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Abstract
The evolution equations of some forms of admissible curves in the pseudo-Galilean Space G1

3 are investigated in this paper.
In more detail, we use two separate methods to obtain coupled nonlinear partial differential equations of time evolution in terms
of their curvatures. The first method studies the evolution equations for admissible curves via the frame field, while the second
studies the evolution equations via the velocity vector. Then, the position vectors of the evolving curves are formulated. Also, we
conduct comparative research of the evolution equations for curves in different spaces. We furthermore present some models as
an application of the evolution equations of the curvature and torsion for admissible curves, confirming our theoretical results.
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1. Introduction

In differential geometry, despite existing tons of studies regarding curves and surfaces and the way
they evolve per time, recent studies have created a massive improvement in the evolution of the curves and
surfaces. Studying evolution equations for curves and surfaces from a geometrical perspective is a core
research topic in the field of differential geometry. Evolution equations have a wide range of applications
in a wide range of fields, attracting the attention of a wide range of scholars, regardless of their theoretical
or implementation backgrounds. They usually arise from multiple applications in many engineering
and physical applications such as material science, dynamics of section boundaries in thermomechanics,
computational geometry, semiconductor industry, image processing, mathematical modelling, scientific
computing, and computer vision. Also, they can be investigated in a purely mathematical context [9, 17,
19, 25, 31–34]. In physics, evolution equations of curves have many critical applications such as magnetic
spin chains and vortex filaments [5, 16, 21, 29]. Obtaining the evolution equations and learning how the
curves evolve over time is an exciting and difficult problem that has been reviewed in a variety of spaces
by several research studies, [1, 2, 18, 24]. Another related work is [3], in which Abdel-All et al. took a
novel approach to the time evolution of a curve by obtaining the evolution equations of a generalized
space curve. Then, Yıldız et al. studied the evolution of the generalized space curve in Minkowski Space,
[35]. Several scholars have recently studied geometric flow problems for curves, [4, 20].

∗Corresponding author
Email addresses: habdelaziz2005@yahoo.com (Hossam S. Abdel-Aziz), hebamserry@gmail.com (Hebatallah M. Serry),
fmorsi88@yahoo.com (Fifi M. El-Adawy), amalaboelwafa@yahoo.com (Amal A. Khalil)

doi: 10.22436/jmcs.025.04.07

Received: 2021-06-18 Revised: 2021-07-08 Accepted: 2021-07-11

http://dx.doi.org/10.22436/jmcs.025.04.07
http://dx.doi.org/10.22436/jmcs.025.04.07
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.025.04.07&domain=pdf


H. S. Abdel-Aziz, et al., J. Math. Computer Sci., 25 (2022), 370–380 371

In our work, the evolution of curves via the velocities of their moving frame in pseudo-Galilean space
G1

3 has been studied. Then, we acquire a combination of coupled nonlinear partial differential equations
that govern the time evolution of the curvatures for the meant curves in pseudo-Galilean space G1

3. The
solution of the coupled nonlinear partial differential equations was found by the Mathematica software
system employing a package that applies tanh-sech methods [6]. To obtain curves from their curvatures
we expand the Frenet equations numerically up to their position [2, 6]. Then curves and their position
vectors that correspond to those solutions are shown.

The following is how the rest of the paper is organized. Section 1 contains an introduction to the work
and the aim of this paper. In Section 2, we offer a short outline of the fundamentals and preliminaries
for the geometry of curves in pseudo-Galilean space G1

3. The evolution equations of admissible curves
and how to obtain them have been studied using their frame field in Section 3 and using their velocity
vector in Section 4. In Section 5, we compare the evolution equations for different spaces. Finally, Section
6 concludes the paper.

2. Preliminaries on pseudo-Galilean geometry

This section covers the fundamental concepts as well as the theory of curves in pseudo-Galilean space
G1

3; for more details, see [11, 12]. The pseudo-Galilean geometry is one of the core geometries of Cayley-
Klein with a signature metric of (0, 0,+,−). The pseudo-Galilean space G1

3 is a three-dimensional projec-
tive space in which the absolute figure is an ordered triple (σ,g,M), where σ is the absolute plane, g is
the absolute line in σ and M is the fixed hyperbolic spin of points of g [8]. If a plane contains g, it is called
a pseudo-Euclidean plane; otherwise, it is called isotropic.The planes Π = const, as well as the planes σ,
are pseudo-Euclidean planes. The rest of the planes are isotropic.

