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Abstract
In this article, we have constructed the sequence space (=(p,1,t)),, by the domain of Cesaro matrix defined by weighted
00 1 b
means in Nakano sequence space {(; ), where t=(t1) and r=(r) are sequences of positive reals, and v(f) = Z <p1 Z 1,1, ) ,
1=0 2=0

with f = (f;) € Z(p, 1, t). Some geometric and topological actions of (=(p, 1, t)),,, the multiplication maps stand-in on (Z(p, 1, t)),,,
and the eigenvalues distribution of operator ideal formed by (=(p,,t)),, and s-numbers are discussed. We offer the existence
of a fixed point of Kannan contraction operator improvised on these spaces. It is curious that various numerical experiments
are introduced to present our results. Moreover, a few gilded applications to the existence of solutions of non-linear difference
equations are examined.
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1. Introduction

The theory of variable exponent function spaces contemplatively depend on the boundedness of the
Hardy-Littlewood maximal operator. Which investigates its approach in differential equations, optimiza-
tion, and approximation. The next conventions throughout the article will be used, if species are pre-
owned we will give them.

Conventions 1.1.

N ={0,1,2,...}.
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C: The space of all complex numbers.
[a] : The integral part of real number a.
R: The set of real numbers.
CN': The space of all sequences of complex numbers.

RN : The space of all sequences of positive reals.
(s : The space of bounded sequences of complex numbers.
£, : The space of r-absolutely summable sequences of complex numbers.
co : The space of null sequences of complex numbers.
et =(0,0,...,1,0,0,...), as 1 lies at the 1! coordinate, for all 1 € N.
J : The space of each sequences with finite non-zero coordinates.
J: The space of all sets with finite number of elements.
_~ 1 The space of all monotonic increasing sequences of positive reals.
N, : The space of all monotonic decreasing sequences of positive reals.
B : The ideal of all bounded linear mappings between any arbitrary Banach spaces.
§ : The ideal of finite rank mappings between any arbitrary Banach spaces.
A : The ideal of approximable mappings between any arbitrary Banach spaces.
XK : The ideal of compact mappings between any arbitrary Banach spaces.

B(?P,Q) : The space of all bounded linear mappings from a Banach space P into a Banach space Q.
B(P) : The space of all bounded linear mappings from a Banach space P into itself.

F(P,Q) : The space of finite rank mappings from a Banach space P into a Banach space Q.
F(P) : The space of finite rank mappings from a Banach space P into itself.

A(P,Q) : The space of approximable mappings from a Banach space P into a Banach space Q.
A(P) : The space of approximable mappings from a Banach space P into itself.

K(P,Q) : The space of compact mappings from a Banach space P into a Banach space Q.
X(P) : The space of compact mappings from a Banach space P into itself.

Definition 1.2 ([35]). A map s:B(P,Q) — [0,c0)N is named an s-number, if the sequence (sx(H))$, for

all H € B(?P, Q), verifies the next conditions:

(@) [[H] =so(H) = s1(H) = s2(H) > --- > 0, with H € B(P,Q);

(b) Sx+y_1(H1 + Hy) < sx(Hp) + Sy (Hp), with Hy,H, € B(P,Q) and x, y € N;

(€) sx(ZYH) < [|Z||sx(Y) |[H]|, for every H € B(Py; P), Y € B(P,Q) and Z € B(Q, Qp), where Py and Qq are
any two Banach spaces;

(d) suppose G € B(P,Q) and v € C, hence sx(yG) = vIsx(G);

(e) assume rank(H) < x, then s« (H) =0, for all H € B(P, Q),

() sy=x(Ix) = 0 or sy~x(Ix) = 1, where I, marks the identity map on the x-dimensional Hilbert space
.

We investigate a few examples of s-numbers as follows.

(1) The x-th Kolmogorov number, d.(H), where d,(H) = infgim j<x sup A< infgey ||[HA — B
(2) The x-th approximation number, o, (H), where o (H) = inf{ |[H— Z| : Z € B(?, Q) and rank(Z) < x}.

Notations 1.3 ([13]).
B = {]Bfg(?, Q); Pand Q are Banach Spaces}, where Bg (P, Q) := {H € B(P,9): ((sx(H))¥ € 8}.
Bg = {]B(%‘(T,Q); Pand Q are Banach Spaces}, where BZ(P,Q) := {H € B(?,9): ((xx(H))3 € 8}.

B¢ .= {Bg(fp, Q) Pand Q are Banach spaces}, where BE(P, Q) = {H € B(P,Q) : ((dy(H))2, € e}.
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Pietsch [31] defined and discussed the concept of s-numbers of linear bounded operators between Banach
spaces. In [32, 34], he introduced and investigated a few geometric and topological behavior of the quasi
ideals B . Makarov and Faried [23], proved for any infinite dimensional Banach spaces P, Q, the strictly
inclusion relation of B{ (?,Q) with different powers. Yaying et al. [45], defined the sequence space, X,
whose its r-Cesaro matrix in £, with v € (0,1] and 1 < t < oco. They offered the quasi Banach ideal of
type xt, with r € (0,1] and 1 < t < co. They examined its Schauder basis, x—, f— and y— duals, and
bent upon conclusive matrix classes connected with this sequence space. The compact maps discussed
by many authors for distinct sequence spaces for completeness, see [9-12, 20, 26, 29]. Komal et al. [22],
investigated the multiplication operators acting on Cesaro sequence spaces under the Luxemburg norm.
The multiplication operators acting on Cesaro second order function spaces examined by Ilkhan et al.
[17]. The non-absolute type sequence spaces are a generalization of the equivalent absolute type. For that
there exists a great interest to examine these sequence spaces. Newly, many authors in the literature have
discussed a few non-absolute type sequence spaces and presented new interesting articles, for example,
see Mursaleen and Noman [27, 28], and Mursaleen and Basar [25]. Many authors have introduced and
studied different sequence spaces to fill in gaps in the literature, such as Tripathy [39, 40], Altin et al. [3],
Tripathy et al. [41, 42], Khan et al. [21], Hazarika and Esi [15], Raj et al. [36] and Yaying et al. [43, 44].
In view of Banach fixed point theorem [8], Kannan [19] offered an example of a class of operators with
the same fixed point actions as contractions though that fails to be continuous. Ghoncheh [14] was the
only one who examined Kannan maps in modular vector spaces. He showed that the existence of a fixed
point of Kannan operator in complete modular spaces that have Fatou property. Bakery and Mohamed
[5] introduced the theory of the pre-quasi norm on Nakano sequence space so that its variable exponent
in (0,1]. They examined the sufficient conditions on it under the known pre-quasi norm to construct pre-
quasi Banach and closed space, and offered the Fatou property of distinct pre-quasi norms on it. More,
they showed the existence of a fixed point of Kannan pre-quasi norm contraction operators on it and
on the pre-quasi Banach operator ideal generated by the sequence of s-numbers which belongs to this
sequence space.

Lemma 1.4 ([2]). Iftq > 0and Ay, Bq € C, for all a € N, and h = max{1,sup , tq}, hence
Aa +Bal's <2"1 (Aol +1Bal*) . (1.1)

The goal of this paper is organized as follows. In Section 3.1, we give the definition and some inclusion
relations of the sequence space (=(p, ,1)),, equipped with the function v. In Section 3.2, we explain the
sufficient conditions on =(p, r, t) with known function v to construct pre-modular private sequence space
(pss). This explains that (=(p,r,t)), is a pre-quasi normed pss. In Section 3.3, we act a multiplication
operator on (=(p,1,t))y, and investigate the necessity and enough setup on this sequence space so that
the multiplication operator is bounded, approximable, invertible, Fredholm and closed range. In Section 4,
first, we discuss the enough conditions (not necessary) on (=(p, ,t))., so that F = IBfE( prt))y" This gives
a negative answer of Rhoades [37] open problem about the linearity of s-type (=(p, 1, t))., spaces. Second,
we introduce the setup on (Z(p, 1,t)), such that the elements of pre-quasi ideal B2 are complete and

Z(p,r,t)

* is strictly contained for

Z(p,rt))o
distinct weights and powers. We establish the setup for which the pre-qu(as(i]D ide)ail B=(prt))0
Fourth, we introduce the conditions for which the Banach pre-quasi ideal Bi, | ;) is simple. Fifth, we
give the enough conditions on (Z(p, 1, 1)), so that the class B which sequence of eigenvalues in (Z(p, 1, t))v
equals B, ) - In Section 5, the existence of a fixed point of Kannan pre-quasi norm contraction
operator on this sequence space and on its pre-quasi operator ideal constructed by (Z(p,1,t)),, and s-
numbers are confirmed. Finally, in Section 6, we light our results by a few examples and applications
to the existence of solutions of non-linear difference equations. Finally, we introduce our conclusion in
Section 7.

closed. Third, we offer the enough conditions on (=Z(p, ,t)), so that B
is minimum.
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2. Definitions and preliminaries

Lemma 2.1 ([34]). If M € B(P,Q) and M ¢ A(P,Q), then there are operators Q € B(P) and L € B(Q) so that
LMQex = ey, forall x € N.

