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Abstract

This paper is concerned with the asymptotic properties of solutions of third-order nonlinear dynamic equations on time
scales. Some sufficient conditions for oscillation and nonoscillation of solutions as well as the boundedness of the solutions are
established.
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1. Introduction

The study of dynamic equations on time scales, which goes back to its founder Stefan Hilger [21],
is an area of mathematics that has recently received a lot of attention. It has been created in order to
unify the study of differential and difference equations. The general idea is to prove a result for dynamic
equations where the domain of the unknown function is a so-called time scale, which is an arbitrary
closed subset of the reals. The three most popular examples of calculus on time scales are differential
calculus when T = R, difference calculus when T = N, and quantum calculus (see Kac and Cheung [22]),
when T =qN0 = {qt : t ∈N0}, where q > 1. Since then several authors have expounded on various aspects
of this new theory, see the survey paper by Agarwal, Bohner, O’Regan, and Peterson [4] of time scales
calculus, and the references cited therein. For more details, we refer the reader to the books by Bohner
and Peterson [9, 10] which summarize and organize much of time scale calculus.

In recent years, there has been a great interest in studying the oscillation and nonoscillation of solu-
tions of dynamic equations on time scales. For example, in the papers [5, 7, 8, 11, 12] the authors studied
the oscillation of second order dynamic equations by employing the Riccati technique or the generalized
Riccati technique, the reduction of orders and algebraic inequalities. The main idea is to establish suffi-
cient conditions for oscillation depending on the coefficients of the equations and some external functions
to obtain the sharp results of oscillation of solutions. For more details, of oscillation of second order
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dynamic equations, we refer the reader to the book [27]. Dynamic equations (differential and difference
equations) play an important role in modelling virtually every physical, technical, biological, ecological,
and epidemiological process, from celestial motion, to bridge design, to interactions between neurons,
to interaction between species, to spread of diseases with a population, etc. On the other hand, but not
less important, PDEs are as well largely employed in modeling dynamical systems, and in this context
non-oscillatory effects are often enforced by external sources and/or by (linear/nonlinear) high diffusion
actions. These actions have smoothing and/or balancing influences in the model, so contrasting possible
instabilities. For instance, we refer the reader to the papers [17, 18, 25] for models from mathemati-
cal biology, formulated by PDEs, where non-oscillatory phenomena are enforced by different smoothing
actions.

The study of second-order dynamic equations has been extensively studied, whereas the study of
third-order differential equations and third-order dynamic equations on time scales has not been studied
extensively due to the challenges in determining the signs of the first and second derivatives of solutions
of general differential equations (see [2, 13, 24] and dynamic equations on time scales (see [1, 14–16, 19,
20, 26, 28–30]).” and the references cited therein. In the following, we will present some of the results
presented in some of these papers which explain the motivation of our paper. To the best of the authors’
knowledge, the first paper that has been published for third order dynamic equations on time scales is the
paper by Morelli and Peterson [26]. In this paper Morelli and Peterson studied the asymptotic behavior
of solutions of third order dynamic equations of the form

x∆∆∆(t) + p(t)x∆(σ(t)) + q(t)x(σ(t)) = 0, t ∈ [t0,∞)T,

when p(t) 6 0 and q(t) > 0, for t ∈ [t0,∞)T where [t0,∞)T is a time scale interval defined by [t0,∞)T :=
[t0,∞)∩T with t0 ∈ T. In particular, they proved that if x(t) satisfies the conditions

x(σ(t0)) > 0, x∆(σ(t0)) = 0, x∆∆(t0) > 0,

where σ(t) is the forward jump operator (will be defined later), then

x(t) > 0, x∆(t) < 0, x∆∆(t) > 0, t ∈ (−∞,σ(t0)) .

In 2005 Erbe, Peterson and Saker [14] applied the Riccati technique and established some sufficient con-
ditions which guarantee that each solution of the equation

(c(t)((a(t)x∆(t))∆))∆ + q(t)f(x(t)) = 0, t ∈ [t0,∞)T,

oscillates or satisfies limt→∞ x(t) = 0. They obtained their results when a(t), c(t), and q(t) are positive
real-valued rd-continuous functions and satisfy∫∞

t0

1
c(t)

=∞,
∫∞
t0

1
a(t)

=∞,

and f ∈ C(R, R) satisfies uf(u) > 0 and f(u)/u > K > 0, for u 6= 0.
In 2006 Erbe, Peterson and Saker [15] studied the oscillation of third-order nonlinear dynamic equation

of the form (
c(t)[(a(t)x∆(t))∆]γ

)∆
+ f(t, x(t)) = 0, t ∈ [t0,∞)T,

where a(t) > 0, c(t) > 0 are rd-continuous on T, γ > 1 is a quotient of odd integers, and there exists a
positive rd-continuous function q such that |f(t,u)| > q(t) |uγ| and uf(t,u) > 0, u 6= 0, and

