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Abstract
In this article we study the class of mappings in indefinite inner product spaces which preserve orthogonality. We derive

characterization of orthogonality preserving mappings in indefinite inner product spaces which is a generalization of character-
ization of orthogonality preserving mappings in inner product spaces proposed by Chmieliński [J. Chmieliński, J. Math. Anal.
Appl., 304 (2005), 158–169].
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1. Introduction

This article investigates necessary and sufficient conditions for orthogonality preserving mappings
in indefinite inner product spaces. Some necessary and sufficient conditions for orthogonality preserv-
ing mappings in inner product spaces were obtained by Chmieliński [2]. These results have also been
successfully generalized to a certain class of orthogonality preserving mappings in sesquilinear spaces
and in semi-inner product spaces [6]. In this article we extend Chmieliński’s results to another direction,
that is to the class of orthogonality preserving mappings in indefinite inner product spaces. A study
concerning orthogonality preserving mappings in Krein spaces recently was carried out by Saraei and
Amyari [4]. Some properties concerning orthogonality preserving mappings in Krein spaces were ob-
tained, particularly relationship among several notions of orthogonality preserving. Some necessary and
sufficient conditions for orthogonality preserving mappings satisfied certain conditions in Krein spaces
were obtained.

Through out this article, vector spaces are always over the complex number field C. Let X be a vector
space over the field C. An indefinite inner product on X is a complex value function defined on X×X that
is linear with respect to the first variable, antisymmetry and nondegenerate (see e.g. [1, 3]). An indefinite
inner product space is a vector space over the field C equipped with an indefinite inner product on it. For
well known terms in indefinite inner product spaces, we refer to [1] and [3]. The indefinite inner product
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which equips an indefinite inner product space X will be denoted by [−,−]X or in short, when it does not
cause confusion, by [−,−].

Let X, Y be two indefinite inner product spaces. A mapping T : X −→ Y is called orthogonality
preserving if the following condition holds:

∀u, v ∈ X, u ⊥ v⇒ T(u) ⊥ T(v).

The mapping T is called strongly orthogonality preserving if the following condition holds:

∀u, v ∈ X, u ⊥ v⇔ T(u) ⊥ T(v).

This article proves the following theorem.

Theorem 1.1. Let X and Y be two indefinite inner product spaces over C. For a mapping T : X −→ Y, the following
statements are equivalent.

(i) T is linear and there exists a nonzero real number γ such that for all u ∈ X we have [T(u), T(u)]Y = γ[u,u]X.

(ii) There exists a nonzero real number γ such that for all u, v ∈ X we have [T(u), T(v)]Y = γ[u, v]X.

(iii) T is linear and strongly orthogonality preserving.

(iv) T is linear, orthogonality preserving, and there exists x ∈ X such that [T(x), T(x)]Y 6= 0.

Consider that if X and Y in Theorem 1.1 above are both inner product spaces, then we obtain the
results [2, Theorem 1], and also [6, Theorem 1.2]. However, we need to note that generalizing [2, Theorem
1] to the class of indefinite inner product spaces requires adjustment. A nonvanishing mapping in inner
product spaces is equivalent to the existence of an element with the norm of its map is positive. This
equivalent property is no longer valid when we are working with indefinite inner product spaces.

Example 1.2 shows that condition T nonvanishing in [2, Theorem 1] is not enough when it is extended
to indefinite inner product spaces. On the contrary, Example 1.3 shows that condition γ positive in [2,
Theorem 1] needs to be weakened when it is generalized to indefinite inner product spaces.

Example 1.2. Consider C2 as an indefinite inner product space with indefinite inner product on C2 defined
as [u, v] = u1v1 − u2v2 for all u = (u1,u2)

t, v = (v1, v2)
t ∈ C2. The nonvanishing linear operator on C2

defined as T(u) = (u1 + u2)(1, 1)t for all u = (u1,u2)
t ∈ C2 is orthogonality preserving. However T does

not satisfy Theorem 1.1.