Definition 2.2 ([34]). A Banach space € is named simple if the algebra B(&) includes one and only one
non-trivial closed ideal.

Theorem 2.3 ([34]). Suppose € is a Banach space with dim(€) = oo, then

F(€) G A(E) G K(€) & B(E).

Definition 2.4 ([24]). An operator U € B(&) is named Fredholm if dim(Range(U))¢ < oo, dim(ker(U)) <
oo and Range(U) is closed, where (Range(U))¢ marks the complement of Range(Ul).

Definition 2.5 ([18]). A class W C B is named an operator ideal if every vector W(P,Q) = W N B(P?, Q)
confirms the next setup.

(i) Io € W, if O marks Banach space of one dimension.
(ii) W(P,Q) is a linear space on C.
(iii) If Q € B(Py,P), L € W(P,Q) and M € B(Q,Qp), then MLQ € W(Py, Qy), where Py and Qp are
normed spaces.

Definition 2.6 ([13]). A function ¥ : W — [0, 00) is named a pre-quasi norm on the operator ideal W, if it
confirms the next setup:

(1) forallH e W(P?,9), ¥(H) > 0and ¥Y(H) =0 <= H =0;

(2) we have Ey > 1 so that W(kH) < Eg|k[W(H), with H € W(P,Q) and k € C;

(3) we have Gy > 1 so that W(H; + Hy) < Go[W(H1) + ¥(H2)], for every Hy, Hy € W(P,Q);

(4) we have Dy > 1 so that if Q € B(Py,P), L € W(P,Q) and M € B(9,9Qp) hence ¥Y(MLQ) <
Do [[M[[¥(L) [|Q].

Theorem 2.7 ([13]). Each quasi norm on the ideal W is a pre-quasi norm on the ideal W.

Definition 2.8 ([6]). The linear space of sequences € is named a private sequence space (pss), if it satisfies
the following conditions:

(1) ex € &, withx € N;
(2) € is solid, i.e., for h = (hy) € €N, [j| = (|jx]) € € and |hy| < [jx|, with x € N, then |h| € &;

® (in]) e iftihzoce.

iz

Theorem 2.9 ([6]). Assume the linear sequence space € is a pss, then BE is an operator ideal.

Definition 2.10 ([6]). A subspace of the pss is named a pre-modular pss, if there is a function v : € — [0, c0)
that satisfies the following conditions:

(i) foreveryj € €, j =0 <= v(ljl) =0, and v(j) > 0, with 0 is the zero vector of &;
(ii) if j € € and p € C, then there are Ey > 1 with v(pj) < [p|Eqv(j);

(iii)) v(h+j) < Gp(v(h) +v(j)) includes for some Gy > 1, with f,g € &;

(iv) assume x € N, [hy| < [jx|, we have v((|hy|)) < v((ljx]));
(v) the inequality, v(([jx)) < v((lj;x)])) < Dov(([jx|)) verifies, for Do > 1;

(vi) F= Ev;

(vii) we have n > 0 such that v(p,0,0,0,...) > nlplv(1,0,0,0,...), with p € C.



A. A. Bakery, E. A. E. Mohamed, OM. K. S. K. Mohamed, J. Math. Computer Sci., 26 (2022), 41-66 45

Definition 2.11 ([6]). The pss &, is named a pre-quasi normed pss, if v confirms the setup (i)-(iii) of
Definition 2.10. If € is complete equipped with v, then &, is named a pre-quasi Banach pss.

Theorem 2.12 ([6]). Each pre-modular pss &, is a pre-quasi normed pss.

Theorem 2.13 ([6]). The function ¥ is a pre-quasi norm on IBfg)U, where Y(Y) = v(sp(Y))nry for every Y €
B?e)v (P,Q), if (€)v is a pre-modular pss.

Definition 2.14 ([5]). A pre-quasi norm v on € confirms the Fatou property, if for every sequence {t*} C &,
with limg o v(t*—1t) =0and each z € &, then v(z—t) < sup; info>5v(z—t9).

Definition 2.15 ([5]). A pre-quasi norm ¥ on the ideal Bf, where Y(W) = v((sa(W))flo:()), confirms

the Fatou property if for every sequence {Wq}laen € BE(Z, M) with limg_,o ¥(Wq — W) = 0 and each
V € BE(Z, M), then ¥(V — W) < sup infi>q Y(V —Wj).

Definition 2.16 ([5]). An operator W : £, — &, is named a Kannan v-contraction, if there is A € [0, %),
such that v(Wz —Wt) < A(v(Wz —z) +v(Wt—1t)), for every z,t € .

A vector z € &, is named a fixed point of W, if W(z) = z.

Definition 2.17 ([5]). An operator W : B (Z, M) — B%(Z, M) is called a Kannan Y-contraction, if there is
A€o, %), so that Y(WV —WT) < AW(WV - V) +Y(WT —T)), foreach V, T € B3 (Z, M).

Definition 2.18 ([5]). Assume &, is a pre-quasi normed (sss), W: &, — &, and b € &,,. The operator W
is named v-sequentially continuous at b, if and only if, if limq o V(tq —b) = 0, then limq 0o V(Wtq —
Wb) =0.

Definition 2.19 ([5]). For the pre-quasi norm ¥ on the ideal B%, where ¥(W) = v((sa(W))gO:()), G:
B:(Z,M) — B%(Z,M) and B € B%(Z, M). The operator G is named ¥-sequentially continuous at B, if
and only if, if lim, o ¥ (W} —B) = 0, then lim, o ¥Y(GW}, —GB) = 0.

Definition 2.20 ([6]). Suppose w = (wy) € €N and &,, is a pre-quasi normed pss. The operator Hy, : €y, —
&y is named a multiplication operator on &, if H,f = (wab> € &y, with f € &,. The multiplication
operator is named created by w, if Hy, € B(Ey).

Theorem 2.21 ([4]). Suppose s-type &, = {h = (sx(H)) e RN : H e B(P,Q) and v(h) < oo}. If B isan
operator ideal, then the following conditions are verified.

1. F C s-type Ey.

2. Suppose (sx(H1))5g € s-type & and (sx(Hz))5 o € s-type &, then (sx(Hi + Ha))5 € s-type Ey.

3. Assume A € Cand (sx(H))3_, € s-type &, then |A| (sx(H))5, € s-type E.

4. The sequence space &, is solid, i.e., if (sx(]))yry € s-type &y and sx(H) < sx(J), for all x € N and

x=0

H,J € B(P,Q), then (sx(H))y_o € s-type .

3. Main results

3.1. The sequence space (Z(p,1,1t)),,

In this section, we introduce the definition the sequence space (Z(p, 1, t)),, equipped with the function
v, and some inclusion relations of it.
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Definition 3.1. If (py), (r1), (t1) € R*N, the sequence space (Z(p, 1, t)),, with the function v is defined by:

Ep, 7)), = {f =(fx) € eN. v(pf) < oo, for some p > 0},

1 b
Zrzfz ) .
z=0

Theorem 3.2. If (t1) € RN, then

where v(f) = Z <p1

1=0

(Ep, 1), = {f = (f) € N 1 v(pf) < oo, for any p > o}.
Proof. Assume (t1) € RN 5, we have

(2(A ), =1f=(fx) € eN:v(pf) < oo, for some p > O}

fZ(fk)GeNIZ<P1

1=0

1

t
) < oo, for some p >O}

profz
0

z=

[ t
f=(f) ecN: iIllf ot lZ (pl > < 00, for some p > 0}

=0

1
> rfs
z=0

1 b
Zrzfz ) < oo}
z=0

f = (fi) € €N :v(pf) < oo, for any p > 0}.

I
—~ — — =

fztfk)eeN:Z<m

1=0

Remark 3.3.

(1) 16t = e = v} = p = oo,
Z(p,7,t) = cest . studied by Bakery and Mohamed [6].

T1,T2

forallz € N, rq,m € (0,00) and t > 1, the sequence space

(2) Suppose t, =t, 1, =17, p, = Z%of“’ forevery z € N, 0 < r < 1land t > 1, the sequence space
Z(p, 7, t) = x& studied by Yaying et al. [45].

B) Assume t, =t, v, =1, p, = ZLH, for every z € N and t > 1, then Z(p,1,t) = ces', defined and
examined by Ng and Lee [30].