∫∞
t0

(
1
c(t)

) 1
γ

=∞,
∫∞
t0

1
a(t)

=∞.
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In 2007, Erbe et al. [16] extended the oscillation criteria of Hille and Nehari for second-order differential
equations to the third-order linear dynamic equation

x∆∆∆(t) + q(t)x(t) = 0, t ∈ [t0,∞)T, (1.1)

where q(t) is a positive real-valued rd-continous function, and proved that if x(t) is a solution of (1.1) and∫∞
t0

q(s)∆s =∞,

then (1.1) has the property A, i.e., every solution x(t) of (1.1) is oscillatory or satisfies

lim
t→∞ x(t) = lim

t→∞ x∆(t) = lim
t→∞ x∆∆(t) = 0.

In 2009 Yu and Wang [30] studied the asymptotic behavior of solutions of third-order nonlinear dynamic
equations on time scales of the form(

1
a2(t)

(
[

1
a1(t)

(x∆(t))α1 ]∆
)α2

)∆
+ q(t)f(x(t)) = 0, t ∈ [t0,∞)T,

where f ∈ C(R, R) satisfies uf(u) > 0 and f(u)/u > K > 0, for u 6= 0, or f́(u) > C > 0, αi are quotients of
odd positive integers, i = 1, 2, and a1(t), a2(t) and q(t) are positive rd-continuous functions and satisfy∫∞

t0

q(t)∆t =∞,
∫∞
t0

(ai(t))
αi∆t =∞, for i = 1, 2.

Li et al. [23], Agarwal et al. [3], and Agarwal et al. [6] studied the oscillation behavior of the third-order
nonlinear delay dynamic equation

[a(t)(r(t)x∆(t))∆)γ]∆ + f(t, x(τ(t))) = 0, t ∈ [t0,∞)T,

where γ > 0 is a quotient of odd positive integers.
In 2012, Saker and Graef [28] extended the oscillation criteria of Hille and Nehari for second-order

differential equations to the third order nonlinear neutral functional dynamic equation(
p(t)[(r(t)x∆(t)

)∆
]γ)∆ + f(t,y(δ(t))) = 0, for t ∈ [t0,∞)T ,

where x(t) := y(t) + a(t)y(τ(t)), γ > 0 is the quotient of odd positive integers, and a,p, r, τ, and δ are
positive rd-continuous function defined on T. In 2012, Grace et al. [19] considered third-order neutral
delay dynamic equation

[r(t)(x(t) − a(t)x(τ(t)))∆∆]∆ + p(t)xγ(δ(t)) = 0, t ∈ [t0,∞)T,

and obtained several sufficient conditions for oscillation.
In 2014, Şenel and Utku [29] established some oscillation criteria for third-order neutral dynamic

equations with distributed deviating arguments of the form[
r(t)

(
[x(t) + p(t)x(τ(t))]∆∆

)γ]∆
+

∫d
c

f(t, x[φ(t, ξ)])∆ξ = 0,

where γ > 0 is the quotient of odd positive integers with r(t) and p(t) real-valued rd-continuous positive
functions.

Following this trend, in this paper, we will study the asymptotic behavior of solutions of nonlinear
dynamic equations of third order of the form[

a(t)x∆∆(t) + p(t)x(t)
]∆

+ p(t)x∆(t) + q(t)f(xσ(t)) = 0, for t ∈ [t0,∞)T . (1.2)

Throughout the paper, we suppose that the following assumptions hold:
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(i) a, p, q ∈ Crd ([t0,∞)T , (0,∞);
(ii) f ∈ Crd (R, R) with uf (u) > 0 for u 6= 0;

(iii) a∆ (t) , a(t), p(t), q(t) > 0 for t ∈ [t0,∞)T , and
∫∞
t0

1
a(s)∆s =∞.

By a solution of (1.2), we mean a function x(t) ∈ C3
rd([Tx,∞)), for Tx > t0, that satisfies (1.2) on [Tx,∞).

We only consider the solutions x(t) of (1.2) satisfying

sup{|x(t)| : t > Tx} > 0, for all Tx > t0.

A solution x of (1.2) is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is called nonoscillatory. Since we are interested in oscillatory behavior, we assume throughout
that the given time scale T is unbounded above. We note that the equation (1.2) in its general form covers
several different types of differential and difference equations depending on the choice of the time scale
T. For example, if T = R, then σ(t) = t, µ(t) = 0, x∆(t) = x

′
(t),
∫b
a f(t)∆t =

∫b
a f(t)dt, and (1.2) becomes

the third-order nonlinear differential equation

[
a(t)x

′′
(t) + p(t)x(t)

]′
+ p(t)x

′
(t) + q(t)f(x(t)) = 0.