Example 1.3. Again, consider the indefinite inner product space C2 defined in Example 1.2. The rotation
operator on C2 defined as R(u) = (−u2,u1)

t for all u = (u1,u2)
t ∈ C2 is orthogonality preserving. R

satisfies Theorem 1.1 with γ = −1, it is not positive.

2. Proof of Theorem 1.1

The proof of the implications (i) ⇒ (ii) and (iii) ⇒ (iv) of [2, Theorem 1] can be directly extended to
obtain the same implications of Theorem 1.1. For the implication (ii) ⇒ (iii), let (ii) holds. The strong
orthogonality preserving property of T and the existence of x ∈ X such that [T(x), T(x)]Y 6= 0 in (iii) can
be obtained directly form (ii). The proof of T being linear in [2, Theorem 1 (iii)] can be applied to obtain T
linear in Theorem 1.1 after we can show that Im(T) is non-degenerate. Let T(u) ∈ Im(T) for some u ∈ X
with the property [T(u), T(v)]Y = 0 for all T(v) ∈ Im(T). Applying (ii) we obtain [u, v]X = 0 for all v ∈ X
which, together with the non-degenerate property of X, implies u = 0. Hence T(u) = 0. Thus Im(T) is
non-degenerate and hence T is linear.

Thus far, it remains to prove the implication (iv)⇒ (i) and it is shown in Lemma 2.4 below. Before that,
we discuss some properties and results concerning Krein spaces which will be utilized. A Krein space
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K is an indefinite inner product space which can be decomposed as K = K+ ⊕ K− for some subspaces
K+ and K− satisfying the following conditions: K+ with respect to [−,−]K is an Hilbert space, K− with
respect to −[−,−]K is an Hilbert space and K+ ⊥ K− (see e.g. [1, 3]). The explained representation of a
Krein space K = K+ ⊕ K− is called a canonical decomposition of K. Any finitely dimensional indefinite
inner product space is Krein space. Hence, for any finitely dimensional inner product space we have an
orthonormal basis obtained from a canonical decomposition of it.

Lemma 2.1. Let T : X → Y be an orthogonality preserving linear mapping for some X an inner product space and
Y an indefinite inner product space. If there exists x ∈ X such that [T(x), T(x)] 6= 0, then Im(T) forms an inner
product space either with respect to [−,−]Y or −[−,−]Y .

Proof. It is enough to show the case if [T(x), T(x)]Y > 0 then Im(T) with respect to [−,−]Y forms an inner
product space. So, assume there exists x ∈ X such that [T(x), T(x)]Y > 0. Since T is linear we obtain x 6= 0.
We can conclude that Im(T) with respect to [−,−]Y forms an inner product space if we can show that for
any y ∈ Im(T),y 6= 0, [y,y]Y > 0.

Let y ∈ Im(T) with y 6= 0. Let u ∈ X such that y = T(u). If u = αx for some α 6= 0, clearly

[y,y]Y = |α|2[T(x), T(x)]Y > 0.

So, suppose u /∈ Span {x}. We have u = u1 + αx for some α ∈ C,u1 ∈ X,u1 6= 0 and u1 ⊥ x. Choose
u2 = βu1, for some β ∈ C,β 6= 0 such that [u2,u2]X = [x, x]X. We obtain u2 ⊥ x. Hence [T(u2), T(x)]Y = 0.
Further,

[u2 + x,u2 − x]X = [u2,u2]X − [x, x]X = 0,

which implies
[T(u2) + T(x), T(u2) − T(x)]Y = 0.

As a result, we obtain
[T(u2), T(u2)]Y = [T(x), T(x)]Y > 0.

So,
Y = [T(u), T(u)]Y
= [T(β−1u2 +αx), T(β−1u2 +αx)]Y

= |β−1|2[T(u2), T(u2)]Y + |α|2[T(x), T(x)]Y > 0.

