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Abstract
In this paper, a hybrid technique based on the combining of differential transform approach, the Laplace transformation,

and Padé approximant is successfully implemented for solving Volterra Integro differential (VID) equations subject to appro-
priate conditions. The proposed method known as modified differential transform method (MDTM) enlarges the domain of
convergence with less computational time. One of the interesting features of this algorithm is the ability to produce an analytic
approximate solution in convergent power series form with few numbers of computable terms. Preliminary results on some test
problems show that the new algorithm is efficient and promising for Volterra integro-differential equations and can be applied
as alternatives for the integral and integro-differential (IID) equation that have no analytical solution.
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1. Introduction

Nonlinear phenomena such as those resulting from the interaction between intense light beams with
dielectric media are often traced to fields science and engineering. These phenomena which appear in
many real-life applications including chemical kinetics, fluid dynamics, mathematical biology, solid-state
physics, are often modeled by partial differential equations (PDEs) [20]. The solution of these PDEs are
obtained by different numerical or analytical methods. One of the earlier approach for obtaining the
solution partial differential equation is using the differential transform technique (DTM) introduce by
Zhou [37] and gives an analytical Taylor solution in the form of series. This method is a recursive method
that produce an analytical solution in polynomial form and gives the exact values of the nth derivative
in a fast manner for both known and unknown boundary conditions via the concept of Taylors series
[12, 19, 33]. However, one of the many disadvantage of this method is that the truncated series obtained
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which is an accurate approximation of exact solution is often in very small region [31]. The setback of this
method has led to numerous modifications of the differential transform method.

Its is worthy to note that various real-life problems can be modelled under differential sense to produce
the differential equation [10]. Recently, several studies have been done on numerical methods for solving
various types of differential equation including the two-dimensional nonlinear Klein-Gordon equations
[13], partial algebraic-differential equations [14], IID equations [7], pantograph-type linear and nonlinear
VID equations [32]. The concept of integral and integro-differential problems plays an important part in
indutrial and engineering applications. These problems have been considered by numerous researchers.
For instance, [15, 34], considered Volterra integral equations using the Adomian decomposition technique
(ADM) while [12] employ the Galerkin technique for linear-integro DE. Rationalized Haar functions tech-
nique was employed for obtaining solution of linear-integro differential equation by [30, 36], [16] extended
the He’s homotopy perturbation approach (HPM) to solve system of integro-differential equations. Their
approach relies on the permutation of pertubation procedure in topological scheme that are first presented
by [21–24]. Also, [35] employed the variational iteration technique (VIM) for solving intrgro-differential
equations. Using the general Lagrange multiplier, the authors develop a correction function whose iden-
tification are obtained using the variational theory. A study comparing the methods of DTM, ADM, and
VIM for solving PDEs was presented by Bildik et al. [17, 18]. Also, review of different methods for solving
different type of differential equations is given by [2–4, 26, 28, 29].

Motivated by the trend of current literature, this study proposed an improve solution scheme for
Volterra integro-differential system of equations. The new method would modify the series solution via
the following procedure. The algorithm begins with the Laplace transform approach to DTM obtained
truncated series. To obtain meromorphic function from the transformed series, we used the approximants
of Padé and lastly employing the inverse Laplace transformation to get the desired analytical solution.
Result of numerical experiment on some test problems are given to demonstrate the effectiveness of the
proposed algorithm compared to the truncated series solution of DTM.

The remaining part of the paper is structured as follow. A brief overview of recent literature followed
by some preliminary results is presented in Section 2. In Section 3, we present two applications of Volterra
integro-differential systems of equations to demonstrate efficiency and robustness of the new algorithm.
Finally, the conclusion and discussion for further reference is given in Section 4.

2. Preliminaries

Preliminary discussion of different literature on this topic is presented in this section.

2.1. Differential transform approach

Definition 2.1 ([6]). Given an analytical function f(x) at the point x0 in domain of interest (DOI), we have

F(k) =
f(k)(x0)

k!
, (2.1)

whose inverse is

f(x) =

∞∑
k=0

F(k)(x− x0)
k. (2.2)

Equation (2.2) is known as the inverse of (2.1). Combining (2.1), (2.2), will produce beginequation

f(x) =

∞∑
k=0

f(k)(x0)

k!
(x− x0)

k.