Theorem 3.4. If (t1) € [1, 0)N Ny, then (Z(p,, t)),, is a non-absolute type.
Proof. By choosing f = (1, ~1,0,0,0,... ) then |f| = (1, 1,0,0,0,.. ) We have
v(f) = (poro)* + (p1lro — 1) + (p2lro — 1)) 2 + -
# (por0)* + (p1 o+ 110" + (p2Iro + 1)) + - = v(If).
Then, the sequence space (=(p, T, 1)),, is non-absolute type. O

Recall that, we name the sequence space (=(p,1,t)),, as generalized Cesaro sequence space defined
by weighted means of non-absolute type since it is constructed by the domain of Cesaro matrix defined
by weighted means in {((,)), where the Cesaro matrix defined by weighted means, A(r) = (A(1)), is

defined as:
, 0<z<],
A(r) =P TS E
0, z> 1l
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Definition 3.5 ([7]). Assume (p1), (1), (t1) € R*Nand t; > 1, for every 1 € N. The generalized Cesaro
sequence space defined by weighted means (ces(p,1, 1)), is defined as:

(ces(p,r,t))(p = {f = (fx) € €N ': @(pf) < oo, for some p > 0},

where ¢(f Z (plzrzlf I>

1=0 z=0

Theorem 3.6. Suppose (t1) € RN Nl with (p1) € L((¢,)) and (p1 Z;:o T2) & L), hence (ces(p,T,t))
(Zlp,7,1)),-

C
© =

Proof. Let f € (ces(p, r,t))(p, since

00 t 00 1 t
Z (pl fz ) < Z <pl ZTZ |fz|> < 0o.
1=0 1=0 z=0

1
DT
z=0

z

Hence, f € (Z(p, 1, t)),, . If we choose g = (%)Zeg\f, one gets g € (Z(p,1,1)), and g & (ces(p, r,t))(p. O

3.2. Pre-modular private sequence space

We explain in this section the enough setup on =(p,r,t) with definite function v to construct pre-
modular pss. Which investigates that Z(p, 1, t) is a pre-quasi normed pss.

Theorem 3.7. Z(p, ,t) is a pss, if the next setup are confirmed.

(1) ( GJ/FWZ with tg > 0.

(£2) ( Z)z:O e RN N ¢((ey))
(f3) (r2) 5 €T o, (7)€ T xNiu and there exists C > 1 such that 12,1 < Crs.

Proof.
(1-i) Assume f,g € =Z(p, 1,t). One obtains

Rt

(1-ii) Suppose p € €, f € =Z(p,r,t) and as (t1) € T Ny, we get

1

Z erZ + ngZ

z=0

i (m ZTZ )tl +§) (m ;rzgz

1=0

)

hence, f+g € =Z(p, 1, t).

1 t 00 1 b
zr,,pfz> < suplol" z(mzrzfz) .
2=0 L 1=0 z=0

So, pf € Z(p, 1, t). In view of setup (1-i) and (1-ii), we have =(p, 1, t) is a linear space. As (t;) € T ~ Nl
and ty > 0, one obtains

0 1
Z (pl Z rz(eb)z
1=0 z=0

Therefore, ey, € Z(p, 1, t), for every b € N.

(s

1=0

pirp) " suprpr

ul\/]g



(2) Let|fp| < |gpl, with b € N and |g| € =(p, 1,t). One has

0 1
Z (pl Z Tz|1:z|
1=0 z=0

A. A. Bakery, E. A. E. Mohamed, OM. K. S. K. Mohamed, J. Math. Computer Sci., 26 (2022), 41-66 48
> rilg:l

t 00 1 t
) < Z (Pt ) < 0o,
1=0 z=0
hence [f| € Z(p, 1, 1).

(3) Assume (|f;|) € Z(p,1,t), with (1), (r2) € T ~ Nl and there is C > 1 with 15,11 < Cr,, we get

00 ! b ta1 2141 tar
> (Pl ZHH[;]) =) (Pztzfdf; > +Z <P21+1 D Talfiz )

1=0 z=0 1=0

00 1 tt ty
<) <P1 <T21|f1 + ) (r2z+T241 |fz|>> +Z <P1 (Z T22+T2z+1sz>>
z=0

1=0 z=0

[e9) 1 t f t
< on-1 (Z (m Zrzzfz|> +Z <2Cp1 Zrzlfz|> ) +Z <zcm Zrzlle>
1=0 z=0 1=0 z=0

1=0 z=0

tr

o0 1 h
< (2 tgntyohcht Yy (m > fz'“) -

1=0 z=0
hence (If% ) e Z(p,r,t). O]

In view of Theorem 2.9, we have the next Theorem.

Theorem 3.8. Suppose the setup (f1), (£2), and (£3) is settled, then ]B_ " is an operator ideal.

Theorem 3.9. (Z(p,1,1t))y is a pre-modular pss, if the setup (f1), (£2), a (f3) is settled.
Proof.
(i) Definitely, v(f) > 0 and v(|f|) =0 & f=06.
ii) There are Eg = max {1 sup, \pltl_l} > 1 with v(pf) < Eglp|v(f), for each f € Z(p,1,t) and p € C.

(
(iii) The inequality v(f+ g) < 2" 1(v(f) +v(g)) satisfies, with f,g € =(p, T, t).
(iv) Clearly, from the proof part (2) of Theorem 3.7.
(v) Obviously, the proof part (3) of Theorem 3.7, that Dy > (2271 +2"—1 4 2M)Ch > 1.
(vi) Clearly, F = Z(p,,t).
(vii) One has 0 < @ < supy Ip/"'™ I with v(p,0,0,0,...) > ®|plv(1,0,0,0,...), for all p # 0 and @ > 0, if
p=0. O

Theorem 3.10. If the setup (f1), (£2), and (£3) is established, then (=Z(p,r,t)). is a pre-quasi Banach pss.

Proof. According to Theorem 3.9, the space (=(p, 1, 1))y is a pre-modular pss. According to Theorem 2.12,
the space (Z(p,1,t))y is a pre-quasi normed pss. To explain that (Z(p,7,t)), is a pre-quasi Banach pss,
assume f¢ = (f)3° ; is a Cauchy sequence in (Z(p,1,t))y, then for all ¢ € (0,1), there is ag € N so that

for all a,b > ag, one gets
l
Zrz (f¢ —f9) ) <M

Hence, for a,b > ap and z € N, we obtain |f$ — flz’l < €. 50, (f‘;) is a Cauchy sequence in C, for fixed z € N,
this explains limp_, 2 = f9, for fixed z € N. Hence v(f® — ) < ™, for all a > a. Finally to investigate
that f° € (Z(p,1,t))v, one has V() < 21 (V(f* — f0) + V(f*)) < oo, then O € (E(p,1,1))v. This explains
that (Z(p,1,1))y is a pre-quasi Banach pss. O

v(f* — Z (Pl

1=0
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In view of Theorem 2.21, we construct the next properties of the s-type (Z(p,1,1))+.
Theorem 3.11. Let s-type (Z(p,1,t))y = {f = (sn(X)) € N X € B(P,Q) and v(f) < oo}. The next
conditions are established

1. One has s-type (Z(p,7,t))y D F.

2. Suppose (s+(X1))reg € s-type (E(p, 1,1))v and (s+(X2))72, € s-type (Z(p, 1, 1))y, then (s+ (X1 +X2))70, €
s-type (Z(p, 7, t))v.

3. Assume A € Cand (s+(X))7, € s-type (Z(p, 1, 1))y, hence [N (s+(X))72, € s-type (Z(p, 1, 1))v.

4. The s-type (Z(p,T,t))v is solid.

3.3. Multiplication operators on (Z(p,1,t))v

We discuss here the necessity and enough setup on (Z(p, ,t)), in order to the multiplication operator
defined on it is bounded, invertible, approximable, Fredholm and closed range.

Theorem 3.12. Suppose w € CN, the setup (f1), (f2), and (£3) is entrenched, hence
W € lo <= Hy € B((Z(p, 1, 1))0).

Proof. Let w € . Hence, there is v > 0 so that |wy| < v, for every b € N. Assume f € (Z(p, 1,t)),, one

has
t 00 1 t
1=0 z=0

V(Hef) =v(wf) = Z (pl Zrzvfz
Therefore, Hy,, € B((Z(p, 1, t))u). On the other hand, assume Hy, € B((Z(p,1,t))y) and w ¢ €. Hence
for all b € N, there are x;, € N so that wy, > b. We get

t o !
Z TLw,f, ) <supvit Y <p1 D rufe
t 1=0 z=0

= sup viu(f).
!

E TWz(ex, )z

Hence, Hy, € B((Z(p, 7, t))v)- So w € L. d

t 0
)t
) = Z (Prrxy lwx, )7 > Z pibry, )t > b%v(ey, ).

l:Xb 1= Xb

U(Hwexb) :U(wexb = Z (pl

1=0

Theorem 3.13. Suppose w € €N and (Z(p,1,t))y is a pre-quasi normed pss. Hence wy, = g, for every b € N and
Proof. Let wy = g, for every b € N and g € C with [g| = 1. One obtains
o) 1 t 00
V(Hof) =v(wf) =) (Pt D mewify ) =) (Pl
1=0

g € Cwith [g| =1, if and only if, H, is an isometry.
ty
) =v(f),
1=0 k=0
for every f € (Z(p, 1, t))v. Therefore, H, is an isometry.

Suppose the necessity setup is entrenched and |wy| < 1, for some b = bg. We get

1

> lglricfi

k=0

1
D rewilepy )k

k=0

t -~
) =) (piroglwp, )™ < Z Pirhy)" = vlep,)-

l=byg l=by

U(Ha b)) = v(wep,) = Y (pl

1=0

Next if |wyp,| > 1, obviously v(Heep,) > V(ep,). This explains a contradiction for the two cases. Therefore,
|wp| =1, for all b € N. O
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Theorem 3.14. Suppose w € CN, the setup (f1), (f2), and (£3) is entrenched. Hence
Hw € A((E(p, 1, 1))v) <= (W) € Co.