If T = N, then σ(t) = t+ 1, µ(t) = 1, x∆(t) = ∆x(t) = x(t+ 1) − x(t),
∫b
a f(t)∆t =

∑b−1
t=a f(t), and (1.2)

becomes the third-order difference equation

∆
[
a(t)∆2x(t) + p(t)x(t)

]
+ p(t)∆x(t) + q(t)f(x(t+ 1)) = 0.

If T = hZ+, h > 0, then σ(t) = t+ h, µ(t) = h, x∆(t) = ∆hx(t) =
x(t+h)−x(t)

h , and (1.2) becomes the
third-order difference equation

∆h
[
a(t)∆2

hx(t) + p(t)x(t)
]
+ p(t)∆hx(t) + q(t)f(x(t+ h)) = 0.

The paper is organized as follows. In Section 2, we present some basic definitions concerning the calculus
on time scales. In Section 3, we prove some basic lemmas and the main results in this paper.

2. Preliminaries on time scales

In this section, we present some preliminaries on time scales. For more details we refer the reader to
the book [9, chaper 1]. A time scale T is an arbitrary nonempty closed subset of the real numbers R. On
T the forward and backward jump operators are defined by

σ (t) := inf {s ∈ T : s > t} , and ρ (t) := sup {s ∈ T : s < t} .

If σ (t) > t, we say that t is right scattered, if ρ (t) < t, we say that t is left scattered, if t < sup T and
σ (t) = t, we say that t is right-dense and t > inf T and ρ (t) = t, we say that t is left-dense.

The graininess function µ(t) for a time scale T is defined by µ (t) := σ (t)− t. A function f : [a,b]T → R

is said to be right-dense continuous if it is right continuous at each right-dense point and there exists a
finite left limit at all left-dense points. The set of all such rd-continuous functions is denoted by Crd(T).

A function p : T → R is called positively regressive (we write p ∈ <+) if it is rd-continuous function
and satisfies 1+ µ (t)p(t) > 0 for all t ∈ T. We define f∆(t) to be the number (provided it exists) with the
property that for given any ε > 0 there is a neighborhood U of t with∣∣[f(σ (t)) − f (s)] − f∆(t) [σ (t) − s]∣∣ 6 ε |σ (t) − s| , s ∈ U.
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In this case, we say that f∆(t) is the (delta) derivative of f at t and that f is (delta) differentiable at t ∈ Tk.
If f is (delta) differentiable at t ∈ Tk, then fσ(t) = f(t) + µ(t)f∆(t). We will make use of the following
product fg and the quotient f/g (where ggσ 6= 0, where gσ = g ◦σ) of two differentiable functions f and g

(fg)∆ = f∆g+ fσg∆ = fg∆ + f∆gσ,
(
f

g

)∆
=
f∆g− fg∆

ggσ
.

For s, t ∈ T, a function F : T→ R is called an antiderivative of f : T→ R provided F∆ = f(t) holds for all
t ∈ T. In this case we define the integral of f by∫t

s

f(τ)∆τ = F(t) − F(s).

For s, t ∈ T, and a differentiable function f, the Cauchy integral of f∆ is defined by∫t
s

f(τ)∆τ = f(t) − f(s),

and infinite integrals are defined as ∫∞
s

f(τ)∆τ = lim
t→∞

∫t
s

f(τ)∆τ.

An integration by parts formula reads∫t
s

f(τ)g∆(τ)∆τ = f(t)g(t) − f(s)g(s) −

∫t
s

f∆(τ)gσ(τ)∆τ.

For rd-continuous functions f, g : [a,b]→ R, the Hölder inequality is given by

∫b
a

|f(x)g(x)|∆x 6

{∫b
a

|f(x)|p∆x

} 1
p
{∫b
a

|g(x)|q∆x

} 1
q

,

where p > 1 and q = p/(p− 1).

3. Main results

In this section, we prove the main results. We start by proving some basic lemmas.

Lemma 3.1. Assume that g(t) is an rd-continuous function defined on [t0,∞)T . If∫∞
t0

g2(σ(s))∆s <∞, and
∫∞
t0

(g∆∆(s))2∆s <∞, (3.1)

then ∫∞
t0

(g∆(s))2∆s <∞, and
∫∞
t0

(g∆(σ(s)))2∆s <∞. (3.2)

Proof. By employing Hölder’s inequality, we see that(∫∞
t0

gσ(s)g∆∆(s)∆s

)2

6

(∫∞
t0

|gσ(s)|2∆s

)(∫∞
t0

∣∣g∆∆(s)∣∣2∆s) .

That is, ∣∣∣∣∫∞
t0

gσ(s)g∆∆(s)∆s

∣∣∣∣ <∞.