If U(k),G(k), and H(k) denote the main operators of the differential transform u(x),g(x), and h(x)
respectively, it would implies that the operators in Table1 represent the operations of the DTM.
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Table 1: Differential transform operations

Function Differential Transform
u(x) = g(x) + h(x) U(k) = G(k) +H(k)

u(x) = cg(x) U(k) = cG(k)

u(x) =
dng(x)
dxn U(k) =

(k+n)!
k! G(k+n)

u(x) = g(x)h(x) U(k) =
∑k
i=0G(i)H(k− i)

u(x) = xn U(k) = δ(k−n)

u(x) = exp(cx) U(k) = ck

k!
u(x) = cos(ωx) U(k) = ωk

k! cos(kπ2 )

u(x) = sin(ωx) U(k) = ωk

k! sin(kπ2 )

Theorem 2.2 ([9]). If f(y) = ym, we have

F(k) =

{
(Y(0))m, k = 0,

1
Y(0)
∑k
r=1(

(m+1)r−k
k )Y(r)F(k− r), k > 1.

Theorem 2.3 ([9]). If f(y) = eay, then

F(k) =

{
eaY(0), k = 0,
a
∑k−1
r=0 (

r+1
k )Y(r+ 1)F(k− 1 − r), k > 1.

Theorem 2.4 ([9]). If sin(αy) and cos(αy) represent f(y) and g(y), respectively, then

F(k) =

{
sin(αY(0)), k = 0,
α
∑k−1
r=0 (

k−r
k )G(r)Y(k− r), k > 1,

and G(k) =

{
cos(αY(0)), k = 0,
−α
∑k−1
r=0 (

k−r
k )F(r)Y(k− r), k > 1.

Theorem 2.5 ([33]). Suppose the DT of the functions u(x) and g(x) are U(k) and G(k), then:

1. for f(x) =
∫x
x0
u(t)dt, we have F(k) = U(k−1)

k , F(0) = 0;

2. for f(x) =
∫x
x0
g(t)u(t)dt, we have F(k) =

∑k−1
l=0 G(l)

U(k−l−1)
k , F(0) = 0;

3. for f(x) = g(x)
∫x
x0
u(t)dt, we have F(k) =

∑k−1
l=0 G(l)

U(k−l−1)
k−l , F(0) = 0.

By means of the DT, the differential equation in DOI is converted to algebraic equation in the K-domain
and function f(t) is computed using the Taylor series finite-term expansion in addition to a remainder, as

f(t) =

N∑
k=0

F(k)
(t−t0)

k

k!
+RN+1(t). (2.3)

In a small region, the series solution in (2.3) converges rapidly, however, the convergence results are
often time consuming in the larger region and hence, their truncations yield inexact results. For recent
studies on this subject, see [5, 6].

2.2. Padé approximation [8, 9]

The Padé approximant for Taylor series expansion of y(x) of order [L/M] is largely denoted as [L/M]
PA to y(x) and defined below [

L

M

]
=
PL(x)

QM(x)
.



A. Shadi, S. M. Ibrahim, M. Mustafa, M. A. Zaini, J. Math. Computer Sci., 26 (2022), 1–9 4

The polynomials PL(x) and QM(x) are of degree at most L and M. The series

y(x) =

∞∑
i=1

aix
i,

y(x) −
PL(x)

QM(x)
= O(xL+M+1), (2.4)

are used to obtain the parameters of PL(x) and QM(x). It is obvious that [L/M] will remain unchanged
when the denominator and numerator is multiply by certain constant, thus the normalization condition

QM(0) = 1 (2.5)

is imposed on the equation and the polynomials are said to have no common factors. Rewrite coefficients
of the functions PL(x) and QM(x) as{

PL(x) = p0 + p1x+ p2x
2 + · · ·+ pLxL,

QM(x) = q0 + q1x+ q2x
2 + · · ·+ qMxM. (2.6)