Proof. Let Hy, € A((Z(p,1,1))v), then Hy, € K((Z(p, 1, t))v). Assume limp_,o0 Wy # 0. Therefore, we have
p > 0 such that the set K, ={b € N : |wy| > p} g J. Assume {ap jben C Kp. Hence, {ey, : ap € Ky} € o
is an infinite set in (=Z(p, r,t)),. Since

)tl

t
) > Hilf ptlv(eoca - eO(b)/

V(Hyex, —Hwew,) =v(wey, —wey,) =

M2

1
(Pl Z TWi((exg )k — (€ay )
k=0

1=0

1
> (m D riep((eag )k — (€ay i)
0 k=0

1=

8

for every oq, &y € Kp. Then, {eq, : op € Ky} € {o, which cannot have a convergent subsequence under
He. Hence Hy, € K((Z(p,1,t))yv). This explains Hy, ¢ A((Z(p, 1, t))v), which indicates a contradiction.
Hence, limy_,oo wp = 0. On the other hand, assume limy_, o, wp = 0. Therefore, for all p > 0, one has

K, ={b € N : |wp| = p} C J. Hence, for every p > 0, we have dim | ( (Z(p, 1, t))v = dim (C¥*) < 0.
P y K

P

erefore, H, € Z(p, 7, t))o . Assume wy € GV, for all a € N, where
Theref H F(((=( )) « A eN for all N, wh
P

Wy, be KL/
(wq)p = atl
0, otherwise.

Obviously, Hy, € F( ( (Z(p, T, 1)) , since dim | ( (Z(p,T,t))0 < o0, for all a € N. Accord-
y a B, B,

a+1

ing to (t1) € 3 » Nl with tg > 0, we have

a+1

V((Hew — He, )f) = v(((wb - (wa)b)fb)oo )

b=0

1
D _mofo
b—0

1 (o)
S latx Db > (Pl
1

1=0,1¢K

) tl
a+1

t
1 1
< Tt (at+ 1)t Z (pl Zrbfb ) - mv(f).

Hence, |[Hy, —Ho, || < m Which investigates that H, is a limit of finite rank maps. Therefore,

Hew € A((E(p, 7, t))v). .
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Theorem 3.15. Assume w € CN, the setup (f1), (f2), and (£3) is entrenched. Hence

Ho € K((E(p, 7, t))v) <= (wp)g € co.
Proof. Evidently, since A((Z(p,7,1))v) & K((Z(p, 7, 1))v)- O
Corollary 3.16. Suppose the setup (f1), (£2), and (£3) is proved, hence KX((Z(p,7,t))v) & B((Z(p, 7, 1))v).

Proof. Asw = (1,1,...) creates the multiplication map I on (Z(p, 1,t)),. Which explains I ¢ X((Z(p,1,t))v)
and I € B((Z(p, 7, t))v). O

Theorem 3.17. If (Z(p,1,t))y is a pre-quasi Banach pss and Hy, € B((Z(p, 1,t))v), hence there are o« > 0 and
N > 0 such that « < |wy| <m, with b € (ker(w))€, if and only if, Range(H,,) is closed.

Proof. Assume the enough conditions are proved. Hence, there is p > 0 so that |wy| > p, for all b €
(ker(w)). To explain that Range(H,) is closed. Assume g is a limit point of Range(Hy ). We obtain
Hwfo € (2(p,7,t))v, for every b € N so that limy_,oc Hofo = g. Evidently, the sequence Hfy is a
Cauchy sequence. As (t1) € J » N {y with tg > 0, one gets

)

V(Hyfa —Hofp) Z <p1 ka wi(fa)k — wi(fp)x)
ZTk wi(fa)k — wi(fo)i)

1=0

-5 )(m

;

1=0,1€ (k
00 t
+ Z <P1 ZTk wi(fa)kx — wi(fo)k ))
1=0,1¢ (ker(w))©
0 t
> Z <P1 ZTk Wi (fa)k — wi(fp)k ))
1=0,1€ (ker(w))*¢

)tl
t
) > iIllf ptu (ua — ub>,

(fa)i, ke (ker(w)),
(Walk = { c
0, k ¢ (ker(w))".

M ¢

1
<P1 D rilwic(ua)k — wic(up)i)
0 k=0

1

>

M2

1
<PL > mep((ua)i — (wp)

k=0

1=0

where

Hence, {uq} is a Cauchy sequence in (Z(p,1,1)),. As (Z(p,7,t))y is complete, therefore, there is f €
(Z(p,7,1))y so that limp_, up = f. Since Hy, € B((Z(p,1,t))y), one has limy, o Houp = Hef. Since
limp 00 Houp = limp oo Hwfo = g. Therefore, H,,f = g. Hence g € Range(H,). So Range(H,,) is
closed. Next, assume the necessity setup is confirmed. Hence, there is p > 0 so that v(Hf) > pv(f), with

fe <(E(p,r,t))v> K= {b € (ker(w)) : lwp| < p} # (), hence for ay € K, one has
(ker(w))©
)tl

! ) 1
> < Z (PL
1=0 b=0

Z rb(eao)bp
< Sup ptlv(eao)/

1

1
D Towp(eay)n

b=0

viHaea) = v (walean))” )= Y (m

1=0
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which introduces a contradiction. So K = ¢, we have |wy| > p, with b € (ker(w))®. This proves the
theorem. O

Theorem 3.18. Suppose w € CN and (Z(p,r,t))v is a pre-quasi Banach pss. Hence, there are o« > 0 and n > 0 so
that « < |wy| < 1, for every b € N, if and only if, Hy, € B((Z(p,1,1))v) is invertible.

Proof. Assume the enough setup are proved. Suppose k € €N with kp, = wib In view of Theorem 3.12, the
operators H, and Hy are bounded linear. We get H,, .H« = Hc.Hy, = I. Hence Hy = H!. After, assume
H is invertible. Hence Range(H.) = ((E(p,r,t))v)N. So, Range(H,) is closed. Therefore, by using
Theorem 3.17, there is « > 0 so that |wyp| > «, for every b € (ker(w))®. We have ker(w) = 0, if wp, =0,
with by € N, which gives ey, € ker(H,,), this explains a contradiction, as ker(H,) is trivial. Therefore,

lwp| > «, for every b € N. Since H, € {x. By using Theorem 3.12, there is 1 > 0 so that |wy| < 1, for
every b € N. Therefore, we have & < |wy| <1, with b € N. O

Theorem 3.19. Suppose (Z(p, 1, 1))y is a pre-quasi Banach pss and Hy, € B((Z(p, 1,t))v). Hence Hy, is Fredholm
operator, if and only if, (i) ker(w) G NNJ and (i) |wy| > p, with b € (ker(w))€.

Proof. Let the enough conditions be satisfied. Assume ker(w) & N is an infinite, hence e, € ker(Hy),
for every b € ker(w). Since ep’s are linearly independent, one obtains that dim(ker(H,)) = oo, which
explains a contradiction. Hence, ker(w) & N must be finite. The setup (ii) follows from Theorem 3.17.
Next, suppose the conditions (i) and (ii) are confirmed. In view of Theorem 3.17, the condition (ii) explains
that Range(H,) is closed. The setup (i) gives that dim(ker(Hy)) < oo and dim((Range(Hy))¢) < oo.
Hence H,, is Fredholm. O

4. Features of pre-quasi ideal

In this section, we introduce the enough setup (not necessary) on (Z(p, 1,t)), such that F = ]Bf (prrt))o”
This investigates a negative answer of Rhoades [37] open problem about the linearity of s-type (Z(p, 1, t))v
spaces. Secondly, for which conditions on (=(p, 1, 1))y, are IB Z(prt)e closed and complete? Thirdly, we
explain the enough setup on (=(p,r,1)), such that ]B is strictly contained for different weights
and powers. We offer the setup so that B{z ),
so that the Banach pre-quasi ideal Bf-, ), is simple. Fifthly, we investigate the enough conditions
on (Z(p,7,t)), such that the space of all bounded linear operators which sequence of eigenvalues in
(2(p,1,t))y equals IBS

(Eprt)y
is minimum. Fourthly, we introduce the conditions

(1)

4.1. Finite rank pre-quasi ideal

Theorem 4.1. ]B =(prt) (9’ Q) =F(P,Q), suppose the setup (f1), (£2), and (£3) is established. But the converse

is not necessarily true

(‘.P, Q). Ase € (Z(p,1, 1))y, forevery l € N and (Z(p,1,1))v
. (#,9) C F(P,0),

Proof. To investigate that F(P,Q) C B,
is a linear space. Let Z € F(P,Q), one gets (sl(Z)) °y € J. To explain that Bt-

(p,7,t)
assume Z € ]BS (b)) ((P Q), we obtain (s1(Z))?, € (Z(p,1,1))y. Since v(sl(Z))‘f"O < oo, letp e (0,1),
hence there is 13 € N — {0} with v((sl(Z))fO:lO) < ﬁ, for some d > 1, where 1 = max {1, Z p{‘ .
1=1,