Lemma 2.2. Let K be a Krein space and x ∈ K, x 6= 0 with [x, x] 6= 0. Then there exists a canonical decomposition
K = K+ ⊕K− such that x ∈ K+ if [x, x] > 0, otherwise x ∈ K−.

Proof. It is enough to prove the lemma for the case [x, x] > 0. So Let [x, x] > 0. Let K = K+ ⊕ K− be a
canonical decomposition of K. If x ∈ K+ then the proof is complete. Hence, suppose x = x+ + x− for
some x+ ∈ K+, x− ∈ K− and x− 6= 0. Since [x, x] = [x+, x+] + [x−, x−], [x−, x−] < 0 and [x, x] > 0, then
x+ 6= 0 and [x+, x+] > |[x−, x−]| > 0. Define

L+ =
{
y ∈ K+|

[
y, x+

]
= 0

}
,

L− =
{
y ∈ K−|

[
y, x−

]
= 0

}
.

In the framework of Hilbert spaces, we obtain that L+ and L− are the orthogonal complement subspaces
of respectively Span(x+) in (K+, [−,−]) and Span(x−) in (K−,−[−,−]). Hence

K+ = Span(x+)⊕ L+, and K− = Span(x−)⊕ L−.
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Define S = Span(x+, x−). We obtain x ∈ S, and K = L+ ⊕ S⊕ L− with L+,L−,S are pairwise orthogonal.
We define y = αx+ + x− ∈ S with α = −

[x−,x−]
[x+,x+] . Utilizing the fact [x+, x+] > 0, [x−, x−] < 0 and [x, x] > 0

we obtain
[y, x] = α

[
x+, x+

]
+
[
x−, x−

]
= 0,

[y,y] =
[
αx+ + x−,αx+ + x−

]
= α2 [x+, x+

]
+
[
x−, x−

]
=

[x−, x−]2

[x+, x+]
+
[
x−, x−

]
=

[x−, x−]
[x+, x+]

(
[
x−, x−

]
+ [x+, x+])

=
[x−, x−]
[x+, x+]

[x, x] < 0.

Next, define K+
1 = L+ + Span(x), K−

1 = L− + Span(y). Then, it is routine to show K = K+
1 ⊕ K

−
1 is a

canonical decomposition of K with x ∈ K+
1 .

Lemma 2.3. Let T : X → Y be an orthogonality preserving linear mapping where X is a Krein space and Y is an
indefinite inner product space. If there exists x ∈ X such that [T(x), T(x)]Y 6= 0 then there exists a non-zero real
number γ such that for all u ∈ X, [T(u), T(u)]Y = γ [u,u]X.

Proof. Without lost of generality we can assume x ∈ X in the theorem satisfies conditions [x, x]X > 0 and
[T(x), T(x)]Y > 0. Based on Lemma 2.2, X has a canonical decomposition X = X+ ⊕ X− where x ∈ X+.
Consider the restriction T on the subspace X+, i.e., T |X+ : X+ → Y. According to Lemma 2.1, the indefinite
inner product [−,−]Y on T (X+) is an inner product. As a result, the restriction of T on the subspace X+

T |X+ : X+ → T(X+) is a non-vanishing orthogonality preserving linear mapping from the inner product
space X+ to the inner product space T(X+) . Referring to [2, Theorem 1] there exists γ > 0 such that for
all u ∈ X+, [T(u), T(u)]Y = γ [u,u]X.

Let u ∈ X−,u 6= 0. We have [u,u]X < 0. Take a vector v ∈ X+ with square norm [v, v]X = − [u,u]X.
Write y = u+ v ∈ X. We obtain

[y,y]X = [u,u]X + [v, v]X = 0.