Using (2.5) and (2.6), the coefficient equations are linearized after multiplying (2.4) by QM(x). Eq (2.4) is
presented as 

aL+1 + aLq1 + · · ·+ aL−M+1qM = 0,
aL+2 + aL+1q1 + · · ·+ aL−M+2qM = 0,
...
aL+M + aL+M−1q1 + · · ·+ aLqM = 0,

(2.7)



a0 = p0,
a0 + a0q1 = p1,
a2 + a1q1 + a0q2 = p2,
...
aL + aL−1q1 + · · ·+ a0qL = pL.

(2.8)

Equation (2.7) is a set of linear equation. To compute for the solution of (2.7), we solve to obtain the
values q’s that are not known to make equation (2.8) inevitably give the unambiguous formulation for the
undefined p ′s, and result would be complete.

However, the case of non-singularity of equations (2.7) and (2.8) would be directly solved to get (2.9).

[
L

M

]
=

det


aL−M+1

...
aL∑L

j=M aj−Mx
j

aL−M+2
...

aL+1∑L
j=M−1 aj−M+1x

j

· · ·
. . .
· · ·
· · ·

aL+1
...

aL+M∑L
j=0 ajx

j



det


aL−M+1

...
aL
xM

aL−M+2
...

aL+1
xM−1

· · ·
. . .
· · ·
· · ·

aL+1
...

aL+M
1


. (2.9)

In the case where the index sum of the lower index exceed that of the upper and (2.9) holds, then, we
replaced the sum with zero. In this cases, MATLAB symbolic software, is used to obtain Padé approxi-
mants diagonal elements of various orders which may include: [2/2], [4/4], or [6/6].

The Padé approximant has some poles that are not available in the original function. Expanding Padé
[M/N] in the series of Taylor’s equation and computing its parameters is an easy computational task to
that can be achieved by matching with the above.

The MDTM procedure for the proposed system of equations is given via the following algorithm.
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Algorithm 2.6. MDTM for system of VID equations.

Step 1: Having yj(n) = gj(t) +
∫t

0 Kj(x, t)dx, yj(0) = αj, yj
′
(0) = βj, . . . ,yj(n−1)(0) = γj 0 6 t 6 1, the

exact solution yj(t), j = 1, 2, 3, . . . .
Step 2: Fix M = 2.
Step 3: Calculate Yj(k)= 1

k! [
dk

dxk
y(t)]

t=0, k = 0, 1, 2, . . . ,N, j = 1, 2, 3, . . . .

Step 4: Expand fj(t)=
∑N
k=0 Yi(k) t

k
, j = 1, 2, 3, . . . .

Step 5: Obtain L(fj(t)) = L(
∑N
k=0 Yi(k) t

k
), j = 1, 2, 3, . . . .

Step 6: Replace 1/s = z in Step 5.
Step 7: Compute [MM ](L(fj(t))), j = 1, 2, 3, . . . .
Step 8: Replace z = 1

s in Step 7.
Step 9: Calculate L−1([MM ](L(fj(t)))), j = 1, 2, 3, . . . .

Step 10: If max06ti61 |yj(ti) − (L−1([MM ](L(fj(t)))))(ti)| 6 10−6,∀j = 1, 2, 3, . . . , terminate, otherwise, re-
turn to step 7 with M =M+ 1.

3. Numerical results

Problem 3.1. Given the Volterra type integro-differential equation system [11]{
u1
′
(t) = 1 + t+ t2 − u2 (t) −

∫t
0 [u1 (x) + u2 (x)]dx,

u2
′
(t) = −1 − t+ u1 (t) −

∫t
0 [u1 (x) − u2 (x)]dx,

(3.1)

where u1 (0) = 1, u2 (0) = −1, and u(t) = [u1 (t) ,u2 (t)]
T = [t+ et, t− et]T is the exact solution, by

Theorem 2.5 and using operations from Table 1, we have{
U1 (k+ 1) = 1

k+1

[
δ (k) + δ (k− 1) + δ (k− 2) −U2 (k) −

1
k
[U1 (k− 1) +U2 (k− 1)]

]
,

U2 (k+ 1) = 1
k+1

[
−δ (k) − δ (k− 1) +U1 (k) −

1
k
[U1 (k− 1) −U2 (k− 1)]

]
,

(3.2)

and transforming the initial condition to get{
U1 (0) = 1,
U2 (0) = −1. (3.3)

We substitute (3.3) in (3.2) to obtain the results of U1 (k) and U2 (k) defined in Table 2.