Since s1(Z) € J-, we get

21, h 21,

1 1 00
Y X sm@) < X (mXns@] <X (m)ns@)]| <gmmg @D

1=1g+1 j=0 1=1p+1 j=0 =1, j=0
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Hence there is Y € [Fy, (P, Q) so that rank(Y) < 21y and

31 1 t 21 1 h )
Z PIZTJ'HZ—YH < Z PlZT)'HZ—YH < hnd’ (4.2)
1=20g+1 =0 1=lo+1 =0

since (t1) € J » N {s, we have
Lo

P
siip (3 nlZ= V)" < g (43
=l “ 0 n
Therefore, one has
1o 1 h 0
D, _mllz=Yl| < Rnd’ (4.4)
1=0 j=

In view of inequalities (1.1)-(4.4), one gets
d(Z,Y)
=v (s1(Z-Y)){Z

3l—1 1 o 1 t

1=0 j=0 1=31, j=0

3l t 1421, tipay
<X er]HZ Y]l +Z P21, Z rj85(Z—Y)

1= 1=1,

o

31, 1 t 1421, t
< Z (pIZTjHZ—Y|) + Z (pl Z Tjsi(Z— Y)
=0

1=0 1=1,

].:lg ] 210

Lo i R 21,1 1421, t
<3 ) mlz=vil] +) [m Z s (Z—Y)+ Y 7ys(Z-Y)
1=0 j=0

Y L " [ [ 21 t L2t t
<3Z p1ZTj||Z—Y|| +2ht Z (m Z i85 (Z — ) —I—Z (pl Z Tj85(Z — Y) ]

1=0 j=0 [ 1=1o =1, j=21,

ty ty ty
1y 1 [e%) 210—1 [e%s) 1
<3Y (D mlz=Yi| 42D e D wIZ=YI] + ) [P Tieansjean(Z-Y)

1=0 j=0 L1=Lo j=0 =1 j=0

j=0 l=1p =1y =1, j=0

Lo 1 t 211 B 0 ! f
<3Z pY nlz=Y|| +2"tsup Z slZ=Y[| D pt42m Y (e mys2) ] <o

On the other hand, one has a negative example as Iy € IB (Z(p.t) (iP Q), where r = (0,0,0,0,1,1,...) and
=(1,2,1,2,...), but (t;) ¢ J . This shows the proof. O

4.2. Banach and closed pre-quasi ideal
Theorem 4.2. If the setup (f1), (£2), and (£3) is established, hence (B?E(p,r,t))v’w> is a pre-quasi Banach ideal,
where H(X) = (s1(X))%2)-

Proof. As (Z(p,7,1))y is a pre-modular pss, hence from theorem 2.13, ¥ is a pre-quasi norm on B2
Suppose (Xp)ven is a Cauchy sequence in ]BS (iP Q). As B(?,Q) D IBS

Eprt)”

(9’ Q), one obtams

(p,7t)) (p,7m1))

) b
Y(Xa—Xp) =) (PLZTZSZ(Xa —Xb)> > (poro [ Xa —Xu )"

1=0 z=0
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hence (Xp)pen is a Cauchy sequence in B(P, Q). Since B(P, Q) is a Banach space, then there is X € B(P, Q)
with blim | Xy —X]|| = 0. Since (s1(Xy)){2, € (2(p,1,t))0, for every b € N. According to Definition 2.10
—>00

setup (ii), (iii), and (v), one gets

%) 1 t t
Y(X) = Z (pIZrZsZ(X)) <2 1Z (PLZT'Z % (X—Xp ) + 2= 1Z (plzrzs 2] )
z=0

(e.¢]

) t
<M1y (pIZrZ \|x—xb||> +2M1De ) <pIZTst(Xb)> < oo.
1=0 z=0 1=0 z=0

Therefore, (s1(X))2, € (Z(p,1,t))v, then X € IB 2(port) (fP Q). O
Theorem 4.3. Assume P, Q are normed spaces, the setup (f1), (£2), and (£3) is satisfied, hence (IBfE (b)) ‘1’) is
a pre-quasi closed ideal, where Y(X) = v ((st))%":()) .

Proof. As (Z(p,7,t))v is a pre-modular pss, by using theorem 2.13, ¥ is a pre-quasi norm on B{- Z(prt))o”

Assume Xp € B{- (fP Q), for every b € N and bhm Y(Xp, —X)=0. AsB(?,Q) D Btz (pr (fP Q),
—00 —' it U

(p,7,t))

00 1 t
WX=Xp) =) (mZTzsz(X—Xb)> > (poro [IX —Xp)"

1=0 z=0
hence (Xy)pen is a convergent sequence in B(P, Q). Since (s1(Xy))2, € (2(p,1,t))v, for every b € N. In
view of Definition 2.10 and setup (ii), (iii), and (v), one has

) 1 t 00 b
:Z <PLZTZSZ(X)> <2™ 1Z (PLZQ 121 (X —Xp ) +2n 1Z <P1£TZS; )

we have

1=0 z=0 1=0 z=0
) h ) 1 t
< 21&1712 (PlZTz ||X_Xb||> +2h71DOZ (PlZTzSz(Xb)> < oo.
1=0 z=0 1=0 —
We get (s1(X))2, € (Z(p,1,t))y, 50 X € IB? (prt) (fP Q). O

4.3. Minimum pre-quasi ideal
Theorem 4.4. Suppose P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setup (f1), (f2), and (£3)
M - t{z), 0< p{Z) < p{l) and 0 < r{2) < r{l),for all 1 € N, hence

is confirmed with 0 < t,
BS ?,0) G BS ?,Q) G B(?,Q).
EeM.eMan) (79) = (=@ @) (7,9) = B(2,9)

v v

Proof. Let Z € BY_ ) (2,9), then (s1(2)) € (2™, (1), (1)) . One obtains
Z((p , Y v

%) 1 tEZ) 00 1 t(ll]

2 2 1 1
E (p{ ) E rg )sZ(Z)> < E (p{ ) E rfz )sZ(Z)) < 00,
1=0 z=0 1=0 z=0

then Z € Bs(z((p{z)),(r{”),(t{z)))) (P,Q). Next, if we choose (s1(Z))$2, with 3"} _, s, (2) = ——,

one gets Z € B(P, Q) such that

(1)

(o) 1 Y
(1) (1) _ I
;} <P1 ;)Tz Sz(z)> _Zl—i-l =00,
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and
o0 1 v ) . (2
(1)
Z <_p{2) ZTEZ)SZ(Z)> < Z <p{1) ZT(Zl)SZ(Z)> = Z (m) h < o0
1=0 z=0 1=0 z=0 1=0
Therefore, Z ¢ B P,9) and Z € BS N (P, Q)

(P,Q) € B(P,Q). Next, if we put (s1(Z))72, such that ZL:O r(zz)sz(Z) =

Clearly, BS
Y P e a))

+, we have Z € B(P, Q) such that Z ¢ BS (P, Q). This explains the proof. O
VT ()

Theorem 4.5. Let P and Q be Banach spaces with dim(P) = dim(Q) = oo, and the setup (f1), (£2), and (£3) is

established with (pl ZL:O rz) LeN ¢ L((t,)), hence Bz is minimum.
€

(p,7 1))y

t
Proof. Suppose the enough setup are confirmed. Then (BZ ), V), where ¥(Z Z <p1 Z T . (Z ,

1=0 z2=0
is a pre-quasi Banach ideal. Suppose IB“ (pirt) (P,Q) = B(P?,9Q), hence there is n > 0 with ¥(Z) < n||Z||,

for every Z € B(P,Q). According to Dvoretzky’s theorem [33], for every b € N, one obtams quotient
spaces P/Yp and subspaces My, of Q which can be mapped onto ¢ by isomorphisms Vp and Xp with
Vo[l Vgl < 2 and || Xo|[|[ X5l < 2. Let I, be the identity operator on ¥, Ty, be the quotient operator
from P onto P/Yy and Jy is the natural embedding operator from My, into Q. Suppose m,, is the Bernstein
numbers [31] then

1=m.(Ip) = mz(XpXp To Vo Vy 1) < [ Xollmz (X, o Vo) [ Ve | = X6 Imz (Ju Xy o Ve ) | V4 |
< XolldzJoXp To Vo) Ve 'l = [ Xblldz X To Ve To) V4 i
< X oz (o Xg 1o Vo To) | V3 1,
for 0 <1< b. We have

1 1
LY <P [ Xolrzoz(JuXy T Vo To) [V 'l
z=0 z=0

1 b 1 t
= (PlZQ) < (IXolllIVe MDY <PLZTz06z(]bXbllebTb)> -
z=0 z=0

Hence, for some p > 1, one gets

b 1 t b 1 t
> (ptZH) < plXollIVE D (perZ“Z(IbXblIbvbTb)>
z=0

1=0 1=0 z=0

1
=) mZm) < ol XollIVe Y6 X, o Vo To)
z=0

1=0

4

b ( t
; 1 t
(erz) < onl[Xo [V T6Xg o Vo To
1=0 z=0
b 1

1 t
=) (mZu) < onlXo [1Vy T X Mo Vo Toll = enlXo 1 V4 X ol Vol < 4pn.
1=0

Therefore, we have a contradiction, if b — co. Then P and Q both cannot be infinite dimensional if
]B"‘ (?, Q) = B(?P, Q). This shows the proof. O]

(p,7,t)
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Theorem 4.6. Suppose P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setup (f1), (f2), and (£3)
is confirmed with (pl Sl rz> LN Z €((1,)), hence Bg(p’r’t) is minimum.

