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Abstract
This paper presents the development and analysis of a proposed scheme to solve Initial Value Problems (IVPs). The

proposed scheme is devised by means of the interpolating function. The properties of the proposed scheme such as the local
truncation error, order of accuracy, stability, consistency, and convergence are analyzed. Furthermore, the performance of the
proposed scheme is tested on five numerical examples. Moreover, the comparative study of the results generated via the
proposed scheme and the exact solution is presented. Hence, the proposed scheme has fifth order convergence and is a good
tool for approximating the solution of IVPs.
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1. Introduction

It is a known fact that a huge number of differential equations that model real life problem can not
be solved analytically, one way is to use numerical approaches to obtain an approximate solution of the
differential equations. In the recent years, several numerical methods have been developed to solve IVPs
in Ordinary Differential Equations (ODEs) of the form

dy

dx
= f(x,y), y(a) = y0, x ∈ [a,b],y ∈ (−∞,∞) (1.1)

such as the explicit methods, implicit methods and so on. In [4], the authors developed a new numerical
method for the solution of IVPs in ODEs. Fadugba and Qureshi [9] discussed extensively on the properties
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of a one-step numerical method of order two for the solution of continuous dynamical systems. Fadugba
and Idowu [5] applied a new numerical method of third order accuracy for the solution of IVPs in ODEs.
They also analysed the properties of the method. Islam [10] applied fourth-order Runge-Kutta method
to solve some IVPs in ODEs. For more details on the numerical solutions of IVPs in ODEs, see [1–3, 6–
8, 11, 13, 15], just to mention a few. In this paper, a proposed scheme is developed and analyzed for the
solution of IVPs in ODEs. The error analysis of the scheme in terms of maximum absolute relative error,
absolute relative error and `2-error norm is investigated. The rest of the paper is outlined as follows. In
Section 2, the derivation of the proposed scheme is presented. The properties of the proposed scheme
were analyzed in Section 3. Section 4 presents numerical examples and discussion of results. Section 5
concludes the paper.

2. Derivation of the Proposed Scheme

Consider an interpolating function of the form

F(x) =

5∑
j=0

βjx
j +β6e

c, (2.1)

where β0,β2,β3,β4,β5,β6 are undetermined constants and c is a constant. The integration interval of [a,
b] is defined as a = x0 6 x 6 xn = b. The step length is defined as

h =
b− a

N
. (2.2)

The mesh point is defined as
xn = nh, n = 1(1)N (2.3)

or
xn+1 = (n+ 1)h, n = 0(1)N− 1 (2.4)

with x0 = 0. Expanding (2.1) at the points xn and xn+1 yields

F(xn) =

5∑
j=0

βjx
j
n +β6e

c (2.5)

and

F(xn+1) =

5∑
j=0

βjx
j
n+1 +β6e

c, (2.6)

respectively. Differentiating (2.5) five times yields

fn = β1 + 2xnβ2 + 3x2
nβ3 + 4x3

nβ4 + 5x4
nβ5,

f
(1)
n = 2β2 + 6xnβ3 + 12x2

nβ4 + 20x3
nβ5,

f
(2)
n = 6β3 + 24xnβ4 + 60x2

nβ5,

f
(3)
n = 24β4 + 120xnβ5,

f
(4)
n = 120β5.

(2.7)

Equation (2.7) can be written in the form AX = b, where

A =


1 2xn 3x2

n 4x3
n 5x4

n

0 2 6xn 12x2
n 20x3

n

0 0 6 24xn 60x2
n

0 0 0 24 120xn
0 0 0 0 120

 , X =


β1
β2
β3
β4
β5

 , b =


fn

f
(1)
n

f
(2)
n

f
(3)
n

f
(4)
n

 .
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Thus, 
1 2xn 3x2

n 4x3
n 5x4

n

0 2 6xn 12x2
n 20x3

n

0 0 6 24xn 60x2
n

0 0 0 24 120xn
0 0 0 0 120



β1
β2
β3
β4
β5

 =


fn

f
(1)
n

f
(2)
n

f
(3)
n

f
(4)
n

 . (2.8)

Solving (2.8) by means of the Gauss Jordan method yields

β1 =
1
24

(
24fn − 24xnf

(1)
n + 12x2

nf
(2)
n − 4x3

nf
(3)
n + x4

nf
(4)
n

)
,

β2 =
1
12

(
6f(1)
n − 6xnf

(2)
n + 3x2

nf
(3)
n − x3

nf
(4)
n

)
,

β3 =
1
12

(
2f(2)
n − 2xnf

(3)
n + x2

nf
(4)
n

)
,

β4 =
1
24

(
f
(3)
n − xnf

(4)
n

)
,

β5 =
1

120
f
(4)
n .