In pseudo-Galilean G1
3, the inner product of two vectors a = (a1,a2,a3) and b = (b1,b2,b3) is outlined

by

〈a,b〉 G1
3
=

{
a1b1, if a1 6= 0 or b1 6= 0,
a2b2 − a3b3, if a1 = 0 and b1 = 0.

If u1 6= 0, a vector u = (u1,u2,u3) is said to be non-isotropic. As a consequence, all unit non-isotropic
vectors have the form u = (1,u2,u3). For isotropic vectors, u1 = 0 holds true. There are four major kinds of
isotropic vectors; spacelike (u1 = 0,u2

2 − u
2
3 > 0), timelike (u1 = 0,u2

2 − u
2
3 < 0) and two kinds of lightlike

vectors if (u1 = 0,u2 = ±u3). A non-lightlike isotropic vector is a unit vector if u2
2 − u

2
3 = ±1 [11, 12]. See

[13–15] for more information. The orthogonality of the vectors a = (0,a2,a3) and b = (0,b2,b3), i.e., a ⊥ b
means ab = 0. The pseudo-Galilean vector product of two vectors a = (a1,a2,a3) and b = (b1,b2,b3) is
defined as

a∧G1
3
b =

∣∣∣∣∣∣
0 −e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (0,a3b1 − a1b3,a2b1 − a1b2),

where e2 = (0, 1, 0) and e3 = (0, 0, 1).
In pseudo-Galilean space G1

3, a curve Γ is defined as Γ : I → G1
3, Γ(t) = (ζ(t), ϑ(t), ρ(t)), where I ⊂ R

and ζ(t), ϑ(t), ρ(t) ∈ C3. A given curve Γ(t) is said to be admissible, if ζ·(t) 6= 0 [11, 12]. Any admissible
curve has the form Γ(ζ) = (ζ, ϑ(ζ), ρ(ζ)), which is referred to as an admissible curve of the first type. For
simplicity, we assume that ds = dζ and s = ζ as the arc-length parameter of Γ . The following two forms
of admissible curves are discussed using the absolute figure of pseudo-Galilean space G1

3.

2.1. The admissible curves of the first type
Allow Γ : I → G1

3, I ⊂ R be an admissible curve parametrized by the pseudo-Galilean invariant
parameter s = ζ, as mentioned previously. Then Frenet formulas are as follows [7, 12, 13] T(ζ)

n(ζ)
p(ζ)


ζ

=

 0 κ(ζ) 0
0 0 τ(ζ)
0 τ(ζ) 0

 T(ζ)
n(ζ)
p(ζ)

 , (2.1)
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where, 
T(ζ) = Γζ = (1, ϑ′(ζ), ρ′(ζ)),
n(ζ) = 1

κ(0, ϑ′′(ζ), ρ′′(ζ)),
p(ζ) = 1

κ(0, ε ρ′′(ζ), ε ϑ′′(ζ)),

are the vectors of the tangent, the central isotropic normal (simply it is known as principal normal or
normal), and the binormal line of Γ(ζ), respectively. The functions κ(ζ) =

√
|ϑ′′(ζ)2 − ρ′′(ζ)2| and τ(ζ) =

1
κ2 det [Γ ′, Γ ′′, Γ ′′′] are geometric parameters that represent, respectively, the curvature and torsion of Γ(ζ)
and ε = ±1, are chosen by criterion det [T, n, p] = 1. Through this paper, the subscripts describe partial
derivatives. An admissible curve Γ(ζ) is timelike (resp. spacelike) if the principal normal n is a spacelike
(resp. timelike) vector. The normal vectors spacelike when they are ε = +1 and timelike whenever
they are ε = −1 [7, 12]. As known, when the Frenet frame {T, n, p } moves along an admissible curve
Γ in pseudo-Galilean space G1