4.4. Simple Banach pre-quasi ideal
Theorem 4.7. Suppose P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setup (f1), (£2), and (£3)

is confirmed with 0 < t{l) < t{z), 0< p{Z) < p{l) and 0 < r{z) < r{l),for all1 € N, hence

B(B? P,Q), BS 7,9)
(E((p{”),(r{”),(t{”)J)( ) (E((p{”),(r{”),(t{”)))( )

v

B o o) 9):

v

Proof. Let X € B(1BS
/f (e Fhmt?)n)v(

X % .A( S(E((p(z) (@ tz)))>u(:P,Q), SE ) , " , m)))v(iP,Q)).
Considering Lemma 2.1, there are
YElB( zs((p(z) (r@y (2))))\)(?, Q)) and ZGB(BZT( (1)),(T{1)),(t(1))))v(?, Q))

with ZXYIy, = Iy,. Therefore, for every b € N, we get

(1)

0o 1 t
_ (1) (1)
(1), (1)) (D (T'Q)_Z Pt ZTZ sz(Ip)
e )))U — p—

1To B
=((p ) (r}

[e'9) i Y
2 2
<INl o oo, (?,Q)<Z<P{) Zré)szaj))

=P, ), el )v e

This contradicts Theorem 4.4. Then X € A(lB <

—
-+
—_—
N
—
—
~—
<

2 ()
which finishes the proof. O

Corollary 4.8. Assume P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setup (f1), (£2), and (£3)

is established with 0 < t{l) < t{z), 0< p{z) < p{l) and 0 < r{z) < r{l),for all1 € N, hence

B(B? P,0), BS ?,9))
(z(nﬁ”erFHAt?)n)v( ) (=" e w"n) S

— J{( ST (2) ) [2)],(,&{2))))1)(:])/ Q)I ZE((p(l) , (1) , (1)))>U(T/ Q))

v

Proof. Evidently, as A C X. O
Theorem 4.9. Let P and Q be Banach spaces with dim(P) = dim(Q) = oo, and the setup (f1), (£2), and (£3) is

satisfied, hence B~ (prt)), 1S simple.

Proof. Assume the closed ideal JC(]B =(pt) (TP Q)) includes an operator X ¢ A(IBS (pt) (‘.P Q)). In
view of Lemma 2.1, we have Y, Z € IB(]B =(prt) (fP Q)) with ZXYIy, = Iy. This gives that I]BST( ) (?,0) €
JC(]Bf (b)) (CP Q)). Then ]B(IBs (1)) (iP Q)) iK(lBS (b)) (fP Q)). Hence, ]B Z(prt))y is simple

Banach space
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4.5. Eigenvalues of s-type operators
Notations 4.10.

(B)P = { (B£)P (P,Q); Pand Q are Banach Spaces}, where

(BS)° (P,Q) = {x € B(P,9) : ((pu(X))®_ € & and X — py(X)1|| is not invertible, for all 1 € N}.

Theorem 4.11. Let P and Q be Banach spaces with dim(P) = dim(Q) = oo, and the setup (f1), (£2), and (£3) is
t
established with inf; <p1 ZL:O rz) ' > 0, hence

P
(sz(p,mm) (P,9Q) = Biz(p,r 1)), (P, Q)

Proof. Suppose X € (sz(mt))v)p (?,9), hence (p1(X))X, € (Z(p,7,))y and [[X — py(X)I|| = 0, for all
1L € N. We have X = p(X)], for all | € N, hence s1(X) = s1(p1(X)I) = |p1(X)], for every | € N. Therefore,
(51 X)) € (Z(p,7, 1)y, then X € Biz ) (,Q).

Secondly, suppose X € ]BS (pt) (TP Q). Then (s1(X))12, € (2(p, 1, 1))v. Hence, we have

00 1l t LIRSS
Z <p1 Zrst(X)> mf <p1 Zr2> Z (X))t
1=0 z2=0 1=0

Therefore, lim; ;4 s1(X) = 0. Assume ||X — s1(X)I||~! exists, for every 1 € N. Hence ||X — sy (X)I|~!
exists and bounded, for every 1 € N. Then, lim_,q, [|[X — si(X)I| 7! = ||X||~! exists and bounded. As

(IBs (port) )’ ‘P) is a pre-quasi operator ideal, we get

I=XX" G]BS

(p,r,t))

1 (,9) = (sUD), € 2(p,m 1) = lim sy(1) = 0.

So we have a contradiction, since lim_,, s1(I) = 1. Hence ||[X —s{(X)I|| = 0, for every 1 € N. This gives
X e (IBS (pt)) ) (P, Q). This shows the proof. O

5. Kannan contraction operator

Theorem 5.1. The function v(f) Z (pl

> s

assuming the setup (f1), (£2), and (f3) is conﬁrmed.

Tl n
) ] establishes the Fatou property, for all f € =(p,r,t),

Proof. Suppose {g®} C (Z(p,r,t)), with limp_,,v(g® —g) = 0. As the space (Z(p,T,t))
closed space, then g € (Z(p, ,1)),,. Hence, for all f € (Z(p, 1, 1)),,, we have

)|
)|

L Is a pre-quasi

ST

00 1
v(f—g) = <p1 D (fz—g2)r2

/AN
M@

supmfv(f g)
j b>j

3
N
SN—
-
£
|
=

1
<P1 Z(fz - QE)TZ

z=0

El
+
1
M2
/N
3
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ty

2t

Z(p, 7, 1), supposing the setup (1), (f2), and (f3) wzth ty > 1, forall 1 € N is satisfied.

Theorem 5.2. The function v(f) = Z <p1 does not establish the Fatou property, for all f €

Proof. Suppose {g®} C (Z(p, 7, t)), with limp 0, v(g® — g) = 0. As the space (Z(p,T,t))
closed space, then g € (Z(p, 1, t)),,. Hence, for all f € (=Z(p, 1, t)),,, we obtains

(o) <o | plgpeosen]) £ (0]

(o 0)
v(f—g)=)_
1=0

<2t

—1 : b
up nf v(f— .

is a pre-quasi
t

Therefore, v does not establish the Fatou property. O

v

1

Z(fzfgz)

z=0

1

D (fz—gd)r

z=0

Z *92)

z=

Now, we investigate the enough setup on (=(p,1,t)),, under definite pre-quasi norm so that there is
an unique fixed point of Kannan contraction operator.

Theorem 5.3. Suppose the setup (f1), (£2), and (£3) is established, and W : (Z(p, 7, t)),, — (Z(p, 1, t)),, is Kannan
1

1
>_f
z=0

Tl n
v-contraction operator, where v(f) = |:Z (pl ) ] , for every f € Z(p,r,t), then W has a unique
17

fixed point.
Proof. Suppose f € Z(p, 1,t), then WP € Z(p, 1,t). Since W is a Kannan v-contraction operator, we have
V(WP — WPF) <A (0(WPHH — WPF) +u(WPF— WP 1))

=

A

+1p
V(WPHE —WPF) <

2 P
V(WP —WP1f) < <1i}\) V(WP —WP2f) < ... < (L\) v(WF —1).

Therefore, for every p, q € N with q > p, we have

1 1
V(WP —-WIf) < A (v(WPf—wpflf) +v(qu—wq*1f)) <A ((1}\)\>p + (&\)q ) v(WTF —1).

Hence, {WPf} is a Cauchy sequence in (=Z(p,1,t)),,. Since the space (=Z(p,1,t)),, is pre-quasi Banach space.
Then, there exists g € (Z(p,1,1)),, so that lim,_,,o WPf = g. To explain that Wg = g, as v has the Fatou
property, we have

P
v(Wg—g) < supmfv(Wpr WPf) < sup inf <)\> v(Wf—1) =0,
p=i i p=2i 1—A

hence Wg = g. So, g is a fixed point of W. To investigate that the fixed point is unique. Assume we have
two distinct fixed points b, g € (Z(p, 1,t)),, of W. Then, one obtains

v(b—g) <V(Wb—-Wg) <A (v(Wb—b)+v(Wg—g)) =0.
Hence, b = g. O
Corollary 5.4. Assume the setup (f1), (£2), and (£3) is confirmed, and W : (Z(p, r,t)),, = (Z(p,1,1)),, is Kannan
1

1
>tz
z=0

fixed point b with v(WPf—b) <A (ﬁ)p*1 v(WF —f).