(2.9)

Subtracting (2.5) from (2.6), one obtains

F(xn+1) − F(xn) =

5∑
j=1

βj(x
j
n+1 − x

j
n). (2.10)

Therefore, (2.10) yields

F(xn+1) − F(xn) = β1(xn+1 − xn) +β2(x
2
n+1 − x

2
n) +β3(x

3
n+1 − x

3
n)

+β4(x
4
n+1 − x

4
n) +β5(x

5
n+1 − x

5
n).

(2.11)

Using (2.3) and (2.4), one obtains the following

xn+1 − xn = h,

x2
n+1 − x

2
n = (2n+ 1)h2,

x3
n+1 − x

3
n = (3n2 + 3n+ 1)h3,

x4
n+1 − x

4
n = (4n3 + 6n2 + 4n+ 1)h4,

x5
n+1 − x

5
n = (5n4 + 10n3 + 10n2 + 5n+ 1)h5.

(2.12)

Substituting (2.3) into (2.9), one gets

β1 =
1

24

(
24fn − 24nhf(1)

n + 12n2h2f
(2)
n − 4n3h3f

(3)
n +n4h4f

(4)
n

)
,

β2 =
1
12

(
6f(1)
n − 6nhf(2)

n + 3n2h2f
(3)
n −n3h3f

(4)
n

)
,

β3 =
1

12

(
2f(2)
n − 2nhf(3)

n +n2h2f
(4)
n

)
,

β4 =
1

24

(
f
(3)
n −nhf

(4)
n

)
,

β5 =
1

120
f
(4)
n .

(2.13)
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Since one-step numerical method shall be derived, then let

yn+1 − yn ≡ F(xn+1) − F(xn). (2.14)

Substituting (2.11), (2.12), and (2.13) into (2.14), yields

yn+1 − yn =
h

24

(
24fn − 24nhf(1)

n + 12n2h2f
(2)
n − 4n3h3f

(3)
n +n4h4f

(4)
n

)
,

+
h2

12

(
6f(1)
n − 6nhf(2)

n + 3n2h2f
(3)
n −n3h3f

(4)
n

)
(2n+ 1),

+
h3

12

(
2f(2)
n − 2nhf(3)

n +n2h2f
(4)
n

)
(3n2 + 3n+ 1),

+
h4

24

(
f
(3)
n −nhf

(4)
n

)
(4n3 + 6n2 + 4n+ 1),

+
h5

120
f
(4)
n (5n4 + 10n3 + 10n2 + 5n+ 1).

Setting

S1 =
1
2

(
24fn − 24nhf(1)

n + 12n2h2f
(2)
n − 4n3h3f

(3)
n +n4h4f

(4)
n

)
,

S2 = h
(

6f(1)
n − 6nhf(2)

n + 3n2h2f
(3)
n −n3h3f

(4)
n

)
(2n+ 1),

S3 = h2
(

2f(2)
n − 2nhf(3)

n +n2h2f
(4)
n

)
(3n2 + 3n+ 1),

S4 =
h3

2

(
f
(3)
n −nhf

(4)
n

)
(4n3 + 6n2 + 4n+ 1),

S5 =
h4

10
f
(4)
n (5n4 + 10n3 + 10n2 + 5n+ 1),

(2.15)

therefore,

yn+1 = yn +
h

12
(S1 + S2 + S3 + S4 + S5). (2.16)

Equation (2.16) is the newly proposed scheme.

3. Analysis of the properties of the proposed scheme

3.1. Order of accuracy of the proposed scheme
Consider the Taylor’s series expansion of the form

y(xn + h) = y(xn) + hf(xn,y(xn)) +
h2

2
f(1)(xn,y(xn))

+
h3

3!
f(2)(xn,y(xn)) +

h4

4!
f(3)(xn,y(xn)) +

h5

5!
f(4)(xn,y(xn)) +O(h6).