3, the shear motion is determined by an angular velocity vector (Darboux
vector), which has the equation

W(ζ) = ε (τ(ζ)T(ζ) − κ(ζ)p(ζ)), (2.2)

where ε = ±1 depending on the normal type as mentioned before. The Darboux vector satisfies Darboux
equations which are given by

dT
dζ

= W(ζ)∧ T,
dn
dζ

= W(ζ)∧ n,
dp
dζ

= W(ζ)∧ p. (2.3)

The related trihedron’s Frenet vector is often split into two shear motions: p binormal vector shear with
−ε κ angular speed along absolutely the line, that is

dT
dζ

= (−ε κp)∧ T,

and n normal vector shear with ε τ angular speed along the absolute line, that is

dn
dζ

= (ε τT)∧ n.

2.2. The admissible curves of the second type
In this case, an admissible curve α are often written as

α(ζ) = (0, ϑ(ζ), ρ(ζ)).

Then the Frenet formulae of α(ζ) are given as in (2.1) with tangent, normal, and the binormal lines,
respectively given by, 

T(ζ) = (1,a2(ζ),a3(ζ)),
n(ζ) = (0, ρ′(ζ), ϑ′(ζ)),
p(ζ) = (0, ϑ′(ζ), ρ′(ζ)),

where a(ζ) = (1,a2(ζ),a3(ζ)) is a unit vector field. The curvature and the torsion of α are, respectively,

κ(ζ) = −
a2

ρ′
, τ(ζ) =

ϑ′′

ρ′
.

Also, we have the same Darboux vector as given in (2.2) which satisfies Darboux equations (2.3) too.

3. Evolution equations of admissible curves via their frame fields in pseudo-Galilean space

In pseudo-Galilean space G1
3, let Γ(ζ) = (ζ, ϑ(ζ), ρ(ζ)) be an admissible curve of the first type. Then

the associated trihedron (Eq. (2.1)) of the curve Γ can then be represented in a matrix form as

∂E
∂ζ

= A E, (3.1)
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where,

E =

 T(ζ)
n(ζ)
p(ζ)

 , A =

 0 κ(ζ) 0
0 0 τ(ζ)
0 τ(ζ) 0

 .

If Γ(ζ) moves with time t; then the trihedron {T, n, p} and the curvatures become functions of both ζ and
t, we can compute the time evolution of T, n, and p to get

∂E
∂t

= F E, (3.2)

with noting that

E =

 T(ζ, t)
n(ζ, t)
p(ζ, t)

 , F =

 0 εΩ3(ζ, t) εΩ2(ζ, t)
0 0 −εΩ1(ζ, t)
0 −εΩ1(ζ, t) 0

 .

The motion of the curve Γ is detected byΩ1,Ω2, andΩ3 (which are the velocities of the moving frame).
One of the main results in this paper can be stated as in the following Theorem 3.1.

Theorem 3.1 (Equations of motion for an admissible curve of first type). Let Γ be an admissible curve of the
first type in pesudo-Galilean space G1

3. For Γ curve, the compatibility condition is satisfied between (3.1) and (3.2),
i.e.,

∂

∂t

∂E
∂ζ

=
∂

∂ζ

∂E
∂t

, (3.3)

and we get a system of coupled non linear partial differential equations that describe the motion equations of the
curve via its frame field {T, n, p} {

κt = ε (−(
κΩ1+Ω2ζ

τ )ζ + τΩ2),
τt = −εΩ1ζ.

(3.4)

Proof. Using the compatibility condition (eq (3.3)), which after some calculations yields the following
equation:

∂A
∂t

−
∂F
∂ζ

+ [A, F] = 03×3, (3.5)

where,
[A, F] = AF − FA

is Lie bracket of F and A. In view of the above, Eq. (3.5) reads as follows: 0 κt − ε (Ω3ζ + τΩ2) −ε (κΩ1 +Ω2ζ + τΩ3)
0 0 τt + εΩ1ζ
0 τt + εΩ1ζ 0

 = 03×3, (3.6)

that gives 
κt = ε (Ω3ζ + τΩ2),
Ω3 = − (

Ω2ζ+κΩ1
τ ),

εΩ1ζ = −τt,
(3.7)

which can be reduced to a set of coupled nonlinear partial differential equations in the form of (3.4).