Table 2: The values of U1 (k) and U2 (k) for Problem 3.1.

k 0 1 2 3 4 5
U1 (k) 1 2 1

2
1
6

1
24

1
120

U2 (k) -1 0 −1
2 −1

6 − 1
24 − 1

120

An approximate solution of equation (3.1) is obtained using the rule (2.2) of the inverse transformation{
f1 (t) = 1 + 2t+ t2

2 + t3

6 + t4

24 + t5

120 + · · · ,
f2 (t) = −1 − t2

2 − t3

6 − t4

24 − t5

120 − · · · ,
(3.4)

which gives the solution (3.1) in the limit of infinitely many terms (LIMT). The proposed method is
implemented via the Laplace transform to the (3.4), which gives{

L(f1 (t)) =
1
s +

2
s2 +

1
s3 +

1
s4 +

1
s5 +

1
s6 + · · · ,

L(f2 (t)) = − 1
s −

1
s3 −

1
s4 −

1
s5 −

1
s6 + · · · .
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To ease the process, let s = 1
z , then{

L(f1 (t)) = z+ 2z2 + z3 + z4 + z5 + z6 + · · · ,
L(f2 (t)) = −z− z3 − z4 − z5 − z6 + · · · .

Table 3 shows how Algorithm 2.6 works indicating the max absolute error for each choice of Padé ap-
proximant.

Table 3: Algorithm 2.6 works for Problem 3.1.[
M
M

]
Padé approximant for L (f1 (t)) L−1 ([M

M

]
(L (f1 (t))

)
The max absolute Error[ 2

2
]

− 5z2+3z
z2+z−3 e

t
6

(
cosh

(√
13 t
6

)
+ 11

√
13

13 sinh
(√

13 t
6

) )
1.857164054955351E-2[ 3

3
]

z3− z2− z
z − 1 t+ et 0[

M
M

]
Padé approximant for L (f2 (t)) L−1 ([M

M

]
(L (f2 (t))

)
The max absolute Error[ 2

2
]

− z2−z
z2+z−1 −e

t
2

(
cosh

(√
5 t
2

)
−
√

5
5 sinh

(√
5 t
2

) )
6.564116785383356E-2[ 3

3
]

z3−z2+z
z−1 t− et 0

For
[ 3

3

]
, we have [

3
3

]
=

{
L(f1 (t)) =

z3−z2−z
z−1 ,

L(f2 (t)) =
z3−z2+z
z−1 .

Recalling z = 1
s to obtain

[ 3
3

]
in respect of s,[

3
3

]
=

{
L(f1 (t)) =

s2+s−1
s3−s2 ,

L(f2 (t)) =
−s2+s−1
s3−s2 .

For obtaining the modified approximation, the study employs the inverse to Padé
[ 3

3

]
approximant

L−1
([

3
3

] (
L
(
fj (t)

)))
=

{
t+ et,
t− et,

which is in good agreement with the exact solution.
Figure 1 presents the plot of exact solution yj(t), j = 1, 2 for Problem 3.1 with comparison to that of

DTM solution which all result are in excellent agreement.
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Figure 1: Performance Comparison of DTM and MDTM for Problem 3.1.