S. H. Saker, H. Hassan, J. Math. Computer Sci., 26 (2022), 255–268 260

Now, we prove that (3.2) holds. Assume for the sake of contradiction that (3.2) does not hold, i.e., we
assume that ∫t

t0

(
g∆(s)

)2
∆s =∞, and

∫∞
t0

(g∆(σ(s)))2∆s =∞.

Since ∫t
t0

(
g∆(s)

)2
∆s = g(t)g∆(t) − g(t0)g

∆(t0) −

∫t
t0

gσ(s)g∆∆(s)∆s,

this implies that
lim
t→∞g(t)g∆(t) =∞. (3.3)

As
(g2)∆ = (g+ gσ)g∆, and gσ(t) = g(t) + µ(t)g∆(t),

we have that

g2(t) = 2
∫t
t0

g(s)g∆(s)∆s+

∫t
t0

µ(s)(g∆(s))2∆s+ g2(t0) > 2
∫t
t0

g(s)g∆(s)∆s+ g2(t0).

Then by (3.3), we have that

lim
t→∞

∫t
t0

g2(s)∆s =∞, (3.4)

and hence

lim
t→∞

∫t
t0

(gσ(s))2∆s = lim
t→∞

{∫t
t0

[
(g(s))2 + (µ(s)g∆(s))2 + 2µ(s)g(s)g∆(s)

]
∆s

}
.

By combining (3.3) and (3.4), we obtain ∫∞
t0

(g∆(σ(s)))2∆s =∞,

which contradicts (3.1) and then (3.3) holds.

Lemma 3.2. Assume that (iii) holds. If x(t) is a solution of (1.2), then

F [x(t)] = a(t)x(t)x∆∆(t) + p(t)x2(t) −
1
2
a(t)(x∆(t))2, (3.5)

is nonincreasing on [t0,∞)T .

Proof. From (3.5) and by using (iii), we see that

F∆ [x(t)] = xσ(t)
[
a(t)x∆∆(t) + p(t)x(t)

]∆
+ x∆(t)

[
a(t)x∆∆(t) + p(t)x(t)

]
−

1
2
a(t)

[
x∆(t) + x∆(σ(t))

]
x∆∆(t) −

1
2
a∆(t)

(
x∆(σ(t))

)2
.

Since x∆(σ(t)) = x∆(t) + µ(t)x∆∆(t), we obtain that

F∆ [x(t)] = xσ(t)
[
a(t)x∆∆(t) + p(t)x(t)

]∆
+ a(t)x∆(t)x∆∆(t) + p(t)x(t)x∆(t)

− a(t)x∆(t)x∆∆(t) −
1
2
a(t)µ(t)

(
x∆∆(t)

)2
−

1
2
a∆(t)

(
x∆(σ(t))

)2
.

As x(σ(t)) = x(t) + µ(t)x∆(t), we have that

F∆ [x(t)] = xσ(t)
[
a(t)x∆∆(t) + p(t)x(t)

]∆
+ p(t)x(σ(t))x∆(t)
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− p(t)µ(t)(x∆(t))2 −
1
2
a(t)µ(t)

(
x∆∆(t)

)2
−

1
2
a∆(t)

(
x∆(σ(t))

)2
.

Where x(t) is a solution of (1.2), we obtain[
a(t)x∆∆(t) + p(t)x(t)

]∆
+ p(t)x∆(t) = −q(t)xσ(t)f(xσ(t)),

then

F∆ [x(t)] = −q(t)xσ(t)f(xσ(t)) − p(t)µ(t)(x∆(t))2 −
1
2
a(t)µ(t)

(
x∆∆(t)

)2
−

1
2
a∆(t)

(
x∆(σ(t))

)2
6 0,

which implies that F [x(t)] is nonincreasing on [t0,∞)T.

Lemma 3.3. Let y(t) be an rd-continuous and ∆ differentiable function on the interval [t0,∞]T such that y(t) > 0
for t > t0. If

lim
t→∞

(
y∆(t)

y(t)

)
= −∞, then lim

t→∞y(t) = 0.

Proof. Since y(t) > 0, for t > t0, and

lim
t→∞

(
y∆(t)

y(t)

)
= −∞,

we conclude that y∆(t) < 0 for t > t0, and hence lim
t→∞y(t) exists and eventually decreasing. Suppose that

lim
t→∞y(t) = λ > 0,

and that there exists a real number δ < 0 satisfiying

y∆(t)

y(t)
< δ, on [t1,∞)T for some t1 > t0.

Then
y∆(t) < δy(t), for t1 > t0.

This implies that y(t) < 0 for large t which is contradiction.