By dissolving the system (3.4) with the Mathematica software program [30], we can get the equations
of motion of the admissible curve Γ for a given Ω1, Ω2, Ω3 and the curvatures of the admissible curve
through numerical integration of Frenet equations (1). After choosing {Ω1,Ω2,Ω3} in terms of the {κ, τ}
and their derivatives, the parameters {κ, τ,Ω1,Ω2,Ω3} are a description of the moving admissible curve,
and the solutions generate the evolution of the admissible curve with time t.
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If {Ω1,Ω2,Ω3} = {τ, 0,κ}, then the system (3.7) above takes the form:{
κt = −ε κζ,
τt = −ε τζ,

which has the solution
κ = f(ζ− ε t), τ = g(ζ− ε t),

where f and g are arbitrary functions of ζ, t.
The following sections some alternative models for specific curvature and torsion values, as well as

their representations in the pseudo-Galilean space G1
3.

First Model. Let Γ be a spacelike admissible curve with timelike normal. The curvature and torsion are,
respectively κ = constant = −1, τ = constant = 1, then the position vector of Γ at t = 0 is [28]:

r(ζ) = (ζ,
∫
(

∫
[−cosh(ζ+A)]dζ)dζ,

∫
(

∫
[−sinh(ζ+A)]dζ)dζ),

as well as,
r(ζ) = (ζ,−cosh(ζ+A) +Bζ+D,−sinh(ζ+A) +Cζ+ F),

integration constants are A, B, C, D, and F. Also, the representation of the evolves curve can be seen in
Figure 1.

(a) t = −1 (b) t = 0 (c) t = 1

Figure 1: With curve length 20 (−10 < ζ < 10).

If we set A = B = C = D = F = 0, we obtain the position vector as

r(ζ) = (ζ,−cosh(ζ),−sinh(ζ)),

which has the shape shown in Figure 2 in pseudo-Galilean space G1
3.

Figure 2: With curve length 20 (−10 < ζ < 10).

We get the numerical representation of the curve (as in Figure 1 at t = 0) is identical to the represen-
tation of the curve from its position vector as in Figure 2.
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Second Model. For a given Γ as above, take κ = cos(ζ+ t), τ = 2. The position vector of the curve is then
given relative to its frame from [28]:

r(ζ) = (ζ,
∫
(

∫
[cos(ζ)cosh(

∫
2dζ)]dζ)dζ,

∫
(

∫
[cos(ζ)sinh(

∫
2dζ)]dζ)dζ),

which yields,
r(ζ) = (ζ,A(sin ζsinhζ) +Bζ+C,A(coshζ sin ζ) +Dζ+ F),

the integration constants A, B, C, and D are used. And, the admissible curve Γ is represented by Figure 3.
Let’s say A = 1 and B = C = D = F = 0, the position vector will be as follows:

(a) t = −1 (b) t = 0 (c) t = 1

Figure 3: With curve length 20 (−10 < ζ < 10).

r(ζ) = (ζ, sin ζsinhζ, coshζ sin ζ),

which has the representation as in Figure 4.

Figure 4: With curve length 20 (−10 < ζ < 10).

It’s worth noting that the numerical (Figure 3 b) and exact (Figure 4) representations of the curve vary
slightly.

Third Model. Similarly, Consider Γ be a timelike admissible curve with spacelike normal. The curvature
and the torsion of Γ are, respectively κ = cos(ζ− t), τ = sin(ζ− t). When t = 0, the position vector of the
curve with respect to its standard frame can be represented as [28],

r(ζ) = (ζ,
∫
(

∫
[cos(ζ)cosh(

∫
[sin(ζ)]dζ)]dζ)dζ,

∫
(

∫
[cos(ζ)sinh(

∫
[sin(ζ)]dζ)]dζ)dζ),

or

r(ζ) = (ζ,
A

2
cos(ζ)cosh(ζ2) −

1
2

cos2(ζ)cosh(ζ2) +Cζ+ F,
B

2
cos(ζ)sinh(ζ2) −

1
2

cos2(ζ)sinh(ζ2) +Dζ+G),

with constants of integration A, B, C, D, F, G. The representation of the evolves curve is in Figure 5.
Now, after performing similar calculations to the ones we performed to find the evolution equations of

the curvature and torsion for the admissible curve of the first type, we found that the evolution equations
for the second type correspond precisely to the admissible curve of the first type if it is timelike, as stated
in the next Theorem 3.2.
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(a) t = −1 (b) t = 0 (c) t = 1

Figure 5: With curve length 20 (−10 < ζ < 10).

