[H]^{q}$. We denote by

$$
\mathbf{A} \otimes \mathbf{B}=\left(A_{1} \otimes B_{1}, \ldots, A_{q} \otimes B_{q}\right)
$$

In [6] it was observed that If $A_{1}, A_{2} \in \mathcal{B}[H]$, then $A_{1} \otimes A_{2}$ is n-normal if and only if A_{1} and A_{2} are n-normal. The following theorem studied the tensor product of two joint n-normal q-tuple.

Theorem 2.14. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{q}\right) \in \mathcal{B}[H]^{q}$ are two joint n-normal q-tuple, then $\mathbf{A} \otimes \mathbf{B}$ is joint n -normal q -tuple.
Proof. Under the condition $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right)$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{q}\right)$ are joint n-normal q-tuples, we can obtained that for all $(i, j) \in\{1, \ldots, q\}^{2}$

$$
\begin{aligned}
{\left[\left(A_{i} \otimes B_{i}\right),\left(A_{j} \otimes B_{j}\right)\right] } & =\left[\left(A_{i} \otimes B_{i}\right)\left(A_{j} \otimes B_{j}\right)-\left(A_{j} \otimes B_{j}\right)\left(A_{i} \otimes B_{i}\right)\right] \\
& =\left(A_{i} A_{j} \otimes B_{i} B_{j}\right)-\left(A_{j} A_{i} \otimes B_{j} B_{i}\right)=\left(A_{j} A_{i} \otimes B_{j} B_{i}\right)-\left(A_{j} A_{i} \otimes B_{j} B_{i}\right)=0
\end{aligned}
$$

Moreover, for all $k \in\{1, \ldots, q\}$, we have

$$
\left(A_{k} \otimes B_{k}\right)^{n}\left(A_{k} \otimes B_{k}\right)^{*}=A_{k}^{n} A_{k}^{*} \otimes B_{k}^{n} B_{k}^{*}=A_{k}^{*} A_{k}^{n} \otimes B_{k}^{*} B_{k}^{n}=\left(A_{k} \otimes B_{k}\right)^{*}\left(A_{k} \otimes B_{k}\right)^{n}
$$

The following example shows that the converse of the above theorem need not to be hold in general.
Example 2.3. Let $A_{1}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \in \mathcal{B}\left[\mathbb{C}^{2}\right]$ and $A_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in \mathcal{B}\left[\mathbb{C}^{2}\right]$. By elementary calculation we have $A_{1} \otimes A_{1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ and $A_{2} \otimes A_{2}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$. Set $\mathbf{A}=\left(A_{1}, A_{2}\right)$ and $\mathbf{A} \otimes \mathbf{A}=$ $\left.\left(A_{1} \otimes A_{1}, A_{2} \otimes A_{2}\right)\right)$. We observe that \mathbf{A} is not joint normal 2-tuple since $A_{1} A_{2} \neq A_{2} A_{1}$. However $\mathbf{A} \otimes \mathbf{A}$ is joint normal 2-tuple.

The following theorem illustrates the conditions under which the converse of Theorem 2.14 is true.
Theorem 2.15. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ and $\mathbf{B}=\left(B_{1}, \ldots, B_{q}\right) \in \mathcal{B}[H]^{q}$ such that

$$
\left\{\begin{array}{l}
A_{i} A_{j}>0 \text { and } B_{i} B_{j}>0, i, j=1, \ldots, q \\
\left\|A_{i} A_{j}\right\|=\left\|A_{j} A_{i}\right\| \text { and }\left\|B_{i} B_{j}\right\|=\left\|B_{j} B_{i}\right\|, i, j=1, \ldots, q
\end{array}\right.
$$