0o tln
v-contraction operator, where v(f) = [Z <p1 ) ] , for all £ € Z(p,1,t), hence W has an unique
1=
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Proof. According to Theorem 5.3, there is an unique fixed point b of W. Therefore, one obtains

A P!
A) VWf—f). O

V(WPf—b) = 0(WPf—Wb) < A (0(WPf—WPHf) + 1(Wb — b)) = A (1 =

Theorem 5.5. Suppose the setup (f1), (£2), and (£3) is established with t; > 1, for every 1 € N, and W :
(Z(p,1,t), — (Z(p,1,t)),, where v(f) = Z (m

2t
1=0

(Z(p,1,t)),, is the only fixed point of W, if the next setup are verified:

t
> , for all £ € Z(p,r,t). The vector g €

(a) W is Kannan v-contraction operator;
(b) W is v-sequentially continuous at g € (Z(p,7,1)),,;
(c) thereisv e (Z(p,1,t)), so that the sequence of iterates (WP v} has a subsequence {WPiv} converges to g.

Proof. Suppose the enough setup are established. Let g be not a fixed point of W, then Wg # g. In view
of the setup (b) and (c), one obtains

lim v(WPif—g)=0and lim v(WPiHlf—Wg)=0.

Pi—© Pi—00
Since the operator W is Kannan v-contraction, we have
0 <v(Wg—g) =v ((Wg—WPH) 4 (WPif — g) + (WPiTLf — WPif))

)\ pl_l
< 222, (Wpi+1v ~Wg) + 222y, (WPiy — g) 4+ 21 1A <1 )\) v(WF —f).

Let p; — oo, we get a contradiction. Hence, g is a fixed point of W. To show that the fixed point g is one,
assume we have two distinct fixed points g,b € (Z(p, 1,1)),, of W. Hence, one gets

v(g—b) <V(Wg—WDb) <A (v(Wg—g)+v(Wb—b)) =0.

Therefore, g = b. 0
Example 5.6. If T : (= ((t—}—5)€o:0’(ti%)t 0/(2tt++23)t 0)) - (E((t}—S)t Or(tﬁ)io 0'(2tt:23)t o))vf where
2t+3
> ZX O:iipx o
vp) = | Y (H—S with p € 2 ((HR)y, (357)7) and
t=0

since for all p, q € (= ((tlﬁ)ﬁf’:o, (tﬁ)t "y (2ttj23)§°:()))v with v(p),v(q) € [0,1), we have

P q 1 3p 3q,y 1
o(Tp=Ta) =vlf — ) < 5 (v +0(3h) = 5= (v(Tp =) +0(Ta — ).
Forallp,q € (2 ((tlﬁ)?:m(tﬁ)t 0,(2ttj23)§°:0))v with v(p),v(q) € [1,00), one has
1 4 4
o(Tp=Ta) =v( — ) < 5= (v(F) +v(F)) = 5= (v(Tp —p) +(Ta — ).
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For every p,q € (Z (=)0 (EE2)% ), (BEE3 ) 0))1) with v(p) € [0,1) and v(q) € [1,00), we obtain

t+1 t+2
Py L Bp 1 a1 Sp o dg
v(Tp—Ta) =v(f —9) € g+ g5 < 5= (o) +u(3))
1
= 55 (VTP —p) +v(Ta—q)).

Therefore, the operator T is Kannan v-contraction. Since v confirms the Fatou property. In view of

Theorem 5.3, the operator T has a unique fixed point 8 € (Z ((135)5%, (£5)2°, (2ttj23 )20)), -

Suppose {p'} C (Z ((gs)i20 (FF)520, (B2 0)), with limg 00 0(p(®) —p®) = 0, where p'?) €
(= ((t%)?’zo, (:ﬁ)t o ( t+3 ) ))U with v(p(©®)) = 1. Since the pre-quasi norm v is continuous, we have

(a) (0) (0)
lim v(Tp'® —Tp©®) = lim v(p —p—) —v<p20 ) > 0.

a—o00 a—o00 4 5

Hence, T is not v-sequentially continuous at p'?). Therefore, the operator T is not continuous at p(?)

2t+3
‘Z Ox+2 Px

t+2
= ((t+2 2t+3
t15 ) ,forevery p € Z ((til)t o ( tfz )io:O)'
t=0

Since for all p,q € (= ((t%rg,)io o (t”)f’ o (2“23)t 0))v with v(p),v(q) € [0,1), we have

_ P 9 2 3p 3.y _ 2
O(Tp—Ta) =v(} — 1) < = (v +u(5h) = = (v(Tp—p) +v(Ta—q)).
Letp,q € (= ((t%rs)io:o,(tﬁ)t (),(2,:‘:23)t O)) with v(p),v(q) € [1, 00), we have
1 4 4 1
o(Tp—Tq) =v(f - 3) < (V) +v(FD) = (TP —p) +v(Ta— ).
t+2100

For every p,q € (= ((2 =)0 (£5)2, (2“33’)t 0))v with v(p) € [0,1) and v(q) € [1,00), we obtain
a2
5°) V27
F vl elol),

&, v(p) €ll,00).
sequentially continuous at 8 € (= ((#5)2" o (E2)2 0 (2£3)% 1)) and {T"p} has a subsequence {T"ip}

P 2o < 2wy

47415 4

v(Tp—Tq) = v (v(Tp—p) +(Ta—q).

Therefore, the operator T is Kannan v-contraction and T"(p) = { Evidently, T is v-

t+1 t+2 t: 0)
converging to 6. According to Theorem 5.5, the element 8 € (Z ((£5)520 (£7)520, (352)5%)) , is the
only fixed point of T.

Example 5.7. Let T: 5 o (3T)52 Of(zttfzs)io:o))v — (2 ((ﬁ)?:w (i%)t Of(zttizg')?o:o))vf with
2t+3

© X+2 2
x=0 %+1Px
v(p)=)_ ( t+x5 ) forall p € Z ()3, (355)2) and

t=0
1 o L
4(el+p)/ POG( 0013)/
T(p) = %ell Po = %/
%ell Po € (%1 OO)

Since for all p, q € (E ((%)?:0, (Jt‘i%)t o (2,;‘:23’)t 0))U with po, qo € (—oo, %), we get

0(Tp=Ta) = (3P0 do, 1 — s, P2 — ) < <= (v +u(F) < = (v(Tp—p)+u(Tq—a)).
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Forallp,q € (2 ((tlﬁ)?:m (tﬁ)t ey (Zttjf)iozo))v with po, qo € (3,00), hence for all € > 0, we have

v(Tp—Tq) =0 < ¢(v(Tp—p) +v(Ta—q)).

Forallp,q € (2 ((tlﬁ)g":o, (tﬁ)t ey (2ttj23)$020))v with pg € (—00, 1) and qq € (3, 00), one has

P 1 3p, 1 1
v(Tp—Ta) =v(p) < =v() = —=v(Tp—p) < ﬁ(vﬁp—p) +v(Tq—q)).

Therefore, the operator T is Kannan v-contraction. Obviously, T is v-sequentially continuous at 161 €

(E((Es)i20 ()20 (35)%)), and there is p €  (Z((gs)i2e (5120 (355)%20)), with
Po € (—oo, 3) such that the sequence of iterates {T"p} = {Zzzl 4%61 + 4—4)} includes a subsequence

(Trp} = {ZL} . 41a e+ Wp} converging to §e1. In view of Theorem 5.5, the operator T has one fixed

sere (2 (oo e B

point

t+5 t+1 t+2

Note that T is not continuous at 1e; € (= ((tlﬁ)f’zo, (tﬁ)t or (2,[?23),E O)) Let

2t43

‘ZX O:i%‘px t+2
v(p) = Z T t15 ,

t=0

forallp € = ((tﬁ)t o (zttj;’)iozo). Since for all p,q € (= ((tlﬁ)ig‘;o, (%%)?‘;0, (%)2":0))1) with po, qo €
1

(=00, 3), we have

V(TP =Ta) = (7P do, 1 = s, P2 — .)€ = (v vl )
1
< 427(v(Tp—p)+v(Tq—q))-

Forallp,q € (= ((t+5)t or (”2)2<> or (2“23)t 0))v with po, qo € (3,00), hence for all € > 0, one has

V(Tp—Ta) =0 < e(v(Tp—p) +v(Ta—q)).

Forallp,q € (= ((tlﬁ)io:w (,tcﬁ)t or (zttjf)iozo))v with pg € (—o0, 1) and qo € (3, 00), we have

<Py = Ly <

Therefore, the operator T is Kannan v-contraction. Since v confirms the Fatou property, according to

Theorem 5.3, the operator T has an unique fixed point fe; € (= ((t%rg))io:o, (Eﬁ)t o (zttjf’ )% O))

v(Tp—Ta) = v

R

(v(Tp—p) +0(Ta—q)).

We offer the existence of a fixed point of Kannan contraction operator in the pre-quasi Banach operator
ideal generated by (=(p,1,t)),, and s-numbers.