Definition 3.4. Let x(t) be a solution of (1.2) and define the set

S =
{
x(t) : lim

t→∞ F [x(t)] = F0 > −∞} . (3.6)

We say that x(t) belongs to the class SI if F [x(t)] > 0 on [T1,∞)T for some T1 > t0 and say that x(t) belongs
to the class SII if F [x(T)] < 0 on [T1,∞)T for some T1 > t0.

We assume that the following conditions hold.

(H1)
∫∞
t0
p(s)∆s =∞.

(H2) There exist constants M > 0 and N > 0 such that

M 6
f(u)

u
6 N, for all u 6= 0.

(H3) There exist constants q0 > 0 and q1 > 0 such that q0 6 q(t) 6 q1, for all t > t0.
(H4) There is a constant α such that a∆(t) 6 α, for all t > t0.
(H5) There are constants p0, δ such that p(t) > p0 > 0,

∣∣p∆(t)∣∣ 6 δ for all t > t0.
(H6) q∆(t) 6 0.
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Theorem 3.5. Assume that (H1) and (H2) hold. If x(t) ∈ SI, then∫∞
t0

[
(xσ(t))2 +

µ(s)

Mq0

(
p(s)

(
x∆(s)

)2
+

1
2
a(s)

(
x∆∆(s)

)2
)]
∆s <∞.

Proof. We consider the case when x(t) > 0 t > t1. The proof of the case when x(t) < 0 for t > t1 is similar
and will be omitted. By multiplying both sides of (1.2) by xσ(t), we see that[

a(t)x∆∆(t) + p(t)x(t)
]∆
xσ(t) + p(t)x∆(t)xσ(t) + q(t)xσ(t)f(xσ(t)) = 0. (3.7)

By integrating (3.7) from t1 to t we have that

a(t)x∆∆(t)x(t) + p(t)x2(t) − a(t1)x
∆∆(t1)x(t1) − p(t1)x

2(t1)

−

∫t
t1

[
a(s)x∆∆(s) + p(s)x(s)

]
x∆(s)∆s+

∫t
t1

p(s)x∆(s)xσ(s)∆s+

∫t
t1

q(s)xσ(s)f(xσ(s))∆s = 0.
(3.8)

Since xσ(t) = x(t) + µ(t)x∆(t), then from (3.5) and (3.8), we see that

F [x(t)] − F [x(t1)] +
1
2
a(t)(x∆(t))2 −

1
2
a(t1)(x

∆(t1))
2

−

∫t
t1

a(s)x∆∆(s)x∆(s)∆s−

∫t
t1

p(s)x(s)x∆(s)∆s+

∫t
t1

p(s)x(s)x∆(s)∆s

+

∫t
t1

µ(s)p(s)
(
x∆(s)

)2
∆s+

∫t
t1

q(s)xσ(s)f(xσ(s))∆s = 0.

(3.9)

So, we have that

1
2

∫t
t1

a∆(s)(x∆(σ(s)))2∆s

=
1
2
a(t)(x∆(t))2 −

1
2
a(t1)(x

∆(t1))
2 −

1
2

∫t
t1

a(s)x∆∆(s)(x∆(s) + x∆(σ(s)))∆s

=
1
2
a(t)(x∆(t))2 −

1
2
a(t1)(x

∆(t1))
2 −

∫t
t1

a(s)x∆∆(s)x∆(s)∆s−
1
2

∫t
t1

a(s)µ(s)
(
x∆∆(s)

)2
∆s.

(3.10)

Combining (3.9) and (3.10), we obtain

F [x(t)] − F [x(t1)] +
1
2

∫t
t1

a∆(s)(x∆(σ(s)))2∆s

+
1
2

∫t
t1

a(s)µ(s)
(
x∆∆(s)

)2
∆s+

∫t
t1

µ(s)p(s)
(
x∆(s)

)2
∆s+

∫t
t1

q(s)xσ(s)f(xσ(s))∆s = 0.

Since (H2) and (H3) imply that q(t)xσ(t)f(xσ(t)) >Mq0(x
σ(t))2, then∫t

t1

[
Mq0(x

σ(t))2 + µ(s)p(s)
(
x∆(s)

)2
+

1
2
a(s)µ(s)

(
x∆∆(s)

)2
]
∆s

6 F [x(t1)] − F [x(t)] −
1
2

∫t
t1

a∆(s)(x∆(σ(s)))2∆s 6 F [x(t1)] − F [x(t)] .

So in view of Lemma 3.2 there is a positive constant L1 such that

lim
t→∞

∫t
t1

[
(xσ(s))2 +

µ(s)p(s)
(
x∆(s)

)2

Mq0
+
a(s)µ(s)

(
x∆∆(s)

)2

2Mq0

]
∆s 6 L1 <∞. (3.11)
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Remark 3.6. When T = R, then µ (t) = 0 and Theorem 3.5 reduces to Theorem 3.1 (i) in [20] by putting
b(t) = 0.