If $\mathbf{A} \otimes \mathbf{B}$ is joint n -normal \mathbf{q}-tuple, then \mathbf{A} and \mathbf{B} are joint n -normal \mathbf{q}-tuples.
Proof. From the condition that $\mathbf{A} \otimes \mathbf{B}$ is joint n-normal q-tuple, and taking into account Theorem 2.8 it follows that

$$
(\mathbf{A} \otimes \mathbf{B})^{n}=\left(\left(A_{1} \otimes B_{1}\right)^{n}, \ldots,\left(A_{q} \otimes B_{q}\right)^{n}\right)=\left(A_{1}^{n} \otimes B_{1}^{n}, \ldots A_{q}^{n} \otimes B_{q}^{n}\right)
$$

is joint normal q-tuple. This means that $\left(A_{k} \otimes B_{k}\right)^{n}=A_{k}^{n} \otimes B_{k}^{n}$ is normal for each $k=1, \ldots, q$. By ([19]) it is well known that

$$
A_{k}^{n} \otimes B_{k}^{n} \text { is normal if and only if } A_{k}^{n} \text { and } B_{k}^{n} \text { are normal operators. }
$$

However A_{k}^{n} being normal, implies that A_{k} is n-normal. Similarly, B_{k}^{n} being normal implies that B_{k} is n-normal. Therefore

$$
\left[A_{k}^{n}, A_{k}^{*}\right]=\left[B_{k}^{n}, B_{k}^{*}\right]=0, \text { for each } k=1, \ldots, q
$$

On the other hand, the joint n-normality of $\mathbf{A} \otimes \mathbf{B}$ implies that

$$
A_{i} A_{j} \otimes B_{i} B_{j}=A_{j} A_{i} \otimes B_{j} B_{i}, \quad \forall(i, j) \in\{1, \ldots, q\}^{2}
$$

Since $A_{i} A_{j}$ and $B_{i} B_{j}$ are positive for all $i, j=1, \ldots, q$ we have by $[19$, Proposition 2.2] that there exists a constant $\mathrm{c}_{\mathrm{ij}}>0$ such that

$$
A_{i} A_{j}=c_{i j} A_{j} A_{i} \text { and } B_{i} B_{j}=c_{i j}^{-1} B_{j} B_{i} \text { for } i, j=1, \ldots, q
$$

However

$$
\left\|A_{i} A_{j}\right\|=c_{i j}\left\|A_{j} A_{i}\right\| \Longrightarrow c_{i j}=1, \quad \forall i, j
$$

Hence,

$$
A_{i} A_{j}=A_{j} A_{i} \text { and } B_{i} B_{j}=B_{j} B_{i} \text { for } i, j=1, \ldots, q
$$

Consequently, A and B are joint n-normal q-tuples.
Theorem 2.16. Let $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \mathcal{B}[H]^{q}$ such that $\operatorname{ker}\left(A_{k}\right)=\{0\}$ for $k=1, \ldots, q$. If \mathbf{A} is joint n-normal and joint m-normal q-tuple for some positive integer n and m, then, \mathbf{A} is joint $(\max \{n, m\}-\min \{n, m\})$-normal q -tuple. In particular, if \mathbf{A} is joint n -normal and joint $(\mathrm{n}+1)$-normal, then \mathbf{A} is joint normal q -tuple.

Proof. Obviously, $\left[A_{i}, A_{j}\right]=0$ for all $(i, j) \in\{1, \ldots, q\}^{2}$. Moreover for each $k=1, \ldots, q$ we have

$$
\left\{\begin{array}{c}
A_{k}^{n} A_{k}^{*}-A_{k}^{*} A_{k}^{n}=0, \\
A_{k}^{m} A_{k}^{*}-A_{k}^{*} A_{k}^{m}=0 .
\end{array}\right.
$$

Now by considering that $n \geqslant m$, we get

$$
\begin{aligned}
A_{\mathrm{k}}^{n} A_{\mathrm{k}}^{*}-A_{\mathrm{k}}^{*} A_{\mathrm{k}}^{n}=0 & \Longrightarrow A_{\mathrm{k}}^{m}\left(A_{\mathrm{k}}^{n-m} A_{\mathrm{k}}^{*}-A_{\mathrm{k}}^{*} A_{\mathrm{k}}^{n-m}\right)=0 \\
& \Longrightarrow A_{\mathrm{k}}^{n-m} A_{\mathrm{k}}^{*}-A_{\mathrm{k}}^{*} A_{\mathrm{k}}^{n-m}=0
\end{aligned}
$$

and therefore \mathbf{A} is joint $(n-m)$-normal q-tuple.