Theorem 3.2 (Equations of motion for an admissible curve of second type). Let α(ζ) = (0, ϑ(ζ), ρ(ζ)), be
an admissible curve of the second type in pseudo-Galilean space G1

3. The evolution equations for the second type
correspond exactly to the admissible curve of the first type if it is timelike. These equations are:{

κt = (−(
κΩ1+Ω2ζ

τ )ζ + τΩ2),
τt = −Ω1ζ.

Remark 3.3. We note that from the previous theorem the equations of motion are the same evolution
equations of the first type at ε = 1. These equations correspond to the curve Γ being of a timelike and its
principal normal n of a spacelike vector.

4. Evolution equations for an admissible curve via velocity vector

Let in pseudo-Galilean G1
3, Γ(ζ) = (ζ, ϑ(ζ), ρ(ζ)) be an admissible curve of the first type. The relation

between motion of curves and also integrable evolution in several spaces, e.g., Euclidean, Minkowski and
Galilean spaces, has been studied in [1, 2, 22, 23, 26, 27]. Γ = Γ(ζ, t) is assumed to be a point at time t on
the plane curve. The velocity fields of the traditional geometrical model, Γt(ζ) = dΓ

dt = v, such that

Γt = ΛT+σn+Υp, (4.1)

where 
Λ = Λ(κ, κs, . . . , τ, τζ, . . .),
σ = σ(κ, κζ, . . . , τ, τζ, . . .),
Υ = Υ(κ, κζ, . . . , τ, τζ, . . .),

are velocity functions of ζ, t corresponding to the tangent, normal, and binormal along the curve, i.e., it
is intrinsic quantities. Also, Λ,σ,Υ are the velocities in the tangential, normal, and binormal directions.
By using the Frenet frame (3.1), the dynamical equations of the tangent, normal, and binormal will be
obtained within the next Theorem 4.1.

Theorem 4.1 (The dynamical equations via velocity vector). In a pseudo-Galilean space G1
3, the dynamical

equations of the curvature and torsion of the evolving curve can be expressed in terms of velocities Λ,σ,Υ as{
κt = (Λκ+ σζ +Υτ)ζ + (στ+Υζ)τ,
τt = [ 1

κ (Λκ+ σζ +Υτ)τ+ (στ+Υζ)ζ)]ζ.
(4.2)

Proof. The condition of compatibility is specified as follows:

Γtζ = Γζt,
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by comparing coefficients of T, n, p in the above equation, one gets
Λζ = 0,
εΩ3 = Λκ+ σζ +Υτ,
εΩ2 = στ+Υζ.

(4.3)

From (3.7) and (4.3), we have:
εΩ1 = − 1

κ [(Λκ+ σζ +Υτ)τ+ (στ+Υζ)ζ],
εΩ2 = στ+Υζ,
εΩ3 = Λκ+ σζ +Υτ,

and the dynamical equations of the curvature and torsion of the evolving curve can be expressed in terms
of velocities Λ,σ,Υ as {

κt = ε
2 [(Λκ+ σζ +Υτ)ζ + (στ+Υζ)τ],

τt = ε
2 [ 1
κ(Λκ+ σζ +Υτ)τ+ (στ+Υζ)ζ)]ζ.

Since, always ε2 = 1, then the dynamical system (4.2) is obtained.

We now consider, as an application, a model of curve evolution through local geometry using specific
values for the intrinsic functions Λ,η,Υ without losing generality.