Theorem 3.7. Assume that (iii) and (H1) hold. If x ∈ SII, then either x(t) is oscillatory or satisfies limt→∞ x(t) =
0.

Proof. Let x(t) be a nonoscillatory solution of (1.2), and without loss of generality we assume that x(t) > 0
for t > t1 for some t1 > t0. The proof of the case when x(t) < 0 for t > t1 is similar and will be omitted.
Now, we prove that limt→∞ x(t) = 0. Define for T > t2,

RT (t) =
x∆(t)

x(t)
+

∫t
T

p(s)x(s)

a(s)xσ(s)
∆s

Then

R∆T (t) =
x(t)x∆∆(t) −

(
x∆(t)

)2

x(t)xσ(t)
+
p(s)x(s)

a(s)xσ(s)
∆s

=
1

a(t)x(t)xσ(t)

(
a(t)x(t)x∆∆(t) −

1
2
a(t)[x∆(t)]2 + p(t)x2(t)

)
−

(
x∆(t)

)2

2x(t)xσ(t)

=

[
a(t)x(t)x∆∆(t) − 1

2a(t)[x
∆(t)]2 + p(t)x2(t)

]
a(t)x(t)xσ(t)

−

(
x∆(t)

)2

2x(t)xσ(t)

=
F[x(t)]

a(t)x(t)xσ(t)
−

(
x∆(t)

)2

2x(t)xσ(t)
< 0.

From Lemma 3.2, since F[x(t)] < 0 for t > t2 for some t2 > t1, then RT [t] is decreasing on [T ,∞)
T

. Notice
that if T is chosen so that x∆(T) = 0, RT [T ] = 0, and since R∆T (t) < 0, we have RT [t] < 0 for all t > T .
Together with the condition (iii) this implies

lim
x∆(t)

x(t)
= −∞.

By Lemma 3.3 we get that limt→∞ x(t) = 0, which proves the theorem.

Corollary 3.8. Assume that (iii) and (H1) hold. If x(t) has a zero on [t1,∞)T, then x(t) is either oscillatory or
limt→∞ x(t) = 0.

Proof. Assume that there exists a t1 > t0, such that x(t1) = 0. This implies that

F [x(t1)] = −
1
2
a(t1)(x

∆(t1))
2 6 0.

Then x(t1) belongs to Class SII, and the conclusion follows from Theorem 3.7.

Remark 3.9. Assume that and (iii), (H2), and (H3) hold. If x(t) is a solution of (1.2) belonging to either
Class SI or Class SII, then∫t

T

[
(xσ(s))2 +

µ(s)p(s)
(
x∆(s)

)2

Mq0
+
a(s)µ(s)

(
x∆∆(s)

)2

2Mq0

]
∆s <∞.

Now from (3.6) and (3.11), we see that∫t
T

[
(xσ(s))2 +

1
Mq0

(
µ(s)p(s)

(
x∆(s)

)2
+

1
2
a(s)µ(s)

(
x∆∆(s)

)2
)]
∆s <

−F0 + F[x(t1)]

Mq0
6
F[x(t1)] − F0

Mq0
<∞.
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Theorem 3.10. Assume that (iii) and (H4) hold. If x ∈ SII, then∫t
T

(
aσ(s)(x∆(s))2 +

1
2
µ(s) [a(s)x(s)]∆ x∆∆(s)

)
∆s =∞, (3.12)

and ∫t
t0

a(s)(x∆∆(s))2∆s =∞. (3.13)

Proof. Assume that x(t) be a solution of (1.2) belongs to class SII. By Theorem 3.7 we see that, either x(t)
is oscillatory or limt→∞ x(t) = 0. Assume that x(t) is oscillatory and choose T > t0 large enough so that
F[x(t)] < 0. Then by Lemma 3.2, we see that F[x(t)] < 0 for t > T . Define

J[x(t)] = a(t)x(t)x∆(t) −

∫t
T

a∆(s)x(s)x∆(s)∆s− 2
∫t
T

aσ(s)(x∆(s))2∆s−

∫t
T

µ(s) [a(s)x(s)]∆ x∆∆(s)∆s,

for t > T > t0. Then

J∆[x(t)] = a∆(t)x(t)x∆(t) + aσ(t)xσ(t)x∆∆(t) + aσ(t)(x∆(t))2 − a∆(t)x(t)x∆(t) − 2aσ(t)(x∆(t))2

− µ(t)aσ(t)x∆(t)x∆∆(t) − µ(t)a∆(t)x(t)x∆∆(t)

= aσ(t)xσ(t)x∆∆(t) − aσ(t)(x∆(t))2 − µ(t)aσ(t)x∆(t)x∆∆(t) − µ(t)a∆(t)x(t)x∆∆(t)

=
(
xσ(t) − µ(t)x∆(t)

)
aσ(t)x∆∆(t) − aσ(t)(x∆(t))2 − µ(t)a∆(t)x(t)x∆∆(t)

= aσ(t)x(t)x∆∆(t) − µ(t)a∆(t)x(t)x∆∆(t) − aσ(t)(x∆(t))2

= a(t)x(t)x∆∆(t) − aσ(t)(x∆(t))2.