Problem 3.2. Consider the system of VID equation [1]{
u1
′′
(t) = −sin (t) − t2 − 1 +

∫t
0 [u1 (x) + u2 (x)]dx,

u2
′′
(t) = 1 − cos (t) − 2sin (t) +

∫t
0 [u1 (x) − u2 (x)]dx,

(3.5)
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where u1(0) = 1, u1
′
(0) = 1,u2(0) = 0, u2

′
(0) = 2, and u (t) = [u1 (t) ,u2 (t)]

T = [t+ cos (t) , t+ sin (t) ]T

is the exact solution. By Theorem 2.5 and using operations from Table 1, we have{
U1 (k+ 2) = 1

(k+1)(k+2)

[
− 1
k! sin

(
kπ
2

)
− δ (k− 2) − δ (k) + 1

k
[U1 (k− 1) +U2 (k− 1)]

]
,

U2 (k+ 2) = 1
(k+1)(k+2)

[
δ (k) − 1

k! cos
(
kπ
2

)
− 2
k! sin

(
kπ
2

)
+ 1
k
[U1 (k− 1) . +U2 (k− 1)]

] (3.6)

Transform the initial condition to get {
U1 (0) = 1, U1 (1) = 1,
U2 (0) = 0, U2 (1) = 2. (3.7)

We substitute (3.7) in (3.6) to get the results of U1 (k) and U2 (k) given in Table 4.

Table 4: The values of U1 (k)and U2 (k) for Problem 3.2.

k 0 1 2 3 4 5 6 7 8
U1 (k) 1 1 −1

2 0 1
24 0 − 1

720 0 1
40320

U2 (k) 0 2 0 −1
6 0 1

120 0 − 1
5040 0

To derive the solution of (3.5), we apply rule (2.2) of the inverse transformation as follows:{
f1 (t) = 1 + t− t2

2 + t4

24 − t6

720 + · · · ,
f2 (t) = 2t− t3

6 + t5

120 −
t7

5040 + · · · ,
(3.8)

and this gives which the exact solution of (3.5) infinitely many terms limit. The proposed algorithm is
implemented using the Laplace transform on (3.8), to obtain{

L(f1 (t)) =
1
s +

1
s2 −

1
s3 +

1
s5 −

1
s7 + · · · ,

L(f2 (t)) =
2
s2 −

1
s4 +

1
s6 −

1
s8 + · · · .

To simplify the process, we let s = 1
z , then{

L(f1 (t)) = z+ z
2 − z3 + z5 − z7 + · · · ,

L(f2 (t)) = 2z2 − z4 + z6 − z8 + · · · .

The Padé approximants
[ 4

4

]
gives [

4
4

]
=

{
L(f1 (t)) =

z4+z2+z
z2+1 ,

L(f2 (t)) =
z4+2z2

z2+1 .

Recalling z = 1
s to get

[ 4
4

]
in respect of s,[

4
4

]
=

{
L(f1 (t)) =

s3+s2+1
s4+s2 ,

L(f2 (t)) =
2s2+1
s4+s2 .

To compute for the modified approximation, we use the inverse of the Padé
[ 4

4

]
approximant as follows:

L−1
([

4
4

] (
L
(
fj (t)

)))
=

{
t+ cos(t),
t+ sin(t),

which agrees with the exact solution. Figure 2 shows the graph of the exact solution yj(t), j = 1, 2
compared with DTM solution for Problem 3.2.
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Figure 2: Performance Comparison of DTM and MDTM for Problem 3.2.

The results presented in Figure 2 show that all methods are in excellent agreement with result of the
exact solutions.

4. Conclusion and discussion

This paper presents the MDTM method derived by combining of the DTM, Padé approximant, and
Laplace transforms for solving system of VID equations. The method begins by obtaining the PDEs in
the form of convergent series via DTM. Next, Laplace transform procedure is employed to the truncated
series of DTM solution to widen the convergence domain. Lastly, the meromorphic function is obtained
from the series via Padé approximants whose solution is obtained using the inverse Laplace transform.
By solving two system of VID equations, the proposed algorithm is seen as a tool with great potential. In
addition, we successfully obtained the exact solutions by illustrating the efficiency of MDTM. The result
of the problems indicates that MDTM greatly improves the convergence rate of DTM’s truncated series
solution with true analytic solution. Therefore, the proposed algorithm can be used as alternatives for
systems of integral and integro-differential equation that have no analytical solution.
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