(3.1)

The local truncation error for the proposed scheme is given by

τn+1 = y(xn + h) − yn+1. (3.2)

Substituting (2.16) and (3.1) into (3.2) yields

τn+1 = y(xn) + hf(xn,y(xn)) +
h2

2
f(1)(xn,y(xn)) +

h3

3!
f(2)(xn,y(xn)) +

h4

4!
f(3)(xn,y(xn))

+
h5

5!
f(4)(xn,y(xn)) +O(h6) − yn −

h

12
(S1 + S2 + S3 + S4 + S5)

(3.3)
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with S1,S2,S3,S4,S5 given by (2.15). Solving further, (3.3) becomes

τn+1 = y(xn) + hf(xn,y(xn)) +
h2

2
f(1)(xn,y(xn))

+
h3

3!
f(2)(xn,y(xn)) +

h4

4!
f(3)(xn,y(xn)) +

h5

5!
f(4)(xn,y(xn)) +O(h6)

−

[
yn +

h

5!

(
120fn + 60hf(1)

n + 20h2f
(2)
n + 5h3f

(3)
n + h4f

(4)
n

)]
.

By means of the localizing assumptions, the terms up to h5 have been cancelled, thus

τn+1 = O(h6). (3.4)

Equation (3.4) shows that the order of accuracy of the proposed scheme is 5.

3.2. Consistency property of the proposed scheme
According to [12], a numerical method is said to be consistent if it has at least order p = 1. It is clearly

seen from (3.4) that the proposed scheme is consistent since
a. it has an order of accuracy of p = 5;
b. limh→0

τn+1
h = limh→0

[
(h7)
h

]
= 0;

c. the increment function φ(xn,yn; 0) = fn = f(xn,yn).

3.3. Stability property of the proposed scheme
A method is said to be numerically stable if it is capable of damping out small fluctuation carried out

in input data [14]. To discuss the stability of the proposed scheme, consider the IVP of the form

y ′ = ry, y(0) = 1,

whose exact solution is given by
y(x) = exp(rx), r < 0, (3.5)

where r is a complex constant. Expanding (3.5) at the point x = xn+1 and using the fact that h =
xn+1 − xn, one obtains

y(xn+1) = exp(rxn+1) = exp(rxn). exp(rh) = y(xn) exp(rh). (3.6)

Using the proposed scheme (2.16), the numerical approximation is obtained as

yn+1 = yn

[
1 +

h

120
(
120r+ 60r2h+ 20r3h2 + 5r4h3 + r5h4)] . (3.7)

Setting

ζ =

[
1 +

h

120
(
120r+ 60r2h+ 20r3h2 + 5r4h3 + r5h4)] , (3.8)

equation (3.7) becomes
yn+1 = ζyn. (3.9)

Comparing (3.6) and (3.9), it is clearly seen that (3.8) is the sixth-term of the series expansion of exp(rh).
Hence, the stability of the proposed scheme requires that

‖ζ‖ < 1. (3.10)

Also, setting z = rh in (3.8) and simplifying further, the region of stability of the proposed scheme satisfies

ζ =

[
1 +

1
120

(
120z+ 60z2 + 20z3 + 5z4 + z5)] . (3.11)

Equations (3.10) and (3.11) show that the proposed fifth order scheme is stable. The stability region of the
proposed scheme is plotted in the Figure 1.



Fadugba et al., J. Math. Computer Sci., 26 (2022), 210–221 215

Figure 1: Stability region for the proposed scheme (unshaded).

3.4. Convergence property of the proposed scheme

The convergence of the proposed scheme is given by the following result.

Theorem 3.1. Given any well-posed initial value problem, then the proposed scheme is convergent, since it satisfies
the following conditions:

a. consistency;
b. stability.

4. Numerical examples and discussion of results

This section presents some numerical experiments and discussion of results.

4.1. Numerical examples

Consider the following IVPs with their exact solutions.

Problem 4.1. dydx = y, y(0) = 1, 0 6 x 6 1, y(x) = exp(x).

Problem 4.2. dydx = 2y, y(0) = 2, 0 6 x 6 1, y(x) = 2 exp(2x).

Problem 4.3. dydx = 1 + x− y, y(0) = 0, 0 6 x 6 1, y(x) = x.

Problem 4.4. dydx = y2, y(0) = 1, 0 6 x 6 0.9, y(x) = 1
1−x .

Problem 4.5. dydx = −y, y(0) = 1, 0 6 x 6 1, y(x) = exp(−x).

The results generated via the proposed scheme against exact solution for Problems 1-5 were dis-
played in Figures 2, 4, 6, 8, and 10, respectively. The Absolute relative errors generated via the proposed
scheme are plotted in Figures 3, 5, 7, 9, and 11, respectively. By varying the step length h, the Max-
imum Absolute Relative Errors (MABRE) on [a,b] defined by MABRE= maxa6n6b |y(xn+1) − yn+1|,
Absolute Relative Errors (ABRE) at x = b defined by ABRE= |y(b) − yN|, and `2-error norm defined

by `2 =

√∑N−1
n=0 |y(xn+1 − yn+1)|2 for the Problems 4.1-4.5, were presented in Tables 1, 2, 3, 4, and 5,

respectively.
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Figure 2: The results generated via the proposed scheme against exact solution for problem 4.1.