From (iii), we get for all t > T that

J∆[x(t)] 6 a(t)x(t)x∆∆(t) − a(t)(x∆(t))2 = F [x(t)] − p(t)x2(t) −
1
2
a(t)(x∆(t))2 6 F [x(t)] < 0.

Integrating from T to t, we obtain

JT [t] 6 JT [T ] + F[x(t)](t− T)→ −∞, as t→∞.

That is, [
lim
t→∞(a(t)x(t)x∆(t) −

∫t
T

a∆(s)x(s)x∆(s)∆s− 2
∫t
T

aσ(s)(x∆(s))2∆s

−

∫t
T

µ(s)[a(s)x(s)]∆x∆∆(s)∆s) = −∞ .
(3.14)

If ∫t
T

(
aσ(s)(x∆(s))2 +

1
2
µ(s) [a(s)x(s)]∆ x∆∆(s)

)
∆s <∞,

then we assume that there is a sequence {tn} of zeros of x(t), such that

−

∫tn
T

a∆(s)x(s)x∆(s)∆s→ −∞, as n→∞. (3.15)

By using (H4), we get

−

∫tn
T

a∆(s)x(s)x∆(s)∆s 6
α

2

∫t
T

[
(x(s))2 +

(
x∆(s)

)2
]
∆s <∞,
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which contradicts (3.15). Now assume that limt→∞ x(t) = 0. Since x(t) is oscillatory, it is clear that
x(t)x∆(t) 6 0, for t > T1 for some T1 > t0. This implies

(
−a∆(t)x(t)x∆(t)

)
> 0, so by (3.14),

lim
t→∞a(t)x(t)x∆(t) − 2

∫t
T

aσ(s)(x∆(s))2∆s−

∫t
T

µ(s) [a(s)x(s)]∆ x∆∆(s)∆s = −∞.

Again if

−

∫t
T

(
aσ(s)(x∆(s))2 +

1
2
µ(s) [a(s)x(s)]∆ x∆∆(s)

)
∆s <∞,

then
lim
t→∞a(t)x(t)x∆(t) = −∞,

and hence,
a(t)x(t)x∆(t) 6 −D < 0, for t > T2,

for some positive constant D and some T2 > T1. Thus, x(t)x∆(t) 6 −D/a(t) for t > T2. An integration
gives us that ∫t

T2

x(s)x∆(s)∆s 6 −D

∫t
T2

1
a(s)

∆s,

then
1
2

∫t
T2

[
x(s) + (xσ(s) − µ(s)x∆(s))

]
x∆(s)∆s 6 −D

∫t
T2

1
a(s)

∆s,

which implies that

1
2

∫t
T2

(x(s) + xσ(s))x∆(s)∆s−
1
2

∫t
T2

µ(s)
(
x∆(s)

)2
∆s 6 −D

∫t
T2

1
a(s)

∆s.

Integrating by parts, we obtain as t→∞, that

1
2
[
x2(t) − x2(T2)

]
6 −D

∫t
T2

1
a(s)

∆s+
1
2

∫t
T2

µ(s)(x∆(s))2∆s→ −∞,

which contradicts x(t)→ 0 as t→∞. Therefore, (3.12) of the theorem holds. To prove (3.13), we assume
that x(t) is a solution of (1.2) belonging to class SII and T > t0 be chosen so that F[x(t)] < 0 for t > T .
Multiplying (1.2) by x∆(σ(t)) and integrating from T to t, we obtain∫t

T

[
a(s)x∆∆(s) + p(s)x(s)

]∆
x∆(σ(s))∆s

+

∫t
T

p(s)x∆(s)x∆(σ(s))∆s+

∫t
T

q(s)x∆(σ(s))f(xσ(s))∆s = 0.

Integrating by parts, we get that

a(t)x∆∆(t)x∆(t) + p(t)x(t)x∆(t) − a(T)x∆∆(T)x∆(T)

− p(T)x(T)x∆(T) −

∫t
T

[
a(s)x∆∆(s) + p(s)x(s)

]
x∆∆(s)∆s

+

∫t
T

p(s)x∆(s)x∆(σ(s))∆s+

∫t
T

q(s)x∆(σ(s))f(xσ(s))∆s = 0.