Tl n
Theorem 5.8. The pre-quasi norm Y(W) = Z (pl ) does not establish the Fatou property,

§ rzsz
1=0

(? Q), when the setup (1), (£2), and (£3) is satisfied.

for every W e Bl . 1))
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Proof. Let the conditions be confirmed and {Wp},en C ]B

As the space Bi- =(prt)),

IBS (P 1)) (fP Q) onehas

(? Q) with lim, o Y(Wp, — W) = 0.
(CP Q). Then, for all V €

Z(p,rt))

is a pre-quasi closed ideal, hence, We Bz (p0)

00 1 t
YV-w)= | (m Zrzsz(V—vv)D ]

| ][5 (o

1
Z T‘ZSZ(V— Wi)

=

-

N

i(p Zrzs§ (V—W;)
z=0

1=0

<2 sup inf |:Z (m

P izp

1=0 z=0
Hence, ¥ does not verify the Fatou property. O
Theorem 5.9. Assume the setup (1), (£2), and (£3) is established and G : IBS (port) (TP Q) — IBS (port) (iP Q),
00 ] n
where Y(W) = |:Z <p1 ZrZSZ(W)D , for every W € ]BS (prt)) ((P Q). Then A € ]BS (prt) (’P Q)
1=0

is the unique fixed point of G, if the next setup fulfilled.

(a) G is Kannan Y-contraction mapping.

(b) G is W-sequentially continuous at a point A € Bi=

(c) Thereis B € IBS
to A.

Proof. Let the enough setup be satisfied. Assume A is not a fixed point of G, then GA # A. In view of the
conditions (b) and (c), one has

lim Y(GPIB—A)=0and lim Y¥(GP**'B—GA)=0.

Pi—00 Pi—00

prt (:P Q)

(P t) (fP Q) such that the sequence of iterates {GP B} has a subsequence {GPB} converging

As G is Kannan Y-contraction operator, we get

0<¥Y(GA—A)=VY((GA—GP*!'B)+ (GP'B—A) + (GP*"'B — GPB))
}\ ptfl
< 20Y (GPHIB — GA) + 27 W (GPiB — A) + 27 A (1_7\) Y(GB —B).

For p; — oo, one obtains a contradiction. Hence, A is a fixed point of G. To prove that the fixed point A

is unique, assume we have two distinct fixed points A, D € Bz (iP Q) of G. Therefore, one gets

Y(A —D) < W(GA — GD) < ?\<‘P(GA —A)+¥(GD— D)> —0.
So, A =D. O

E((%)t o (t+1)§zoo (2t+3 oo:

':((L)oo (t;rl)oo (2t+3 oo
=W\t t=0/ 12 /t=0"\ T2 t+2

2t43

Example 5.10. Suppose M : S< )t0)>v(?,Q) — S( . 0)>U(T,Q),

M2

where Y(H) =

— 1 2t+43
— (m)t:o (72Jt 07 o t+2 bl

t+4

‘Z 0 X—!—% t+2
(w) , for each H € S( )) (P,Q) and
120

t

0
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1 t+1 2t+3
Sl 2o (F2)20 (555 )220

Since for all Hi, Hy € S< )) with W(H;),¥(H,) € [0,1), we have

W(MHy — MHy) =¥(T L -T2 < y%(W(SZ“) F9) = \/1% (WIMH, — Hy) + ¥(MH, — Hy)).

For all Hy, Hy € S( ) with W(Hq),¥(H;) € [1, 00), one has
)0

=) 1 t+1 2t+3
gz (£2) 20 (555

W(MH,; —MHg) = w( -T2 < y%(w@“) RELE \/% (WIMH, — Hy) + ¥(MH, — Hy)).

= 1 t+1 2t+3
=((F)i20 (£2)20.(355)%20)

For all Hy, H, € S< ) with W(H;) € [0,1) and ¥(Hy) € [1,00), one gets

W(MH; — MH,) =¥(

Hi  Hp V2 . 5Hy V2 . 6Hp V2
B < N + g )<W(W(MHl—Hl)W(MHz—Hz)).

& Y(H) el
Therefore, the operator M is Kannan W-contraction and M"(H) = ?1
7, Y(H) € [1,00).

and {M"H} has a

Evidently,

M is Y-sequentially continuous at the zero operator © € S
=((eh) o B R B )

subsequence {M"iH} converging to ©. According to Theorem 5.9, the zero operator

@ES(

[ =] 1 t+1 2t+3
(ko 0 (59)2)
v

is the only fixed point of M.
Assume {H(®)} C S<

= t+1

00 00 2t+3 Yoo

2((F)o (52520 (357)%)

) is such that limg_,c Y(H(®) —H©)) = 0, where H(®) ¢

S with W(H(?)) = 1. Since the pre-quasi norm V¥ is continuous, we have
(o izte,)

HO  H(O) H(®
, (@) _ MO — 15 _ _
Tim W(MH(®) — MH(©) algr;o‘y( - . ) w( - )>0.

Hence, M is not W-sequentially continuous at H(®), Therefore, the operator M is not continuous at H(®),

6. Existence of solutions of non-linear difference equations

In this section, we explore a solution in (=(p,,t)),, to summable equations say (6.1), defined in [1,

1 t %
Zrzfz ) , for all
z=0

16, 38], where the setup (fl1), (f2), and (f3) is established and v(f) = Z <p1
1=0

feZ(p,r1t).
Examine the summable equations:

0]

f, = Yz + Z A(Z, m)g(m/ fm)/ (61)

m=0
and assume W : (Z(p, 1, 1)), = (Z(p, 1, 1)),, is constructed by

6.2)

Wif2)oen = (vz+ Y Alzm)g(m, fm)) .
m=0
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Theorem 6.1. The summable equation (6.1) holds a unique solution in (Z(p,7,t)),, when A : N> - R, g :
N x € — €, y:N — C, assume there is A € C so that sup, |7\| v e [0, undfor all 1 € N, we have

1
( D Alzm)lg(m, ) — g(m,nm)]> T2
z=0 \meN
1 00
<Al [Z (yz—fz+ > A(z,m)g(m,fm)> Tz ] :

z=0 m=0
Proof. Let the conditions be established. Assume the mapping W : (Z(p, 1, 1)), — (E(p,7,1)),, is defined
by equation (6.2). Hence

_l’_

1 0
Z <yz_nz+ Z A(Z,m)g(m,nm)> Tz
z=0 m=0

0 1
U(Wf*Wﬂ) = Z (pl Z(sz*Wle)Tz

| 1=0

v
-
o
| I |
ST

|—

0 1
= Z (pl Z <Z A(z,m)[g(m,fm) —Q(m/nm)]> Tz
z=0

_1:0 meN

I E
< sup |)\|Ll { ( ( —f, + Z Az, m)g(m, fm)> T, ) ]
1=0

m=0
00 t %
+sup I?\I n Z ( ) ]

—supI)\Ih (V(WFf—f)+v(Wn—n)). O

)|

yz Nz + Z Az, m )g(m,nm)> T2
m=0

In view of Theorem 5.3, we obtain a unique solution of equation (6.1) in (=Z(p, 1, t)),,

Example 6.2. Suppose the sequence space (= ((%)g@ O,(t+2)2o 0,(2t+23)t 0)) ,  where v(f)

2
(Zx 0 ;il

2t+3

>

t=0

t+1/t=0" L t+1 t+2

t+2
,for all f e (Z((+25)92,, (H2)>  (25£3)° )) | Assume the non-linear
t+1 t=0 t=0//y

difference equations:

00 P
o= —(3z+6) -1 z+mz—4, 6.3

with p,q,f_»,f_1 > 0 and suppose

W (E ((1)$°_0,(t+2)i°_0,(2”3)$°_0)> S (z ((1);”_0,(t+2)$°_o,(2t+3)$°_0)> ,

t+1 t+1 t+2 t+1 t+1 t+2
is defined by
(B216) | % + 22 >0
W(E)E g = (e7 @04 3 (mpp=tm =2 )"
(f2)z=0 = (e +m:0( T L +m24+1/z=0
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Evidently, there is A € C such that sup, AJZH € [0, 1) and for all 1 € N, one has

L = 2 fE_z m m z+2
Z<Z(_U fjﬁl+m2+1((_1) -1 )> z+1

z=0 \m=0

L P
Z —(3z+6) i z+m fsz z+2
fl  +m?+1)z+1

<A

P
—(3z+6) i z+m fz—2 z+42 )
fl  +m2+1) z+1
According to Theorem 6.1, the non-linear dlfference equations (6.3) contain a unique solution in

’:‘((L)oo (t+2) 2t—|—3
= t+1/t=0’ ‘' t4+1/t= 0’ t+2 1)

+IND

7. Conclusion

In this article, we offer some topological and geometric properties of (Z(p, r,t)),,, of the multiplication

maps acting on (Z(p,r,t)),, of the class B, ..))

the existence of a fixed point of Kannan contractlon map acting on these spaces. Some several numerical
experiments are introduced to light our results. Furthermore, some successful applications to the existence
of solutions of non-linear difference equations are discussed. This article has a number of advantages for
researchers such as studying the fixed points of any contraction maps on this pre-quasi normed sequence
space which is a generalization of the quasi normed sequence spaces, a new general space of solutions
for many difference equations, the spectrum of any bounded linear operators between any two Banach
spaces with s-numbers in this sequence space and note that the closed operator ideals are certain to play
an important function in the principle of Banach lattices.

P
and of the class (]sz(p ) ) . We investigate
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