Figure 3: Absolute relative error generated via the proposed scheme for Problem 4.1.

Figure 4: The results generated via the proposed scheme against exact solution for Problem 4.2.
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Figure 5: Absolute relative error generated via the proposed scheme for Problem 4.2.

Figure 6: The results generated via the proposed scheme against exact solution for Problem 4.3.

Figure 7: Absolute relative error generated via the proposed scheme for Problem 4.3.
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Figure 8: The results generated via the proposed scheme against exact solution for Problem 4.4.

Figure 9: Absolute relative error generated via the proposed scheme for Problem 4.4.

Figure 10: The results generated via the proposed scheme against exact solution for Problem 4.5.
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Figure 11: Absolute relative error generated via the proposed scheme for Problem 4.5.

Table 1: Errors with varying step length values for problem 4.1.
h MABRE ABRE at x = 1 `2-error norm
0.1 3.47E-08 3.47E-08 5.69E-08
0.01 0 0 0
0.001 0 0 0
0.0001 0 0 0

Table 2: Errors with varying step length values for problem 4.2.
h MABRE ABRE at x = 1 `2-error norm
0.1 1.11E-05 1.11E-05 1.61E-05
0.01 1.00E-10 1.00E-10 5.48E-10
0.001 0 0 0
0.0001 0 0 0

Table 3: Errors with varying step length values for problem 4.3.
h MABRE ABRE at x = 1 `2-error norm
0.1 0 0 0
0.01 0 0 0
0.001 0 0 0
0.0001 0 0 0

Table 4: Errors with varying step length values for problem 4.4.
h MABRE ABRE at x = 1 `2-error norm
0.1 0.193049567 0.193049567 0.193304442
0.01 1.89E-05 1.89E-05 2.35E-05
0.001 2.00E-09 2.00E-09 7.62E-10
0.0001 0 0 0
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Table 5: Errors with varying step length values for problem 4.5.
h MABRE ABRE at x = 1 `2-error norm
0.1 5.60E-09 5.60E-09 1.42E-08
0.01 0 0 0
0.001 0 0 0
0.0001 0 0 0

4.2. Discussion of Results

It is observed from Figures 2, 4, 6, 8, and 10 that the results generated via the proposed scheme agrees
with that of the exact solution. It is also observed from Figures 3, 5, 7, 9, and 11, that the proposed scheme
follows the exact solution curve more elegantly as shown by the absolute relative error curves. Tables 1,
2, 3, 4, and 5 show values of the MABRE on [a,b], ABRE at x = b, and `2-error norm generated via
the proposed scheme for Problems 4.1-4.5, respectively by varying the step length h. It is observed from
Tables 1-5 that the proposed scheme performs excellently and yields smaller error for every decreasing
step length, h. It is also observed from Tables 1, 2, 3, 4, and 5 that the fifth order accuracy/convergence
of the proposed scheme has been confirmed when applied on Problems 4.1-4.5 with the step length h
having a first order decrease in its magnitude, that is h = 0.1, 0.01, 0.001, 0.0001. It is clearly seen in the
Tables 1, 2, 3, 4, and 5 for every one-order decrease in h, there are five-order decrease in the magnitude
of the computed errors (MABRE, ABRE, and `2-error norm).

5. Conclusion

In this paper, a proposed scheme has been developed and analyzed to solve IVPs. The properties of
the proposed scheme have been analyzed. Also the error analysis of the scheme in terms of MABRE,
ABRE, and `2-error norm have been examined. Five numerical examples were solved successfully by
using the proposed scheme. The results generated via the scheme compare favorably with the exact
solution. Furthermore, the error curves show that the proposed scheme follows the exact solution curves
more elegantly. Moreover, it is observed that the proposed scheme converges faster to the exact solution
for every one-order decrease in h. Also, it is observed that the proposed scheme is consistent, stable and
has accuracy of order five. Hence, it can be concluded that the proposed scheme is a good approach to be
included in the class of the explicit linear methods for the solution of IVPs in ODEs. Finally, the results
were carried out via MATLAB R2014a, Version: 8.3.0.552, 32 bit (win 32) in double precision.
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