(3.16)

Now, we define
G(t) = −a(t)x∆∆(t)x∆(t) − p(t)x(t)x∆(t), (3.17)



S. H. Saker, H. Hassan, J. Math. Computer Sci., 26 (2022), 255–268 266

and
C0 = a(T)x∆∆(T)x∆(T) + p(T)x(T)x∆(T). (3.18)

From (3.16), (3.17), and (3.18), we obtain that

C0 −

∫t
T

q(s)x∆(σ(s))f(xσ(s))∆s+G(t) +

∫t
T

a(s)
(
x∆∆(s)

)2
∆s

=

∫t
T

p(s)x∆(s)x∆(σ(s))∆s−

∫t
T

p(s)x(s)x∆∆(s)∆s

=
1
2

∫t
T

p(s)
(
x∆(s)

)2
+

∫t
T

µ(s)p(s)x∆(s)x∆∆(s)∆s−

∫t
T

p(s)

(
x(s)x∆∆(s) −

1
2
(
x∆(s)

)2
)
∆s

>
1
2

∫t
T

p(s)
(
x∆(s)

)2
+

∫t
T

µ(s)p(s)x∆(s)x∆∆(s)∆s.

Furthermore,

−

∫t
T

q(s)x∆(σ(s))f(xσ(s))∆s = −q(t)H(x(t)) +

∫t
T

q∆(s)H(x(s))∆s+C1,

where

H(x) =

∫x
0
f(u)du > 0,

and C1 = q(T)H(x(T)). Since q∆(t) 6 0, we get

C0 +C1 +G(t) +

∫t
T

a(s)
(
x∆∆(s)

)2
∆s >

1
2

∫t
T

p(s)
(
x∆(s)

)2
+

∫t
T

µ(s)p(s)x∆(s)x∆∆(s)∆s,

that is,

C0 +C1 +G(t) +

∫t
T

a(s)
(
x∆∆(s)

)2
∆s >

σ

2

∫t
T

[(
x∆(s)

)2
+ µ(s)x∆(s)x∆∆(s)

]
∆s. (3.19)

By Theorem 3.7, either x(t) oscillates or x(t)→ 0 as t→∞. Assume that∫t
t0

a(s)(x∆∆(s))2∆s <∞.

If x(t) is oscillatory, then x∆(t) is oscillatory and assume that there exists an increasing sequence {tn} of
zeros of x∆(t). In view of (3.19), we must have G(t) → ∞ as t → ∞. However, G(tn) = 0 for t = tn,
n = 1, 2, 3, . . . , which contradicts the divergence G(t) → ∞ as t → ∞. If x(t) → 0 as t → ∞, then there
exists ε > 0 such that |x(t)| 6 ε for large t, say, for t > T1 for some T1 > T . Since G(t) → ∞ as t → ∞,
there exists

L < −a(t)x∆∆(t)x∆(t) − p(t)x(t)x∆(t), for t > T2.

Integrating, we obtain

L(t− T2) < −

∫t
T2

a(s)x∆∆(s)x∆(s)∆s−

∫t
T2

p(s)x(s)x∆(s)∆s

6 −
1
2
a(t)(x∆(t))2 +

1
2

∫t
T2

a∆(s)(x∆(σ(s)))2∆s+
1
2

∫t
T2

a(s)µ(s)
(
x∆∆(s)

)2
∆s−

1
2
p(t)x2(t)

+
1
2

∫t
T2

p∆(s)(x(σ(s)))2∆s+
1
2

∫t
T2

p(s)µ(s)
(
x∆(s)

)2
∆s+C3
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6
1
2

∫t
T2

[
a∆(s)(x∆(σ(s)))2∆s+ p(s)µ(s)

(
x∆(s)

)2
]
∆s

+
1
2

∫t
T2

a(s)µ(s)
(
x∆∆(s)

)2
∆s+

δε2

2
(t− T2) +C3,

where
C3 =

1
2
a(T2)(x

∆(T2))
2 +

1
2
p(T2)x

2(T2).

Hence

(L−
δε2

2
)(t− T2) 6

1
2

∫t
T2

[
a∆(s)(x∆(σ(s)))2∆s+ p(s)µ(s)

(
x∆(s)

)2
+ a(s)µ(s)

(
x∆∆(s)

)2
]
∆s+C3.

This implies

1
2

∫t
T2

[
a∆(s)(x∆(σ(s)))2∆s+ p(s)µ(s)

(
x∆(s)

)2
+ a(s)µ(s)

(
x∆∆(s)

)2
]
∆s→∞, (3.20)

as t→∞. By Remark 3.9, we get∫t
T2

(xσ(s))2∆s <∞,
∫t
T2

(x∆(s))2∆s <∞, and
∫t
T2

(x∆∆(s))2∆s <∞. (3.21)

Thus from (3.20) and (3.21), we see that

(L−
δε2

2
)t < C3 + LT2, for t > T2,

which is impossible. This contradiction shows that part (3.13) holds and the proof is complete.
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