Acknowledgment

The author wishes to thank the referee for valuable comments and his/her time spent in reviewing this paper.

References

[1] E. H. Abood, M. A. Al-loz, On some generalizations of (n, m)-normal powers operators on Hilbert space, J. Progress. Res. Math., 7 (1978), 113-114. ii, 1
[2] E. H. Abood, M. A. Al-loz, On some generalization of normal operators on Hilbert space, Iraqi J. Sci., 56 (2015), 17861794. ii, 1
[3] S. A. O. Ahmed Mahmoud, On the joint class of (m, q)-partial isometries and the joint m-invertible tuples of commuting operators on a Hilbert space, Ital. J. Pure Appl. Math., 40 (2018), 438-463. 1
[4] S. A. O. Ahmed Mahmoud, M. Chō, J. E. Lee, On (m, C)-Isometric Commuting Tuples of Operators on a Hilbert Space, Results Math., 73 (2018), 31 pages. 1
[5] S. A. O. Ahmed Mahmoud, O. B. Sid Ahmed, On the classes of (n, m)-power D-normal and (n, m)-power D-quasinormal operators, Oper. Matrices, 13 (2019), 705-732. 2
[6] S. A. Alzuraiqi, A. B. Patel, On n-Normal Operators, General Math. Notes, 1 (2010), 61-73. i, 1, 1.2, 2
[7] M. Chō, S. A. O. Ahmed Mahmoud, (A, m)-Symmetric commuting tuple of operators on a Hilbert space, J. Inequalities Appl., 22 (2019). 1
[8] M. Chõ, E. M. O. Beiba, S. A. O. Ahmed Mahmoud, $\left(n_{1}, \ldots, n_{p}\right)$-quasi-m-isometric commuting tuple of operators on a Hilbert space, Ann. Funct. Anal., 12 (2021), 1-18. 1
[9] M. Chō, J. E. Lee, K. Tanahashic, A. Uchiyamad, Remarks on n-normal Operators, Filomat, 32 (2018), 5441-5451. 1
[10] M. Chō, B. N. Načtovska, Spectral properties of n-normal operators, Filomat, 32 (2018), 5063-5069. 1
[11] R. E. Curto, S. H. Lee, J. Yoon, k-Hyponormality of multivariable weighted shifts, J. Funct. Anal., 229 (2005), 462-480. 1
[12] R. E. Curto, S. H. Lee, J. Yoon, Hyponormality and subnormality for powers of commuting pairs of subnormal operators, J. Funct. Anal., 245 (2007), 390-412. 1
[13] D. S. Djordjević, M. Chõ, D. Mosić, Polynomially normal operators, J. Funct. Anal., 11 (2020), 493-504. iii, 1
[14] J. Gleason, S. Richter, m-Isometric Commuting Tuples of Operators on a Hilbert Space, Integral Equations Operator Theory, 56 (2006), 181-196. 1
[15] M. Guesba, E. M. O. Beiba, S. A. O. Ahmed Mahmoud, Joint A-hyponormality of operators in semi-Hilbert spaces, Linear and Multilinear Algebra, 67 (2019), 20 pages. 1, 2
[16] P. H. W. Hoffmann, M. Mackey, (m, p)-isometric and (m, ∞)-isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8 (2015), 32 pages. 2.2
[17] A. A. S. Jibril, On n-Power Normal Operators, Arab. J. Sci. Eng. Sect. A Sci., 33 (2008), 247-251. i, 1, 1.2, 2
[18] I. Kaplansky, Products of normal operators, Duke Math. J., 20 (1953), 257-260. 2.9
[19] J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc., 124 (1996), 135-140. 2

[^0]: Email address: a.aldohiman@ju.edu.sa (A. A. AL-Dohiman)
 doi: 10.22436/jmcs.025.04.06
 Received: 2021-05-05 Revised: 2021-06-25 Accepted: 2021-07-09