Hence, utilizing the orthogonality preserving property of T , we obtain [T(u), T(v)]Y = 0 and [T(y), T(y)]Y
= 0. As a result

0 = [T(y), T(y)]Y = [T(u), T(u)]Y + [T(v), T(v)]Y ,

then
[T(u), T(u)]Y = − [T(v), T(v)]Y = −γ [v, v]X = γ [u,u]X .

Let u ∈ X. We have y = u+ + u− for some u+ ∈ X+ and u− ∈ X−. Employing the properties u+ ⊥ u−,
orthogonality preserving of T and the above obtained facts, we obtain

[T(u), T(u)]Y =
[
T(u+), T(u+)

]
Y
+
[
T(u−), T(u−)

]
Y

= γ[u+,u+]X + γ[u−,u−]X
= γ [u,u]X .

Lemma 2.4. Let T : X → Y be an orthogonality preserving linear mapping where X and Y are indefinite inner
product spaces. If there exists x ∈ X such that [T(x), T(x)] 6= 0 then there exists a non-zero real number γ such that
for all u ∈ X, [T(u), T(u)]Y = γ [u,u]X.
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Proof. Let x ∈ X satisfies [T(x), T(x)]Y 6= 0. Since T is linear and T preserves orthogonality then x 6= 0 and
[x, x]X 6= 0. Write γ =

[T(x),T(x)]Y
[x,x]X

. It is trivial that [T(x), T(x)]Y = γ[x, x]X.
We will show that for any u ∈ X the following equation holds:

[T(u), T(u)]Y = γ[u,u]X. (2.1)

Let u ∈ X. We consider four cases. The first case is when u ∈ Span(x). Using the linearity of T it can
be shown that u satisfying (2.1). The second case is when u /∈ Span(x) but [u,u]X = 0. For this case,
applying the orthogonality preserving of T , we have u satisfying (2.1).

The third case is when u /∈ Span(x), [u,u]X 6= 0 but the subspace S = Span(x,u) degenerate. Let
v ∈ S, v 6= 0 such that [v,w]X = 0 for all w ∈ S. Since {x,u} is a basis of S, let v = αx+ βu for some
α,β ∈ C. It is trivial that both α 6= 0 and β 6= 0. Hence, we have {x, v} is also a basis of S. Let u = µx+ νv
for some µ,ν ∈ C. Since v is degenerate, we obtain [u,u]X = |µ|2[x, x]X. Applying the linearity and the
orthogonality preserving of T we also obtain

Y = |µ|2[T(x), T(x)]Y + µν̄[T(x), T(v)]Y + νµ̄[T(v), T(x)]Y
+ |ν|2[T(v), T(v)]Y

= |µ|2[T(x), T(x)]Y
= γ|µ|2[x, x]X
= γ[u,u]X.

Thus u satisfies (2.1).
The fourth and the last case is when u /∈ Span(x), [u,u]X 6= 0 and the subspace S = Span(x,u) non-

degenerate. For this case we have S is a Krein space. Consider the restriction T on the subspace S, i.e.,
T |S : S −→ Y, with S is a Krein space, and there exists x ∈ S such that [T(x), T(x)]Y 6= 0. According to
Lemma 2.3 there exists a nonzero real number δ such that

[T(w), T(w)]Y = δ[w,w]X, ∀ w ∈ S.

Particularly, we have [T(x), T(x)Y = δ[x, x]X. Since [x, x]X 6= 0 and referring to the definition of γ above,
we have δ = γ. Thus, u satisfies (2.1).

3. Concluding remarks

In this article we have been able to expand the results concerning necessary and sufficient condi-
tions for orthogonality preserving mappings on inner product spaces to indefinite inner products spaces.
Meanwhile, recently, Saraei and Amyari [5] have been able to expand the result concerning approximately
orthogonality preserving maps on inner products spaces to Krein spaces, a certain subclass of indefinite
inner product spaces. This fact raises an interesting open question whether those expansion can go further
to indefinite inner product spaces.
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