Model 1. Consider the admissible curve Γ moving in the space according to

Γt = τp,

where we compensated in the equation (4.1) by the values Λ = η = 0,Υ = τ. Accordingly, the equations
of evolution (4.2) are translated into {

κt = τ
2
ζ + τζ τ,

τt = [ 1
κ(τ

3 + τζζ)]ζ,
(4.4)

which have two solutions as follows.

First Solution. One of the solutions of the system of equations (4.4) is given from:{
κ =

2c3
2
c1

(−1 + 3 tanh(c1t+ c2ζ+ c3)
2),

τ = − 2c2 tanh (c1t+ c2ζ+ c3),

with arbitrary real constants c1, c2, and c3, as in Figures 6, 7, and 8.

(a) t = −1 (b) t = 0 (c) t = 1

Figure 6: With curve length 20 and constants c1 = c2 = −2 and c3 = −1.
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(a) t = −1 (b) t = 0 (c) t = 1

Figure 7: With curve length 20 and constants c1 = −0.2, c2 = −3, and c3 = 0.1.

(a) t = −1 (b) t = 0 (c) t = 1

Figure 8: With curve length 20 and constants c1 = c2 = −1 and c3 = 0.

Second solution. The second solution to the system (4.4) is written on the form:{
κ =

2c3
2
c1

(−1 + 3 tanh (c1t+ c2ζ+ c3)
2),

τ = 2c2 tanh (c1t+ c2ζ+ c3).

Likewise, graphs corresponding to some specific values of the constants c1, c2, and c3 can be seen through
Figures 9, 10, and 11.

(a) t = −1 (b) t = 0 (c) t = 1

Figure 9: With curve length 20 and constants c1 = c2 = −1 and c3 = 0.

(a) t = −1 (b) t = 0 (c) t = 1

Figure 10: With curve length 20 and constants c1 = c3 = −2 and c2 = −1.
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(a) t = −1 (b) t = 0 (c) t = 1

Figure 11: With curve length 20 and constants c1 = 1, c2 = 2, and c3 = 3.

5. Comparison between evolution equations in the different spaces

The properties of moving frames associated with curves differ from one space to another, such as the
Euclidean space [2], the Minkowski space [10], the Galilean space [23] and the pseudo-Galilean space
in this work. After studying the evolution equations in the pseudo-Galilean space, we found that these
equations are functions in the velocities. The choice of velocities has an effect on these functions. This
choice is based on space’s characteristics. It is possible to choose some values of the velocities according
to which the system of equations can be solved. Also, these values are not suitable for solution in another
space, due to the different properties of each space. We illustrate an example by choosing values for
velocities that solve equations in the Euclidean and Minkowski spaces [2], but they are not suitable for
solving in the pseudo-Galilean space, which indicates that the equations of motion depend on velocities
and these velocities differ in each space. We tend to conclude that the equations of motion have the
following form:

• first, the evolution via Frenet frame:

κt = f((Ω1,Ω2,Ω3), τt = g(Ω1,Ω2,Ω3);

• second, the evolution via velocity vector field:

κt = h(Λ,η,Υ), τt = w(Λ,η,Υ),

where f,g,h, and w have different values in each space. This means the equations of motion depend on
the velocities which differ according to each space.

6. Conclusion

The evolution equations for curvature and torsion for the admissible curves were obtained in the
three dimensional pseudo-Galileo space G1

3. This was accomplished by applying compatibility conditions
using the curve Frenet frame differentials for arc curve length parameter and time. Then we solved the
resulting system of coupled nonlinear partial differential equations numerically using the Mathematica
software program. As an important result, we observed that all evolution equations could be obtained by
researchers in Euclidean and Minkowski 3-dimensional spaces via frame fields or via the velocity vector
are consistent with our study in the pseudo-Galilean space G1

3. In these studies, they all depend on their
velocities, but velocities do not have to be the same. For example, velocities values can be chosen in one of
the spaces to provide a solution to the system of evolution equations that cannot be provided in another.
Also, we provided some models as application for the evolution equations for admissible curves and get
the solutions for these new equations. A natural extension of this work is to generate surfaces from the
given evolving curves and to study the evolution equations of surfaces in the pseudo-Galilean space G1

3.
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